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Abstract - The hyperspectral cameras used 
for imaging are having low spatial resolution, 
and thus the pixels in the captured image will 
be mixtures of spectra of various materials 
present in the scene. Thus spectral unmixing 
comes as an unavoidable step in hyperspectral 
image processing. Spectral unmixing is an 
important problem in hyperspectral data 
exploitation. It amounts at characterizing the 
mixed spectral signatures collected by an 
imaging instrument in the form of a 
combination of pure spectral constituents 
(endmembers), weighted by their 
correspondent abundance fractions. This 
paper presents a comparative study and 
performance analysis of different approaches 
for unmixing. Three geometrical algorithms 
for spectral unmixing, namely PPI, N-
FINDER VCA and MVSA are introduced in 
this paper. Also the paper represents the 
algorithms based on statistical approaches, 
those are NMF, NMF with piecewise 
smoothness constraint and NMF with 
sparseness constraint.  

Index Terms-Hyperspectral imaging, 
Spectral signature, Spectral unmixing, PPI, 
N-FINDER, VCA, MVSA, NMF, nsNMF, 
NMFSC. 

I. INTRODUCTION 

HYPERSPECTRAL sensor collects 3-
dimensional data with two spatial dimensions 
and one spectral dimension as shown in Fig. 1. 
Spectral dimension contain the data in hundreds 
of    very narrow contiguous bands, and this  

 

provides a good way for the identification of 
various materials over the observed scene 
captured by the sensor.  

The various materials are discriminated on their 
unique spectral signatures as shown in Fig. 2. 
Hyperspectral  imaging  is  having  a  wide  range  
of  applications  in  various  fields  as  in  
agriculture, planetary remote sensing, military, 
environmental  monitoring  etc[1]. The  
hyperspectral  imaging  sensors  can  capture  
many  contiguous bands  which  is  having  very  
high  spectral  resolution  and  this will be 
covering not only visible regions but also the 
infra red regions  of  electromagnetic  
spectrum(0.3-2.5µm)[2],[3]. 

 

Fig. 1. An Example of a Hyperspectral Image  

Advanced  hyperspectral  sensors  like  AVIRIS 
of  NASA  is  now  able  to  cover  the  above  
mentioned  wave-length region using about 200 
spectral channels. In the case of hyperspectral 
images, depending upon the spatial resolution of 
sensor, the individual pixels in the captured 
scene may comprise of more than one material. 
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Each pixel will be the mixture of various 
materials of the surface patch and  thus  the  
spectra  observed  will  contain  multiple 
endmembers (or spectral signatures) and thus the 
further analysis  becomes  difficult. This  
happens  mainly  because  of  the poor  spatial  
resolution  of  the  sensor  used. There arises the 
need of hyperspectral unmixing. Hyperspectral  
unmixing  aims  at  the decomposition of the 
observed spectra into a set of pure reference  
materials(endmembers)and  their  abundance  
fractions. Thus unmixing process gives both 
spectral signatures  and  corresponding  
abundance  maps  of  materials  present  in the  
scene.  This unmixing problem has been a subject 
to many investigative studies for the past many 
years. 

Hyper Spectral unmixing is basically a blind 
source separation problem.  Hyperspectral  sense  
contain  sources  which are  statistically  
dependent  and  they  may  combine  either  in  a 
linear  or  nonlinear  fashion. This makes spectral 
unmixing problem to be placed in higher level 
compared to other source separation problems.  

 

Fig. 2.Reflectance Spectrum of the pixels. 

A. Mixing Models 
Unmixing  can  be  classified  to  linear[3]  and  
Non  linear[3].Linear  models    assume  that  the  
mixing  scale  is  macroscopic, and  the  light  
which  falls  on  the  surface  interacts  with only  
one  material. This  type  of  mixing  takes  place  
due  to  the  low  spatial  resolution  of  the  sensor. 
Here multiple scatterings do not take place. In  
the  case  of  Nonlinear  mixing  models  the  
interaction  between  the  light  which  is  
scattered  by  multiple  materials  occurs, and  the  
mixed  model  becomes  complicated. The 
interactions can be at Intimate or microscopic 
level. Thus non-linear unmixing becomes a 
difficult task. So here this paper concentrates in 
linear unmixing due to its simplicity, and also it’s 

the basis of many algorithms for more than 30 
years. 

 

Fig. 3.Linear mixing model without any multiple 
scattering effects. 

The linear mixing model assumes that the 
spectrum of a pixel in the acquired scene is a 
linear combination of all pure materials 
(endmembers) present in the scene. it is assumed 
that the hyperspectral  sensor used for capturing 
the  scene has L  spectral  bands,  linear  mixing  
model  can  be  mathematically  represented as in 
Fig. 4. The relation between them is given as per 
the follow. 

ܴ ൌ ܺ ൅ ݊					(1) 
 

Where, ܺ ൌ  ܵܯ
ܴ ൌ ܵܯ ൅ ݊(2) 

 
Where, S   

ܴ ൌ ߙߛܯ ൅ ݊(3)   

Here term R is the original image cube. We can 
represent Rij∈ɌLas an observation array at a 
single pixel. Matrix M ∈ɌL×P is our observed 
spectral endmember signature matrix having 
each column Mp∈ɌL and here P represents the 
total number of endmembers present in our 
image data. Matrix S represents the relative 
abundance cube. Its every column Sij∈ɌP is 
defined as an abundance vector related with Rij. 
In abundance matrix Seach element of it 
denoting the relative abundance fraction of 
endmember present in Rij. 

