

 ISSN(PRINT): 2454-406X,(ONLINE): 2454-4078,VOLUME-3,ISSUE-3,2017

12

GENERATION OF OPTIMIZED TOP-K SQL QUERY
M.Boopathiraj1, R.Hari Krishnan2, R.Rajmohan3

Dept of Computer Sciene & Engg, Thiagarajar College of Engineering Madurai, Tamil Nadu, India

ABSTRACT
Database usage is growing rapidly in recent
years due to the development in internet and
cloud usage. Because of this answering to why
some of the expected tuples are missing in
query execution has received more attention.
In this paper we deal with the answering of
why not question in sql query with SPJA (ie,
selection, projection, join, aggregation)
constructs and providing a refined query that
will include the missing tuples. This includes
the tuple that contains both numerical and
non-numerical attributes. Given the original
SQL query and expected tuple, the algorithm
will return the refined query whose result will
include the expected tuple with the result and
its penalty. The algorithm tries all possible
combinations of changes on the original
query like changing the SPJA construct ,K-
value, weighting vector or combinations of
the above and it compares the result with the
expected one .If it matches ,then it calculate
the penalty for the respective query and
return the one with least value.
Keywords: why not question, missing tuple,
penalty, refined query

I. INTRODUCTION

A why-not question is being posed when a user
wants to know why her expected tuples do not
show up in the query result. Currently, end users
cannot directly sift through the dataset to
determine “why-not?” because the query
interface (e.g., web forms) restricts the types of
query that they can express. When end users
query the data through a database application
and ask “why-not?” but do not find any means
to get an explanation through the query
interface, that would easily cause them to throw
up their hands and walk away from the tool
forever—the worst result that nobody, especially
the database application developers who have

spent months to build the database applications,
want to see. Unfortunately, supporting the
feature of explaining missing answers requires
deep knowledge of various database query
evaluation algorithms, which is beyond the
capabilities of most database application
developers. In view of this, recently, the
database community has started to research
techniques to answer why-not questions on
various query types. Among them, a few works
have focused on answering why-not questions
on Select-Project-Join-Aggregate (SPJA) SQL
queries (e.g., [1], [2], [3], [4]) and preference
queries (e.g., top-k queries [5], reverse skyline
queries). So far, these proposals only work
independently. For example, when answering
why-not questions on top-k queries, the proposal
in [9] assumes there are no SPJ constructs (e.g.,
selection, projection, join, and aggregation).

In this paper, we study the problem of answering
why not top-k questions in the context of SQL.
Generally, a top-k query in SQL appears as:

Where,
ATTRIBUTES = A1, A2, A3 …AM,
AGGREGATE (.)
TABLE NAME = T1 …Tk
COND = JOIN PREDICATE OR SELECTION
PREDICATE.WEIGHING_VECTOR =
WEIGHT VALUES

To address the problem of answering why-not
questions on top-k SQL queries, we employ the
query refinement approach [4], [5],

SELECT <ATTRIBUTES> FROM
<TABLE NAME> WHERE <COND>
AND ORDER BY
<WEIGHTING_VECTOR>AND < LIMIT
(K) VALUE>

 INTERNATIONAL JOURNAL OF ADVANCES IN CLOUD COMPUTING AND COMPUTER SCIENCE (IJACCCS)

 ISSN(PRINT): 2454-406X,(ONLINE): 2454-4078,VOLUME-3,ISSUE-3,2017

13

Specifically, given as inputs the original top-k
SQL query and a set of missing tuples, this
approach requires to return to the user a refined
query whose result includes the missing tuples
as well as the original query results. In this
paper, we show that finding the best refined
query is actually computationally expensive.

 Afterwards, we present efficient algorithms that
can obtain the best approximate explanations
(i.e., the refined query) in reasonable time. We
present case studies to demonstrate our
solutions. We also present experimental results
to show that our solutions return high quality
explanations efficiently. This paper is an
extension of [5], which discussed answering
why-not questions on top-k queries in the
absence of other SQL constructs such as
selection, projection, join, and aggregation.

