

 ISSN(PRINT): 2454-406X,(ONLINE): 2454-4078,VOLUME-2,ISSUE-3,2016

1

SURVEY: DESIGN PATTERNS IN WEB BASED APPLICATIONS
Taranpreet Singh Saini1, Priyanka Lokhande2, Dipali Baviskar3

1,2,3Computer Engineering
Email: saini_13sf@yahoo.co.in1, priyankalokhande05@gmail.com2, dipali.shimpi@mitpune.edu.in3

Abstract
Design pattern is a general explanation to
commonly occurring problems in software
development. Any design issue can be solved
by the developers by applying design pattern.
Design patterns help designers learn a new
design paradigm, communicate architectural
knowledge, help people and help new
developers avoid pitfalls that have been
learned only by costly experiences.
Pattern-based web applications have become
popular since they promote reusability and
consistency. Web application designers need
to address many challenges during
development in order to satisfy the quality of
service requirements like speed, security and
scalability. In this paper we will see how
design patterns are connected with human
computer interface (HCI) with respect to
usability with the help of facebook case study.
Index Terms: Design pattern, web based
applications, case study, MVC.

I. INTRODUCTION

In a field of software engineering, a design
pattern is a repeatable answer to a usually
occurring problem in software design. A design
pattern isn't a complete design that can be
changed directly into code. It is a description or
pattern for how to answer a problem that can be
used in several different conditions.

Uses of Design Patterns
Design patterns can enhance the development
process by providing tested, verified
development models. Effective software design
need to consider matters that may be hidden until
later in the implementation part. Recycling

design patterns helps to avoid delicate issues that
can cause major difficulties and advances code
readability for coders and architects used to with
the patterns.

Every so often, users only understand how to
apply definite software design techniques to
certain problems. These techniques are hard to
apply to a wider range of difficulties. Design
patterns offer general answers, documented in a
format that does not need specifics tied to a
specific problem.

Additionally, designs permit designers to
communicate using familiar, well understood
names for software interactions. Usual design
patterns can be enhanced over-time, making
them tougher than ad-hoc designs.

Creational Design Patterns
These design patterns are all about class
actualization. This pattern can be further
classified into class-creation patterns and
object-creational patterns. While class-creation
patterns use inheritance efficiently in the
actualization process, object-creation patterns
use allocation efficiently to get the work done.

• Abstract Factory - Implements an instance of
several families of classes.
• Builder - Splits object construction from its
representation.
• Factory Method - Generates an instance of
numerous derived classes.
• Object Pool - Avoid expensive gaining and
release of resources by recycling objects that are
no longer in use.
• Prototype - A fully initialized instance to be
cloned.

 INTERNATIONAL JOURNAL OF ADVANCES IN CLOUD COMPUTING AND COMPUTER SCIENCE (IJACCCS)

 ISSN(PRINT): 2454-406X,(ONLINE): 2454-4078,VOLUME-2,ISSUE-3,2016

2

• Singleton - A single instance of a class.

Structural design patterns
These design patterns defines Class and Object
composition. Structural class-creation patterns
use inheritance to constitute interfaces.
Structural object-patterns describe ways to
constitute objects to get new functionality.

• Adapter – Combine interfaces of different
classes.
• Bridge - Splits an object’s interface from its
implementation.
• Composite - A tree structure of simple and
composite objects.
• Decorator - Add duties to objects dynamically.
• Façade - A single class that signifies an entire
subsystem.
• Flyweight - A fine-grained instance used for
effective sharing.
 Private Class Data - Limits accessor/mutator
access.
• Proxy - An object signifies another object.

Behavioral Design Patterns
Behavioral design patterns describe Class's
objects communication. Behavioral patterns are
those patterns that are most explicitly
concerned with communication between objects.

• Chain of responsibility - A way of sending a
request between a chains of objects.

• Command - Summarize a command request as
an object.

• Interpreter - A way to include language
essentials in a program.

• Iterator - Successively access the elements of a
collection.

• Mediator - Describes simplified communication
between classes.

• Memento - Capture and reinstate an object's
internal state.

• Null Object - Intended to act as a default value of
an object.

• Observer - A method of informing change to a
number of classes.

