

 ISSN(PRINT): 2454-406X,(ONLINE): 2454-4078,VOLUME-2,ISSUE-5,2016

6

ABSTRACTIVE TWEET STREAM SUMMARIZATION USING
NATURAL LANGUAGE PROCESSING

S.Annamalai1, R.Sudharsan2, R.Thirumalai Raj3
1,2,3Dept of Computer Science & Enggineering, Thiagarajar College of Engineering, Madurai

Email:s.annamalaikarthick@gmail.com1,sudharsan.r16@hotmail.com2
thiru.drake@gmail.com3

Abstract
Nowadays, the size of data in social media like
twitter is growing in unprecedented rate.
When we closely observe those data,
redundancy is the main reason for the data
explosion. Sometimes we also have
unnecessary noise in those data. For data
analysts and end-users, both the factors
(noise and size) act as a hindrance in mining
the data. So in this paper we introduce a novel
approach to generate abstractive summaries
of multi-topic based live tweet stream using
Natural Language Processing. The live tweets
are pre-processed and topic based Tweet
Cluster Vectors are formed by incremental
clustering. A transformation matrix is
constructed using the TCV’s centroids and
the live tweets, then an abstractive summary
is generated using the proposed
summarization method. The results are
evaluated based on the contextual
significance of the summary.
Keywords: tweet stream, summary,
abstractive summarization, incremental
clustering

I. INTRODUCTION

 Micro-blogging services such as Twitter and
many others have been playing an important role
in delivering news, opinions and more for quite
a while. In fact, they have taken a predominant
role in social media. Since the incline in their
usage every day, it has resulted in a huge amount
of data being handled. Twitter, for instance, has
an average of around 6,000 tweets per second

which corresponds to 500 million tweets per
day1. Tweets themselves are short meaningful
sentences which convey information, but there
are also many such erratic tweets which deliver
the same in a redundant and noise-full manner.
Even while utilizing filters for understanding a
particular topic, it also results in numerous
tweets. Thus it has become tiresome for an
onlooker to extract useful information and for
analysts to understand the evolution of these
tweets over a period of time.
One of the solutions to this problem is to
summarize the texts in the tweets using the
process of summarization. Automatic
summarization, by definition, is the process of
creating a summary that keeps the most
important points of the source document which
in turn reduces its size. In this way, when
information about a particular topic is searched,
there is a diversity maintained between other
such topics and redundancy of tweets on single
topic is reduced. An example of the use of
summarization technology is search engines
such as Google. Summarization is also used for
summarizing text documents, image collections
and videos. However, these traditional
document summarization techniques are not
efficient when considered for the large number
of arriving tweets. Thus a capable
summarization technique has to be devised
which addresses all the above difficulties.

 In this proposed system, tweets are filtered
based on the “topics of interest” mentioned by
an user for the required amount of time,

 INTERNATIONAL JOURNAL OF ADVANCES IN CLOUD COMPUTING AND COMPUTER SCIENCE (IJACCCS)

 ISSN(PRINT): 2454-406X,(ONLINE): 2454-4078,VOLUME-2,ISSUE-5,2016

7

understand those tweets and produce multiple
appropriate summaries which are abstractive in
nature. Then a suitable summary is selected for
the purpose of understanding the topic. Since the
summaries generated about a topic are
instantaneous and do not consider the history of
tweets, the system should be triggered at
intervals and the same should be done when
summaries are required on multiple topics. Thus
this method differs in the extensibility provided
from the already existing tweet summarization
techniques.
 The paper is organized as follows:
 In section 2, we do a literature survey of
already existing summarization method that is
used for the tweet summarization problem. In
section 3, we provide brief definitions to the
concepts used in the paper. In section 4, we
describe the model and its application for the
problem statement defined. Section 5 consists of
the experimental results and in section 6 we
conclude our work

II. LITERATURE REVIEW

A. Summarization by Timeline Generation for
Evolutionary Tweet Streams

One effective tweet summarization introduced
in [1] solves this problem by using real-time
timelines. The framework proposed
continuously monitors all the tweets on a
specific topic and creates the timelines. When a
user wants to explore the tweets in a period, the
system comes up with time stamped summaries,
which are the important tweets from which the
topics/subtopics had evolved from. This in
practice, is what we call as extractive
summarization. In this paper, we have
introduced a method which produces abstractive
summaries.

B. Natural Language Sentence Generation

A corpus based natural language generation
procedure was proposed in [2] which compared
the sentences generated using a multi-tier N-
gram-based method trained on the BEST2010, a
publicly available text corpus with a corpus
TELL-S, which contains simple sentences
created using textbooks belonging to Thai
schools. Test sets of 195 sentences were used to
evaluate the results and the sentence generation
accuracies were more in TELL-S than in
BEST2010.