Related work:
Explaining a null answer for a database query
was set out by but the concept of why-not was
first formally discussed in [1]. That work
answers a user’s why-not question on Select-
Project-Join (SPJ) queries by telling her which
query operator(s) eliminated her desired tuples.
After that, this line of work has gradually
expanded. In [2] and [3], the missing answers of
SPJ [2] and SPJA [3] queries are explained by a
data-refinement approach, i.e., it tells the user
how the data should be modified (e.g., adding a
tuple) if she wants the missing answer back to
the result. In [4], a query-refinement approach is
adopted. The answer to a why-not question is to
tell the user how to revise her original SPJA
queries so that the missing answers can return to
the result. They define that a good refined query
should be (a) similar — have few “edits”
comparing with the original query (e.g.,
modifying the constant value in a selection
predicate is a type of edit; adding/ removing a
join predicate is another type of edit) and (b)
precise — have few extra tuples in the result,
except the original result plus the missing tuples.
In this paper, we adopt the query-refinement
approach as our explanation model and also
apply the above similarity and precision metrics

II. BASIC CONCEPTS

As an example, consider table U in Fig. 1a and
the following top-3 SQL query:

Fig. 1b shows the ranking scores of all tuples in
U and the top-3 result is {P3, P1, P2}. Assuming
that we are interested in asking why P5 is not in
the top-3, we see that using SPJA query
modification techniques in [8] to modify only
the SPJ constructs (e.g., modifying WHERE
clause to be U.A140) cannot include P5 in the
top-3 result (because P5 indeed ranks 4th under
the current weighting w~ ¼j0:5 0:5j). Using our
preliminary top-k query modification technique
[9] to modify only the top-k constructs (e.g.,
modifying k to be four) cannot work either
because P5 is filtered by the WHERE clause.
This motivates us to develop holistic solutions
that consider the modification of both SPJA
constructs and top-k constructs in order
a) Example table U:

ID A B
P1 240 60
P2 235 60
P3 340 70
P4 100 70
P5 140 100
P6 150 50

b) Ranking under original weightings

ID 0.5*A + 0.5*B

P3 205

P1 150

P2 147.5

P5 150

P6 100

P4 85

To answer why-not questions on top-k SQL
queries. For the example above, the following
refined query Q1 is one candidate answer:

Qo: SELECT U.ID FROM U
WHERE U.A 205
ORDER BY 0.5 * U.A + 0.5 * U.B
LIMIT 3

Q1:
SELECT U.ID FROM U
WHERE U.A 140
ORDER BY 0.5 * U.A + 0.5 * U.B
LIMIT 4

 INTERNATIONAL JOURNAL OF ADVANCES IN CLOUD COMPUTING AND COMPUTER SCIENCE (IJACCCS)

 ISSN(PRINT): 2454-406X,(ONLINE): 2454-4078,VOLUME-3,ISSUE-3,2017

14

Q0 is precise because it includes no extra tuple
and is similar to Q1 because only essential edits
were carried out: (1) modifying from U.A205
to U.A140, and (2) Modifying k from three to
four

III. DESCRIPTION
3 ANSWERING WHY-NOT QUESTIONS

ON TOP-K SPJ QUERIES
 In this section, we first focus on
answering why-not questions on top-k SQL
queries with SPJ clauses. We will extend the
discussion to why-not top-k SQL queries with
GROUP BY and AGGREGATION in the next
section.
3.1 The Problem and The Explanation Model
We consider a top-k SPJ query Q with a set of
Select-Project Join clauses SPJ, a monotonic
scoring function f and a weighting vector w~
¼jw½1 w½2 w½dj, where d is the number of
attributes in the scoring function. For simplicity,
we assume a larger value means a better score
(and rank) and the weighting space subject to the
constraint P w½i¼ 1 where 0 w½i 1. We only
consider conjunctions of predicates P1 ^ ... ^ Pn,
where each Pi is either a selection predicate “Aj