• State - Modify an object's behavior when its state
changes.

 • Strategy - Summarizes an algorithm inside a
class.

• Template method - Concede the exact steps of an
algorithm to a subclass.

• Visitor - Describes a new operation to a class
without change.

II. WEB BASED APPLICATIONS

A Web application is an application that can be
retrieved by the users through a Web browser or
a particular user agent. The browser generates
HTTP requests for specific URLs that map to
resources on a Web server. The server reduces
and returns HTML pages to the client, which the
browser can show. The basic of a Web
application is its server-side reason. The
application can comprise numerous distinct
layers. The classic example is a three-layered
architecture contained of presentation, business,
and data layers. Figure 1 demonstrates a typical
Web application architecture with mutual
components grouped by different areas of
concern.

Web based applications are the final way to take
benefit of today's technology to improve your
organizations output & efficiency. Web based
application gives you chance to access your
business data from anywhere in the world at
anytime. It also eases you to save time & money
and increase the interactivity with your
customers and partners.

III. MODEL-VIEW-CONTROLLER (MVC)

For periods people have try to find ways to
separate style from matter, good manners from
good science, and user interface from application
reason. The Model View Controller (MVC)
design pattern is a way of unraveling the
user-interface from the substance of the
application.

In modern years, MVC has become a widespread
plan for developing websites. There are
nowadays web-MVC frameworks accessible for
many programming languages, for instance
Struts for Java, Maypole for Perl and Rails for
Ruby.

 INTERNATIONAL JOURNAL OF ADVANCES IN CLOUD COMPUTING AND COMPUTER SCIENCE (IJACCCS)

 ISSN(PRINT): 2454-406X,(ONLINE): 2454-4078,VOLUME-2,ISSUE-3,2016

3

Figure 1

Since MVC was initially designed for traditional
GUI applications, certain facts in original MVC
pattern don’t map well to web applications.

Model

The Model manages the state of the application.
The state is nothing but what your application is
about. If your application is a forum, your Model
might comprise Class: DBI objects expressing
threads, users and postings. The Model knows
nothing about HTML, or web servers or
anything like that. It just supplies methods to
query the state, and ways to change that state.

View

The View is the illustration of the user interface.
Generally there are many (possibly nested)
Views in one application. A view can query the
model, but it is not invented to alter the state. In
web based MVC systems, a view can be applied
using a template that reduces an HTML page. In
our theoretical forum application, the Views
would be the templates for rendering a full
thread, the posting page, the login page etc.

Controller

User actions on the View are passing to
Controller. In a web environment, this is
generally done by having the Controller manage
the incoming HTTP requests.

The Controller receives user requests, and
converts them into activities that the Model
should take. Then it selects the suitable View to
manage the response.

It is allowed to have many Controllers, but most
web application frameworks have used assume
to have only one.

Figure 2 Model View Controller

IV. GENERAL DESIGN CONSIDERATIONS

When designing a Web application, the aim of
the software architect is to reduce the complexity
by separating tasks into different areas of
concern while manipulating a secure, high
performance application. Monitor these
guidelines to confirm that your application meets
your requirements, and performs effectively in
situations common to Web applications:

 Partition your application logically. Use
layering to logically partition your application
into presentation, business, and data access
layers. This supports you to generate
sustainable code and allows you to display
and enhance the performance of each layer
individually. A clear logical separation also
offers more options for scaling your
application.

 Use abstraction to implement loose coupling
between layers. This can be accomplished by
describing interface components, such as a
façade with known inputs and outputs that
interprets requests into a format understood
by components within the layer.
Additionally, you can also use Interface types
or abstract base classes to describe a shared
abstraction that interface mechanisms must
implement.

 INTERNATIONAL JOURNAL OF ADVANCES IN CLOUD COMPUTING AND COMPUTER SCIENCE (IJACCCS)

 ISSN(PRINT): 2454-406X,(ONLINE): 2454-4078,VOLUME-2,ISSUE-3,2016

4

 Understand how components will
communicate with each other. This needs an
understanding of the deployment situations
your application must support. You must
define if communication across process
boundaries or physical boundaries should be
supported, or if all components will run
within the same process.