C. Multi-Document Summarization

News articles describing the same event in
different ways were summarized earlier [3].
News can contain both similar and contradictory
information. So this multi-document
summarization method was used to identify
which phrases should be included in the
summary by comparing them and a sentence
generation method was used to reformulate them
as new texts

III. BASIC CONCEPTS

D. Pre-processing

Pre-processing is the first step in the text mining
process. The three preliminary steps of pre-
processing are stop words removal, stemming
and TF/IDF vector construction [4].
Stop words are a part of natural language. The
purpose that stop-words should be removed
from a text is that they add to the weight of the
text and make it less important for the analysts.
Removing stop words reduces the
dimensionality of term space. The most common
words in text documents are articles,
prepositions, and pronouns that does not give
meaning to documents. These words are treated
as stop words. Example of stop words are ‘the’,
‘in’, ‘a’, ‘an’, ‘with’, etc. Stop words are
removed from documents because those words
are not measured as keywords in text mining
applications.
Stemming is used to identify the root/stem of a
word. For example, the words play, played,
playing, playful all can be stemmed to the word
“play”. The purpose of this method is to remove
various suffixes, to reduce the number of words,
to have accurately matching stems, to save time
and memory space.
Term Frequency–Inverse Document Frequency
(tf-IDF) is a numeric quantity which reveals how
important a word is in a document. The tf-IDF is
often used as a weighing factor in information
retrieval and text mining.tf-IDF of a word is
directly proportional to the frequency of the
word in a document and inversely proportional
to the word’s frequency across document in the
corpus. It is calculated as

tf-IDF (t,d) = tf (t,d) . IDF (t,d)
where tf (t,d) is the number of times the term t
occurs in the document d and IDF (t,d) is the
number of documents in the corpus that contains
the term t.

 INTERNATIONAL JOURNAL OF ADVANCES IN CLOUD COMPUTING AND COMPUTER SCIENCE (IJACCCS)

 ISSN(PRINT): 2454-406X,(ONLINE): 2454-4078,VOLUME-2,ISSUE-5,2016

8

 tf–IDF measure can be used for stop-words
filtering in various subject fields including text
summarization and classification. tf–IDF is the
product of two quantities which are term
frequency and inverse document frequency.

E. Clustering Algorithms

Clustering is the process of grouping a set of
objects in such a way that the measure of relation
between the objects within a group (called a
cluster) is always more than that measure
between an object in one group to another group.
There are many clustering algorithms based on
the purpose of the cluster [5].

Central vectors are used for representing clusters
which necessarily may not be elements of the
dataset. K-means clustering provides an
optimization problem when the number of
clusters is fixed to k. The objects are assigned to
their nearest cluster centers which total to a
count k such that the squared distances between
the clusters are minimized.

F. Bigram

A bigram is (an n-gram of n=2) which is
typically a sequence of two adjacent letters,
syllables or words contained in a string or
document of tokens. The frequency distribution
of all bigrams in a string or document is
commonly used for simple quantitative analysis
of text in many applications such as language
technology, cryptography, speech recognition,
and so on.

G. Transition Matrix

A transition matrix which is also termed as
probability matrix, substitution matrix, or
Markov matrix is a matrix used to define the
transitions in a Markov chain.
In this transition matrix, the states of the Markov
chain are replaced with words and each of its
entries is a non-negative real number
representing a count. This count is the frequency
distribution of two adjacent words, thus forming
the bigram transition matrix. Thus, the matrix is
constructed from a training data and is useful for
finding out the word (Markov output word)
which has occurred the most consecutively to a
particular word (Markov input word).

IV. ALGORITHM DESCRIPTION

H. Collecting Tweet data from Tweet
Stream

Nowadays twitter has started showing privacy
concern for its data. Therefore Twitter datasets
are not available for public. In order to get the
tweet stream we used the Twitter4J. Twitter4J is
a Twitter API binding library for the Java
language licensed under Apache License 2.0. By
using the Twitter4J API2 we can filter the live
tweets by specific topics and pass it to our
algorithm.

I. Pre-processing the tweet data

As mentioned in Section Ⅲ B pre-processing the
raw tweets is important before we cluster the
tweet data.
 The first step of pre-processing is to remove stop
words. Consider a tweet t, at first we delimited
the tweet by special characters, to get the words
array wa. Stop words collection c is available in
weka jar. So for each word w in wa, if w is
present in c then remove w from wa. By this way
we can remove stop words from t.
Although stemming is an essential step in pre-
processing as per natural language processing. In
our scenario, we should not stem our tweet data
because tweets contain words which are not
found in regular English language but their
correctness is important for our cluster
formation and summarization steps. For
example, tweets contain the word “iPhone”
when they are filtered on the topic, say, “Apple”.
If this tweet is stemmed after the removal of stop
words, the word “iPhone” results in “iPhon”,
which might be a proper result after stemming
but the same has to be used for clustering and
summary generation. This may lead to some
meaningless but popular words appearing in our
summary.