op v” or a join predicate “Aj op Ak”, where A is
an attribute, v is a constant, and op is a
comparison operator. For simplicity, our
discussion focuses on comparison because
generalizing our discussion to other comparison
operators is straightforward. The query result
would then be a set of k tuples whose scores are
the largest
 (In case tuples with the same scores are tied at
rank kth, only one of them is returned).
Initially, a user issues an original top-k SPJ
query QoðSPJo; ko; w~oÞ on a dataset D. After
she gets the query result, denoted as Ro, she may
pose a why-not question with a set of missing
tuples Y ¼fy1;...;ylg (l 1), where yi has the same
set of projection attributes as Qo. In this paper,
we adopt the query-refinement approach in [8]
so that the system returns the user a refined
query Q0ðSPJ0;k0;w~0Þ, whose result R0

includes Y and Ro, i.e., fY [Rog R0. It is possible
that there are indeed no refined queries Q0 that
can include Y (e.g., Y contains a missing tuple
whose expected attribute values indeed do not
exist in the database). For those cases, the
system will report to the user about her error.
There are possibly multiple refined queries for
being the answers to a why-not question hQo;Y
i. We thus use DSPJ, Dk, and Dw to measure the

quality of a refined query Q0, where Dk ¼ k0 ko,
Dw ¼jjw~0 w~ojj2, and DSPJ is defined based
on four different types of edit operations of SPJ
clauses adopted in [8]:

Following [8], we do not allow other edit
operations such as changing the projection
attributes (because users usually have a
clear intent about the projection attributes).
Note that there is no explicit edit operation
for removing a selection predicate, since it
is equivalent to modifying the constant
value in the predicate to cover the whole
domain of the attribute. Furthermore, we
also do not consider modifying the joins to
include self-join. Let ci denote the cost of
the edit operation ei, and we follow [8] to
set c1 ¼ 1;c2 ¼ 3; c3 ¼ 5;c4 ¼ 7. So, DSPJ ¼
P1i4ðci niÞ, where ni is the number of edit
operations ei used to obtain the refined
query Q0. In order to capture a user’s
tolerance to the changes of SPJ clauses, k,
and w~ on her original query Qo, we first
define a basic penalty model that sets the
penalties spj, k and w to DSPJ, Dk and Dw,
respectively, where spj þ k þ w ¼ 1:

Note that the basic penalty model is able to
capture both the similar and precise
requirements. Specifically, a refined query Q0

that minimizes Basic Penalty implies it is similar
to the original query Qo. To make the result
precise (i.e., having fewer extra tuples), we can
set a larger penalty k to Dk such that modifying
k significantly is undesired.
The basic penalty model, however, has a
drawback because Dk generally could be a large
integer (as large as jDj) whereas Dw and DSPJ
are generally smaller. One possible way to
mitigate this discrimination is to normalize them
respectively.
[Normalizing DSPJ] We normalize DSPJ using
the maximum editing cost DSPJmax.

Definition 1 (maximum editing cost DSPJmax).

Given the original query Qo, the maximum
editing cost DSPJmax is the editing cost of
obtaining a refined SPJ query QSPJ

max, whose
(1) SPJ constructs most deviated from the SPJ
constructs of the original query Qo (based on
the four types of edit operations e1 to e4) and
(2) with a query result that includes all missing
tuples Y and the original query result Ro

 INTERNATIONAL JOURNAL OF ADVANCES IN CLOUD COMPUTING AND COMPUTER SCIENCE (IJACCCS)

 ISSN(PRINT): 2454-406X,(ONLINE): 2454-4078,VOLUME-3,ISSUE-3,2017

15

 Example 1 (maximum editing cost DSPJmax).