 Consider caching to minimize server round
trips. When designing a Web application,
consider using techniques such as caching and
output buffering to diminish round trips
between the browser and the Web server, and
among the Web server and downstream
servers. A well designed caching strategy is
possibly the single important performance
associated design consideration. ASP.NET
caching features contain output caching,
partial page caching, and the Cache API.
Design your application to take benefit of
these features.

 Consider logging and instrumentation. You
should check and log activities through the
layers and tiers of your application. These
logs can be used to detect doubtful activity,
which often provides primary indications of
an attack on the system. Keep in mind that it
can be hard to log problems that occur with
script code executing in the browser.

 Consider authenticating users across trust
boundaries. You should design your
application to validate users whenever they
cross a trust boundary; for example, when
accessing a remote business layer from the
presentation layer.

 Do not pass sensitive data in plaintext across
the network. Whenever you pass sensitive
data such as a password or verification cookie
across the network, consider signing and
encoding the data or with the use of Secure
Sockets Layer (SSL) encryption.

 Design your Web application to run using a
least-privileged account. If an attacker
handles to take control of a process, the
process identity should have controlled access
to the file system and other system resources
in order to bind the possible damage.

V. USEFUL ABOUT MVC

Separation of requests and pages
Since the Controller is in control of handling the
requirements and choosing a suitable page
(View), there is no instant coupling between the
demand made by the user and the resultant page.

This turns out to be very valuable if the
page-flow in the application is multifaceted, but
even for simple applications the Controller is a
good place to manage common actions -
verification and session management can be
managed in the Controller, for instance.

Views are dumb
Since all code that does everything aside from
building a nice page for the user is out of the
View objects, altering the design does not
include touching the logic of the application.
Since the part of the application that varies the
most during and later development is the layout,
this means less chance of adding bugs.

Shielding of the Model implementation
Since all activities on the application state are
touched by the Model, it is possible to alter the
Model’s execution without moving the user
interface, as long as the Model’s public API
doesn’t modify.

5.1 Problems and limitations
What goes where

Occasionally is just difficult to figure out where
an exact piece of the application is supposed to
go. Particularly separating the Model from the
Controller can be difficult. As a rule of thumb,
the Controller should be as nominal as possible -
it is only responsible for decoding HTTP
requests into Model actions and opt for the right
View - the Model should offer all the behavior it
can without managing the HTTP requests or
output arranging details.

Coupling between View and Model

Difficulty with having the View and Controller
querying the Model is that altering the Model’s
public API means you also have to adapt the
Controller and Views that act on it. Adapting the
Controller is typically not too much work, but
changing a big number of Views will be
annoying.

The Model View Controller pattern tries to
decrease the impact of these alterations by using
two Models: a Domain Model and an
Application Model - the View only queries the
Application Model, and the Application model

 INTERNATIONAL JOURNAL OF ADVANCES IN CLOUD COMPUTING AND COMPUTER SCIENCE (IJACCCS)

 ISSN(PRINT): 2454-406X,(ONLINE): 2454-4078,VOLUME-2,ISSUE-3,2016

5

can query the Domain Model. The Application
Model typically partly generated by the GUI
design tools. I haven’t used this pattern at all, so I
don’t know how useful it is for web applications.

Lots of objects

Creating an MVC application can result in
additional classes and objects than a
“page-based” system. That means more design
up front. On the other hand, a well-designed
MVC structure will be easier to adapt and
enlarge, because the code will be parted well.

Should I use it

Perhaps, I think that any web-based application
that uses more than a handful of patterns, or has a
compound communication between pages would
be a good candidate for the MVC pattern. There
are replacements, of course.

VI. ROLE OF MVC IN WEB

APPLICATIONS

Although initially advanced for desktop
computing, model–view–controller has been
extensively adopted as architecture for World
Wide Web applications in main programming
languages. Several marketable and
noncommercial web frameworks have been
shaped that enforce the pattern. These software
frameworks differ in their clarifications, mainly
in the way that the MVC tasks are separated
between the client and server.