J. Calculating tf-idf matrix

As mentioned in Section Ⅲ B, both term
frequency tf and inverse document frequency idf
is required for calculating the word relevance to
the tweet. tf of a word says about the importance
of that word in the tweet. idf of the word says
about the specificity of the word in that tweet.

Term Frequency tf on a word w can be calculated
as the total number of occurrences of w in the
tweet t.

 INTERNATIONAL JOURNAL OF ADVANCES IN CLOUD COMPUTING AND COMPUTER SCIENCE (IJACCCS)

 ISSN(PRINT): 2454-406X,(ONLINE): 2454-4078,VOLUME-2,ISSUE-5,2016

9

Inverse Document Frequency idf of a word w
can be calculated as the total number of tweets
divided by the number of tweets containing w.
The tf-idf of a word w in a tweet t can be
calculated as follows

tf-idf (w,t) = (1 + log tf) log idf
Hence the tf-idf matrix has be generated.

K. Training Data Collection and Initial
Clustering of Training Data

For any machine learning algorithm to work, we
need a training data from which our algorithm
learns and trains itself. Since we are using
incremental clustering, we need training data to
perform the initial clustering using k-means.
We will basically have numeric value for
training_data_limit. Initially we collect the first
training_data_limit tweets as training data td
and perform k-means clustering on the td. We
use cosine distance formula for distance
calculation.
Distance d between two tweet vectors t1 and t2
can be calculated as follows

,ଵݐሺ݁ܿ݊ܽݐݏ݅ܦ ଶሻݐ ൌ 1 െ
∑ .ଵሺ݅ሻݐ ଶሺ݅ሻݐ
௡
௜ୀଵ

ඥ∑ ଵሺ݅ሻଶݐ
௡
௜ୀଵ ඥ∑ ଶሺ݅ሻଶݐ

௡
௜ୀଵ

 Initially we create k clusters, where k is equal to
the number of topics.

L. Incremental clustering of incoming
tweets

Since we are dealing with live tweet streams, the
number of incoming tweets at a particular time
instant is unknown. In this case, incremental
clustering of tweets is more appropriate.

Algorithm 1: Incremental Tweet Clustering Algorithm
Input: tweet stream ts
Output: tweet cluster array
while !ts.end() do
 Tweet t = ts.next();
 index = 0
 min = MAX_VALUE
 for cluster i in cluster_array C
 if(distance(t , i.centroid)<min)
 min = distance(t , i.centroid)
 index = i
 index.add(t)
 index.recalculateCentroid()
__

For each incoming tweet t, we calculate the
distance between the t and the centroid of each
cluster i in the cluster_array. Then we add the t

to the cluster i whose distance is minimum and
recalculate the centroid for that cluster i.

M. Transition Matrix Generation

We have a point called
summary_geneartion_point.
When the number of tweets received is equal to
the summary_generation_point, we generate the
Transition Matrix tm and hence the summary s.

Algorithm 2: Transition Matrix Generation
Algorithm
Input: preprocessed_tweet_stream(ts)
Output: transition matrix(tm)
headcopy = ts
create new bag_of_words(ts)
do
 tweet = ts.next
 for (word : tweet)
 if (!bag_of_words.contains (word))
 bag_of_words.add (word)
 ts = ts.next
 while (ts != null)
size = bag_of_words.size()
create transition_matrix [size][size]
ts = headcopy
do
 tweet = ts.next
 for (word : tweet)
 transition_matrix
[word][next_word]++
 ts = ts.next
 while (ts != null)
__

At first we create the bag of words bow which
contains the list of unique words present in all of
the received tweets. Then we create a two
dimensional transition matrix tm of dimension
bow.size() x bow.size(). This matrix is nothing
but the bigram transition matrix that we
discussed in Section III E. This matrix acts as a
reference for the count of the number of times a
two set of words had occurred consecutively in
the training data.

For example, if the matrix is constructed from
the training data whose tweets were filtered on
the topic “Apple”, then the entries in the
transition matrix would be as follows.
Table 1: Transition Matrix Entries
From table 1, it can be inferred that the word
“reveal” follows the word “apple” significantly.

 INTERNATIONAL JOURNAL OF ADVANCES IN CLOUD COMPUTING AND COMPUTER SCIENCE (IJACCCS)

 ISSN(PRINT): 2454-406X,(ONLINE): 2454-4078,VOLUME-2,ISSUE-5,2016

10

Similarly, the word “reveal” is followed by the
word “MacBook” more prominently than it is
done by the word “conference”. Therefore, the
set of two consecutive words are: [“apple”,
“reveal”] and [“reveal”, “MacBook”]

N. Abstractive Summary Generation

After developing the transition matrix tm, we
should generate the summary s.