By referring to Fig. 3 (the join result of T1 ffl T2),
the result Ro of the top-2 query is: {Gary, Alice}.
Assuming the missing tuples set Y of the why-
not question is

{Chandler}. Then, QSPJ
max is:1

Definition 2 (worst rank with minimal edits).
The worst rank with minimal edits ro is the worst
rank among all tuples in Y [Ro of a refined top-
k SQL query QSPJ

min, whose (1) SPJ constructs
least deviated from the original query Qo

(measured by c1 to c4), (2) using the original
weighting w~o, (3) with a query result that
includes all missing tuples Y and the original
query result Ro, and (4) the modification of k is
minimal.
To explain why ro is a suitable value to normalize
Dk, we first remark that we could normalize Dk
using the cardinality of the join result of Qo

because that is the worst possible rank. But to get
a more reasonable normalizing constant, we
look at Equation (1). First, to obtain the “worst”
but reasonable value of Dk, we can assume that
we do not modify the weighting, leading to
condition (2) in Definition 2. Similarly, we do
not want to modify the SPJ constructs so much
but we hope the SPJ constructs at least do not
filter out the missing tuples Y and the original
query result Ro, leading to conditions (1) and (3)
in Definition 2. So, based on Example 1, QSPJ

min

is:

We note that the following is not QSPJ
min

although it also satisfies conditions (1) to (3)
because its modification of k is from two to
eight, which not minimal (condition 4) is
comparing with the true QSPJ

min above:

The problem definition is as follows. Given a
why-not question hQo;Y i, where Y is a set of
missing tuples and Qo is the user’s initial query
with result Ro, our goal is to find a refined top-k
SQL query Q0ðSPJ0;k0;w~0Þ that includes Y
[Ro in the result with the smallest Penalty. In this
paper, we use Equation (2) as the penalty
function. Nevertheless, our solution works for
all kinds of monotonic (with respect to all DSPJ,
Dk and Dw) penalty functions. For better
usability, we do not explicitly ask users to
specify the values for spj, k and w. Instead, we
follow our early work [9] so that users are
prompted to answer a simple multiple-choice
question as illustrated

Assume the default option “Never mind” is
chosen. Table 2 lists some examples of refined
queries that could be the answer of the why-not
question to Qo in Example 1. According to the
above discussion, we have DSPJmax ¼ refined
queries, Q0

1 dominates Q0
2 because its Dk is

smaller than that of Q0
2 and the other dimensions

are equal. The best refined query in the example
is Q0

4 (Penalty ¼ 0:11). At this point, readers
may notice that the best refined query is in the
skyline of the answer space of three dimensions:
(1) DSPJi, (2) Dki, and (3) Dwi. Later, we will
show how to exploit properties like this to obtain
better efficiency in our algorithm. Penalty
fumction is given by,

 3. 2 PROBLEM ANALYSIS

Answering a why-not question is essentially
searching for the best refined SPJ clauses and
weighting in (1) the space SSPJ of all possible
modified SPJ clauses and in (2) the space

2. The number of choices and the pre-defined
values for spj, k and w, of course, could be
adjusted. For example, to make the result precise
(i.e., having fewer extra tuples), we suggest the
user to choose the option where k is a large value.

TABLE 1
Examples of Candidate Refined Queries

SELECT B FROM T1, T2
WHERE T1.A = T2.A AND D 400
ORDER BY 0.5 * D + 0.5 * E
LIMIT 2

QSPJmax:
SELECT B FROM T1, T2, T3
WHERE T1.A = T2.A AND T1: A ¼ T3: A
AND C 50 AND D 100
AND E 50
AND F 60 AND G 200 AND H 60