Timely web MVC frameworks took a thin client
method that placed almost the entire model, view
and controller logic on the server. This is still
imitated in widespread frameworks such as
Ruby on Rails, Django, ASP.NET MVC and
Express. In this method, the client sends either
hyperlink requests or form input to the controller
and then obtains a complete and updated web
page (or other document) from the view; the
model exists completely on the server. As client
technologies have developed, frameworks such
as AngularJS, EmberJS, JavaScriptMVC and
Backbone have been formed that allow the MVC
components to implement partly on the client.

Figure 4 MVC with Java

VII. CASE STUDY – FACEBOOK

The figure 5 shows the facebook user data,
which is having attributes for every major
aspect. There are four main classes user, page,
connect and list. UserClass contains different
attributes as UserID, FirstName, Email,
EmailVerified, Password, Sex, Birthdate,
Hometown, Relationship, Political, Religious
and all these values are the user personnel
information for creating the facebook id. If user
administers, likes or own a page then the class is
PageClass and its attributes are different as
PageID, Name, Description, Founded, Address,
Mission, Published, PublishDate. The third class
is about connectivity which is ConnectClass,
which shows user’s friend list and also gives the
add friend option. In ListClass, list is created
which are having attributes as newList,
addFriends, noOfFriends and showFriends.

Figure 5 Class Diagram for Facebook User Data

A data flow diagram (DFD) is a graphical

demonstration of the data "flow" through a data
system, modelling its process aspects. A DFD is
often used as an initial step to create an indication

 INTERNATIONAL JOURNAL OF ADVANCES IN CLOUD COMPUTING AND COMPUTER SCIENCE (IJACCCS)

 ISSN(PRINT): 2454-406X,(ONLINE): 2454-4078,VOLUME-2,ISSUE-3,2016

6

of the system, which can later be elaborated.
DFDs can also be used for the visualization of data
processing (structured design).

A DFD shows what kind of information will be
input to and output from the system, where the
information will come from and go to, and where
the information will be stored. It does not show
information about the timing of process or
information about whether processes will operate
in order or in similar. In figure 6 the data flow
diagram of facebook is shown with respect to user.
Data flow diagram shows the process for new user
and registered user.

Figure 6 Facebook Data Flow Diagram

Facebook uses OAuth 2.0 protocol framework

in figure 7, which allows web application (called
"client"), which is typically not the FB resource
owner but is acting on the FB user's behalf, to
request access to assets controlled by the FB user
and hosted by the FB server. In its place of using
the FB user credentials to access protected
resources, the web application obtains an access
token.

Web application should be recorded by

Facebook to have an application ID (client_id)
and secret (client_secret). When request to some
threatened Facebook incomes is received, web
browser ("user agent") is transmitted to
Facebook's support server page with application
ID and the URL the user should be
communicated back to after the approval
process.

User obtains back Request for Authorization
form. If the user agrees the application to get

his/her data, Facebook approval server redirects
back to the URI that was stated before together
with permission code ("verification string"). The
approval code can be swapped by web
application for an OAuth admission token.

If web application gets the admittance token for
a FB user, it can attain official requests on behalf
of that FB user by counting the right of entry
token in the Facebook Graph API requests. If the
user did not approve web application, Facebook
issues redirect request to the URI specified
earlier, and adds the error_reason parameter to
notify the web application that approval request
was denied.

Figure 7 UML Sequence Diagram for Facebook

VIII. CONCLUSION

In this paper, it is concluded that MVC
decouples views and models by establishing a
subscribe/notify protocol between them.
Whenever the model's data changes, the model
notifies views that depend on it. In response,
each view gets an opportunity to update itself.
This approach lets you attach multiple views to a
model to provide different presentations. You
can also create new views for a model without

 INTERNATIONAL JOURNAL OF ADVANCES IN CLOUD COMPUTING AND COMPUTER SCIENCE (IJACCCS)

 ISSN(PRINT): 2454-406X,(ONLINE): 2454-4078,VOLUME-2,ISSUE-3,2016

7

rewriting it. This is how design patterns are
connected with human computer interface (HCI)
with respect to usability. Model view controller
(MVC) design pattern is helpful in web based
applications and have a great future scope.

IX. ACKNOWLEDGEMENT

We would like to thank our Ass. Prof. Dipali
Baviskar (Software Design Architecture) for
excellent supervision and good advices.