Algorithm 3: Abstractive Summary Generation
Algorithm
Input: cluster_centroid , transition_matrix
Output: summary s
Generate max_heap for each row of
transition_matrix
for (word : max_tfidf (cluster_centroid))
 while (next_word_found)
 summary.add (word)

next_word=transition_matrix_heap[word].poll()
 if (cluster_centroid.contains
(next_word))
 summary.add (next_word)

 At first we develop max_heap for each row of
tm. For each centroid we will run the abstractive
summary generation algorithm individually. Let
c be the centroid, w be the word with maximum
tf-idf value. If w is not present in the summary s,
the add w to s. The next word nw can be obtained
by polling the max_heap corresponding to the w
in tm. nw is also added to s. The above procedure
goes on until, all the words in c are processed.

V. EXPERIMENTS & RESULTS

The implementation of the code can be found in
this github repository3.
The experiment was performed on Intel i7
processor with 8GB of RAM. The
training_data_limit for the initial clustering of

words in the tweets was set to 100. The point at
which the clustering operation was stopped and
summary was generated, i.e.,
summary_generation_point was set to 1000.
For our experiment, we filtered the streaming
tweets by the topic “trump” and the summaries
generated were

● Hillary-underperform - west – win
● trump - unprecedented – urge
● georgia… - trouble’ – trump
● they - put - products – publicity
● they - predicted - products –

prayingfortrump
● i - order - obamacare - on kimmel
● i - notice - obamacare – nothing
● what - elections - duck - election2016
● nevada - nobodycares

But when we use extractive summarization, the
results obtained were,

● Trump has trouble at the polls at
Georgia state

● Hillary underperformed leading to
winning only in the West America

● Trump says “I notice Obama cares
nothing”

When we use extractive summarization the top
N retweeted tweets are generated as summaries.
The downside of this method is that, tweets other
than top N are not considered for summary
generation. This causes a major lack of
information which can be overcome by
abstractive summarization.

VI. CONCLUSION

Summarization in general is still one of the hard
problems in language technology. While
problems like spam detection are mostly solved
and others like sentiment analysis, parsing and
Information Extraction (IE) are all making good
progress, text summarization seems harder to
solve. Research on summarization using
information provided has been emerging in
recent years. Such information are represented
as text using templates. Examples of such
summarization include Weather Report
generated from weather data and report
templates. Since abstractive summarization
involves understanding information, it is still an
area of research. This reflects on the nature of
results in this paper.

[row , column] words Count

[“apple” , “reveal”] 4526

[“reveal” , “conference”] 32

[“apple” , “conference”] 657

[“reveal” , “MacBook”] 5298

 INTERNATIONAL JOURNAL OF ADVANCES IN CLOUD COMPUTING AND COMPUTER SCIENCE (IJACCCS)

 ISSN(PRINT): 2454-406X,(ONLINE): 2454-4078,VOLUME-2,ISSUE-5,2016

11

Future works on this paper include
reconstructing the proposed algorithm so that it
can run in a distributed environment. Another
language technology like Parts-of-Speech (POS)
tagging can be used for improving quality and
grammatical correctness of the summaries
generated.

ACKNOWLEDGMENT

The idea for this paper was guided and mentored
by Mr.S.Karthick. The work was supported by
the Dept. of Computer Science and Engineering,
Thiagarajar College of Engineering, Madurai.

REFERENCES

[1] Wang, Zhenhua, et al. "On
Summarization and Timeline Generation
for Evolutionary Tweet Streams." IEEE
Transactions on Knowledge and Data
Engineering 27.5 (2015): 1301-1315.

[2] Limpanadusadee, Worasa, et al. "Text
corpus for natural language story-telling
sentence generation: A design and
evaluation." Computer Science and
Software Engineering (JCSSE), 2014
11th International Joint Conference on.
IEEE, 2014.

[3] Barzilay, Regina, Kathleen R.
McKeown, and Michael Elhadad.
"Information fusion in the context of
multi-document summarization."
Proceedings of the 37th annual meeting
of the Association for Computational
Linguistics on Computational
Linguistics. Association for
Computational Linguistics, 1999.

[4] Atif, Khan, and Salim Naomie. "A
review on abstractive summarization
methods." Journal of Theoretical and
Applied Information Technology 59.1
(2014).

[5] Berkhin, Pavel. "A survey of clustering
data mining techniques." Grouping
multidimensional data. Springer Berlin
Heidelberg, 2006. 25-71.