QSPJmin:
SELECT B FROM T 1, T2 WHERE T1.A =
T2.A AND D 200
ORDER BY 0.5 * D + 0.5 * E LIMIT 7

SELECT B FROM T1, T2
WHERE T1.A = T2.A AND D 100

ORDER BY 0.5 * D + 0.5 * E LIMIT 8

 INTERNATIONAL JOURNAL OF ADVANCES IN CLOUD COMPUTING AND COMPUTER SCIENCE (IJACCCS)

 ISSN(PRINT): 2454-406X,(ONLINE): 2454-4078,VOLUME-3,ISSUE-3,2017

16

(Option Never Mind (NM): spj ¼ 1=3, k ¼ 1=3, w

¼ 1=3)

Refined Query SPJi ki wi penalty

Q1({’T1

T2,D>=200},7,|0.5 0.5|)

1 5 0 0.35

Q2({’T1

T2,D>=100},8,|0.5 0.5|)

1 6 0 0.41

Q3({’T1

T2,D>=200},7,|0.6 0.4|)

1 5 0.14 0.38

Q4({’T1

T2,D>=200^C>=90}3,7,|0.5

0.5|)

4 1 0 0.11

Q5({’T1

T2,D>=200},3,|0.2 0.8|)

1 1 0.42 0.20

Fig1.T1 |><| T2 ranked under w~o ¼ j0:5 0:5j.

Sw of all possible weightings, respectively. It is
not necessary to search for k because once the
best set of SPJ clauses and the best weighting w~
are found, the value of k can be accordingly set
as the worst rank of tuples in Y [Ro. The search
space SSPJ can be further divided into two: (1a)
the space of the query schemas SQS and (1b) the
space of all the selection conditions Ssel. A
query schema QS represents the set of relations
in the FROM clause and the set of join predicates
in the WHERE clause. A selection condition
represents the set of selection predicates in the
WHERE clause.
Consider Example 1 again. The query schema
QS0 that can include back the missing tuple
(Chandler) would lead to a join result like Fig. 3.
Originally, we have to consider eight predicates
when dealing with attribute D, which are
D 500, D 400, D 300, D 290, D 280, D 250,
D 210, and D 100. By using Lemma 2, we just
need to consider D 200 because among fyg[Ro

¼ { Chandler, Gary, Alice}, their attribute
values of D are 200, 400, and 500, with 200 as
the minimum. Similar for attribute E, by using
Lemma 2, we just need to consider E 80. The
above discussion can be straightforwardly
generalized to other comparisons including , <,
and >.

 3.3 Skipping Progressive Top-k SQL
Operations

In PHASE-2 of our algorithm, the basic idea is
to execute progressive top-k SQL queries for all
selection conditions in

Ssel
QS0 and all weightings in Sw. After the

discussion in Section 3.3.2, we know them some
progressive top-k SQL executions can stop
early. We now illustrate three pruning
opportunities where some of those executions
could be skipped entirely.
The first pruning opportunity is based on the
observation from [15] that under the same
selection condition seli, similar weighting
vectors may lead to top-k SQL results with more
common tuples. Therefore, if an operation
TOPKðseli;w~j; until-see-ffyg[RogÞÞ for w~j

has already been executed, and if a weighting
w~l is similar to w~j, then we can use the query
result Rij of topkðseli;w~j;until-see-ffyg[RogÞ
to deduce the smallest k value for seli and w~l.
Let k0 be the deduced k value for seli and w~l. If
the deduced k0 is larger than the threshold
ranking rT, then we can skip the entire
TOPKðseli;w~l;stopping-conditionÞ operation.