REFERENCES

[1]“facebook-authentication-uml-sequence-diag
ram-example@ www.uml-diagrams.org.” .
[2] “Facebook Login Activity Diagram @
creately.com.” .
[3] “Facebook @ creately.com.” .
[4] “Data_flow_diagram @ en.wikipedia.org.” .
[5]“b4b12dcdff87e3ae83d0042427ecada0bcb57

a4b@ blog.iandavis.com.” .
[6] D. Bindal, “International Journal of

Advanced Research in Computer Science
and Software Engineering,” vol. 3, no. 6, pp.
426–433, 2013.

[7] J. Wang, Y. T. Song, and L. Chung,
“Analysis of secure design patterns: A case
study in E-commerce system,” Proc. - Third
ACIS Int. Conf. Softw. Eng. Res. Manag.
Appl. SERA 2005, vol. 2005, pp. 174–181,
2005.

[8] J. Wang, Y.-T. Song, and L. Chung, “From
software architecture to design patterns: a
case study of an NFR approach,” Softw.
Eng. Artif. Intell. Netw. Parallel/Distributed
Comput. 2005 First ACIS Int. Work.
Self-Assembling Wirel. Networks.
SNPD/SAWN 2005. Sixth Int. Conf., pp.
170–177, 2005.

[9] F. A. Vinisha and R. Selvarani, “Study of
Architectural Design Patterns in
Concurrence,” pp. 393–402.

[10] J. Shuai and M. Huaxin, “Design Patterns in
Object Oriented Analysis and Design,”
IEEE xplore, pp. 326–329, 2011.

[11] E. M. Sahly and O. M. Sallabi, “Design
pattern selection: A solution strategy
method,” 2012 Int. Conf. Comput. Syst. Ind.
Informatics, ICCSII 2012, 2012.

[12] J. S. Fant, H. Gomaa, and R. G. Pettit,
“Architectural design patterns for flight
software,” Proc. - 2011 14th IEEE Int.
Symp. Object/Component/Service-Oriented

Real-Time Distrib. Comput. Work.
ISORCW 2011, pp. 97–101, 2011.

[13] D. E. Perry and A. L. Wolf, “Foundations
for the study of software architecture,” ACM
SIGSOFT Softw. Eng. Notes, vol. 17, no. 4,
pp. 40–52, 1992.

[14] H. Mu and S. Jiang, “Design patterns in
software development,” 2011 IEEE 2nd Int.
Conf. Softw. Eng. Serv. Sci., pp. 322–325,
2011.

[15] N. Heidke, J. Morrison, M. Morrison, and E.
Claire, “Assessing the Effectiveness of the
Model View Controller Architecture for
Creating Web Applications,” Science (80).

[16] “IJCSE10-02-04-48.pdf.” .
[17] A. Paikens and G. Arnicans, “Use of Design

Patterns in PHP-Based Web Application
Frameworks,” Sci. Pap. Univ. Latv.
Comput. Sci. Inf. Technol., vol. 733, pp.
53–71, 2008.

[18] F. Montero and M. Lozano, “A first
approach to design web sites by using
patterns,” First Nord. Conf. …, 2002.

[19] I. Wentzlaff and M. Specker, “Pattern-based
development of user-friendly web
applications,” Work. Proc. sixth Int. Conf.
Web Eng. - ICWE ’06, p. 2, 2006.

[20] D. Bonura, R. Culmone, and E. Merelli,
“Patterns for web applications,” Proc. 14th
Int. Conf. Softw. Eng. Knowl. Eng. - SEKE
’02, p. 739, 2002.

[21] V. K. Kerji, “Creational patterns to create
decorator pattern objects in web
application,” Commun. Comput. Inf. Sci.,
vol. 204 CCIS, no. 5, pp. 225–232, 2011.

[22] C. Richardson, “A Pattern Language for
J2EE Web Component Development 1,”
Development, pp. 1–34, 2001.

[23] S. S. Thabasum and U. T. M. Sundar, “A
Survey on Software Design Pattern Tools
for Pattern Selection and Implementation,”
vol. 2, no. 4, pp. 496–500.