Fig1.Table T1

Fig2.Table T2

ID Name

P1

Alice

P2 Bob

P3 Chandler

P4 Daniel

P5 Eagle

P6 Fabio

P7 Gray

P8 Henry

ID A B C CITY
P1 90 400 80 bangalore
P2 60 290 60 dindigul
P3 90 200 100 Salem
P4 50 300 70 bangalore
P5 80 100 210 salem
P6 70 250 70 madurai
P7 50 280 50 bangalore
P8 100 500 100 madurai

 INTERNATIONAL JOURNAL OF ADVANCES IN CLOUD COMPUTING AND COMPUTER SCIENCE (IJACCCS)

 ISSN(PRINT): 2454-406X,(ONLINE): 2454-4078,VOLUME-3,ISSUE-3,2017

17

We illustrate the above by reusing our running
example. Assume that we have cached the result
sets of executed progressive top-k SQL queries.
Let R1o be the result set of the first executed
query topkðsel1;w~o;until-see-ffyg[RogÞ and

Ro ¼ft5;t6g. Assume that R1o ¼½t1;t2;t3;t4;t5;t6;y.
Then, when we are considering the next
weighting vector, say, w~1, in Sw, we first follow
Equation (3) to calculate the threshold ranking
rT. In Fig. 5, projecting w~1 onto slope PQ01o

we get rT ¼ 4 þ 2 ¼ 6. Next we calculate the
scores of all tuples in R1o using w~1 as the
weighting. More specifically, let us denote the
tuple in fyg[Ro under weighting vector w~1 as
tbad if it has the worst rank among fyg[Ro. In the
example, assume under w~1, the scores of t1, t2,
t3 and t4 are still better than tbad, then the k0 value
for sel1 and w~1 is at least 4 þ 3 ¼ 7. Since k0 is
worse than rT ¼ 6, we can skip the entire
TOPKðsel1;w~1;stopping-conditionÞ operation.
The above caching technique is shown to be the
most effective between similar weighting
vectors [15]. Therefore, we design the algorithm
in a way that the list of weightings Sw is sorted
according to their corresponding Dwi values (of
course, w~o is in the head of the list since Dwo ¼
0). In addition, the technique is general so that
the cached result for a specific selection
condition seli can also be used to derive the
smallest k0 value for another selection condition
selj. As long as seli and selj are similar, the
chance that we can deduce k0 from the cached
result that leads to TOPK operation pruning is
also higher. So, we design the algorithm in a way
that seli is enumerated in increasing order of Dsel
as well.
The second pruning opportunity is to exploit the
best possible ranking of fyg[Ro (under all
possible weightings) to set up an early
termination condition for some weightings, so
that after a certain number of progressive top-k
SQL operations have been executed under sel i,
operations associated with some other
weightings for the same sel i can be skipped.
Recall that the best possible ranking of fyg[R o

is ko þ 1, since jfyg[R oj¼ ko þ 1. Therefore, the
lower bound of Dk, denoted as DkL equals 1. So,
this time, we project DkL onto slope Penmin in
order to determine the corresponding maximum
feasible Dw value. We name that value as Dwf .
For any Dw > Dwf, it means “fyg[Ro has Dk <
DkL”, which is impossible. As our algorithm is
designed to examine weightings in their

increasing order Dw values, when a weighting
wj 2 Sw has jjwj wojj > Dwf, topkðseli;w~j; stopping-

conditionÞ and all subsequent progressive top-k

Fig3.Table T3

SQL operations topkðseli;w~l;stopping-
conditionÞ where l > j þ 1 could be skipped.
Reuse Fig. 5 as an example. By projecting DkL

¼ 1 onto the slope PenQ01o, we could determine
the corresponding

Dwf value. So, when the algorithm finishes
executing a progressive top-k SQL operation for
weighting w~2, the algorithm can skip all the
remaining weightings and proceed to examine
the next selection condition.
As a remark, we would like to point out that the
pruning power of this technique also increases
while the algorithm proceed

IV. METHODOLOGY

4. ANSWERING WHY-NOT
QUESTIONS ON TOP-K SPJA
QUERIES

In this section, we extend the discussion to
why-not top-k SQL queries with GROUPBY
and AGGREGATION.

The Problem and The Explanation Model
Initially, a user issues an original top-k SPJA
query QoðSPJAo;ko;w~oÞ on a dataset D. After
she gets the result Ro, she may pose a why-not
question about a set of missing groups Y
¼fg1;...;glg (l 1), where gi has the same set of
projection attributes as Qo. Then, the system
returns the user a refined query
Q0ðSPJA0;k0;w~0Þ, whose result R0 includes Y
and Ro, i.e., fY [Rog R0. If there are indeed no
refined queries Q0 that can include Y and Ro, the
system will report to the user about her error.

Algorithm 1. Answering a Why-not Top-k SPJ
Question

ID D E F
P1 60 200 70
P2 100 250 90
P3 70 280 80
P4 90 300 90
P7 80 300 100
P8 60 200 60

 INTERNATIONAL JOURNAL OF ADVANCES IN CLOUD COMPUTING AND COMPUTER SCIENCE (IJACCCS)

 ISSN(PRINT): 2454-406X,(ONLINE): 2454-4078,VOLUME-3,ISSUE-3,2017

18

Input:
Original query and the
expected tuple

1: Obtain QS0 and j value.
2: if QS0 does not exist then
3: return “cannot answer the why-not
question”;
4: end if
5: switch(choice)
6: case 1:
7: spja constructs are changed.
8: if Q_result equal to j then
9: calculate penalty;
10: if penalty <=min_penalty then
11: min_penalty =
penalty;
12: end if
13: end if
14: Return query with min_penalty
15:case 2:
16: k value alone is changed
17: if Q_result equal to j then
18: calculate penalty;
19: if penalty <=max_penalty then
20: max_penalty =
penalty;
21: end if
22: end if
23: Return query with min_penalty
24:case 3:
25: weight values are changed
26: if Q_result equal to j then
27: calculate penalty;
28: if penalty <=max_penalty then
29: max_penalty =
penalty;
30: end if
31: end if
 32: Return query with min_penalty
33:case 4:
34: all are changed reandomly
35: if Q_result equal to j then
36: calculate penalty;
37: if penalty <=max_penalty then
38: max_penalty =
penalty;
39: end if
40: end if
41: :Return query with min_penalty

This algorithm will give the query that
includes the expected tuple with least penalty.

 CONCLUSION
In this paper, we have studied the problem of
answering why-not questions on top-k SQL
queries. Our target is to give an explanation to a
user who is wondering why her expected
answers are missing in the query result. We
return to the user a refined query that can include
the missing expected answers back to the result.
Our case studies and experimental results show
that our solutions efficiently return very high
quality solutions.

 Acknowledgment
 This work is supported by INTEL
MULTICORE LAB in Department of Computer
Science and Engineering, Thiagarajar College of
Engineering, Madurai.
REFERENCES
[1] A. Chapman and H. Jagadish, “Why not?” in

Proc. ACM SIGMOD Int. Conf. Manage.
Data, 2009, pp. 523–534.

[2] J. Huang, T. Chen, A.-H. Doan, and J. F.
Naughton, “On the provenance of non-
answers to queries over extracted data,” in
Proc. VLDB, 2008, pp. 736–747.

[3] M. Herschel and M. A. Hernandez,
“Explaining missing answers to SPJUA
queries,” in Proc. VLDB, 2010, pp. 185–
196.

[4] Q. T. Tran and C.-Y. Chan, “How to
ConQueR why-not questions,” in Proc.
ACM SIGMOD Int. Conf. Manage. Data,
2010, pp. 15–26

[5] Z. He and E. Lo, “Answering why-not
questions on top-k queries,” in Proc. IEEE
28th Int. Conf. Data Eng., 2012, pp. 750–761

[6] I. Md. Saiful, Z. Rui, and L. Chengfei, “On
answering why-not questions in reverse
skyline queries,” in Proc. IEEE 28th Int.
Conf. Data Eng., 2013, pp. 973–984.

[7] Z. He and E. Lo, “Answerin.g why-not
questions on top-k queries,”