For simplicity, “matrix-to-vector” alignment 
process is used. In this method all the rows in the 
matrix are concatenates together to form a single 
vector. This process is mainly applied for the 
conversion of band in R and abundances in S. So 
our matrices will now change in dimensions. 
Original R is of i×j×L, where K=i×j, M is of L×P 
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and S is of i×j×P. This dimensions will then 
transformed to R is of L × K, M is of L×P and S 
is of P × K, respectively, where K is the number 
of pixels, P in the number of endmembers, L is 
the total spectral bands.In  this  modeling    both  
M  and  α  have  to  be  found  by unmixing.  
Here basic two constraints are used. 

ANC (abundance nonnegative constraint):It says 
that the each and every component present in our 
signature matrix M should always be 
nonnegative so it is given as eq. (4). 

MlP≥ 0, 1 ≤ l ≤ L   (4) 

ASC (abundance sum to one constraint): It says 
that the sum of all the relative fraction of each 
pixel should be equal to unity as given as eq. (5). 

௜ܵ௝௣ ∈ ሾ0,1ሿ, ∑ ௜ܵ௝௣ ൌ 1௉
௣ୀଵ (5) 

 
 

Fig. 4. Simplified linear mixture model 

II. GEOMETRICAL APPROACHES 

As per the geometrical point of view the linearly 
mixed vectored generated by the mixing process 
are always stays in a simplex set of data (positive 
cone). It uses basically geometric properties of 
an image.These approaches take advantage of 
the analogy between mixing models and the 
geometric orientation of hyperspectral data in 
multidimensional spaces. 

A. Endmember extraction algorithms overview 

  

Geometrical approaches come as the third 
category of spectral unmixing algorithms. 
Basically it follows the fact that, under  the  linear  
mixing  model  spectral  vectors  belong  to  the 
simplex set whose vertices correspond to the 
endmembers. Thus by finding out the vertices it 
is possible to find out the endmember in the 
hyperspectral image.  

There are two categories in this approach. 
Algorithms which assume the presence  of  pure 
pixels comes under the one category and 
algorithms  which  do  not  assume  the  presence  
of  pure    pixels comes  under  another  category. 
MVSA (minimum  volume  simplex  analysis) 
[11], MVES(minimum  volume  enclosing 
simplex), SISAL(simplex  identification  via  
split  and  augmented  lagrangian), etc  comes  
under  the  first  category. In the second category 
to which this paper concentrates, come the 
following algorithms like SVMAX (successive 
volume maximization), AVMAX (Alternating    
volume  maximization), ADVMM(alternating  
decoupled  volume  max-
min),SDVMM(successive  decoupled  volume  

max-min),N-FINDR,VCA(vertex  component  
analysis), IEA (iterative  error  analysis), 
PPI(pixel  purity  index), etc  are  some  of  the  
algorithms  come  under  this  section. 

B. Pure pixels based geometrical algorithms  

     As  discussed  in  the  previous  sections  
geometrical  algorithms  with  pure  pixel  
assumption  assumes  the  presence  of at least  
one  pure  pixel  per  endmember. These pure 
pixel algorithms still belong to minimum volume 
class.This assumption of pure pixel make these 
algorithms very efficient but still creates 
difficulty in some datasets.In this section  a brief 
theoretical  side  of  each  of  the  5  algorithms  
namely PPI, N-FINDER, VCA, MVSA is given.
  

C.  N-FINDR   

This is another popular algorithm used for 
spectral unmixing. This also works according to 
winter’s belief [24].This is a pure pixel based 
algorithm and this search for the set  of  pixels  
with  largest  possible  volume  by  inflating  a  
simplex inside the given dataset. The original N-
FINDER algorithm [3] is having 4 steps as 
follows. 

1)  Feature  reduction-In  this  the  dimension  of  
data  is  reduced from  n  toP-1  by  some  PCA  
[32]  or  MNF[33],where  P  is  the number of 
endmembers to be identified.  

2)Take some randomly selected endmembers 

from the dataset as        0 0 0(0)
1 2 3, , .... pE E E E  

3) At each iteration k≥0, calculate the volume by 
this set of endmembers as follows. 



 INTERNATIONAL JOURNAL OF PRORESSES IN ENGINEERING, MANAGEMENT, SCIENCE AND HUMANITIES 
 

 

  ISSN (PRINT): 2395-7786, (ONLINE):2395-7794, VOLUME-1, ISSUE-3, 2015 
14 

      
     

 
1 2

1 2

1 1... 1
det

...
, ....

1 !

k k k
pk k k

p

E E E
v E E E

p

 
 
  



(6) 

4) Replacement- For each and every pixel the 
volume corresponding to it  is checked  by this 
way,if this pixel replaces one of the given  
endmember positions in matrix shown above. . If 
the replacement of pixel results in an increase in 
volume,the pixel replaces the endmember. This 
process continues until there are no endmember 
replacements in the given data. 

D. Vertex component analysis 

The pseudo-code for the VCA method is shown 
in following steps. Symbols [ܯ෡]:,jand [ܯ෡]:,i:k 
stand for the jth column of ܯ෡  and for theith to kth 
columns of ܯ෡ , respectively. Symbol ܯ෡  stands for 
the estimated mixing matrix. 

Step 1 Hyperspectral data cube (R) and number 
of endmembers (p) are known and can be an 
input of VCA. 

Step 2 Find out value of SNRthfor given p. 

Step 3 Test if the SNR is higher than SNRth in 
order to decide whether the data is to be projected 
onto a subspace of dimension p or p-1. In the first 
case the projection matrix Ud is obtained by SVD 
from RRT /N. In the second case the projection is 
obtained by PCA from (R -̅ݎ) (R -̅ݎ) T /N (recall 
that ̅ݎ is the sample mean of [R]:,i, for i = 1,…,N). 

Steps 5 and 10 ensure that the inner product 
between any vector [X]:,j and vector u is non-
negative, a crucial condition for the VCA 
algorithm to work correctly. The chosen value of 
k= argmaxj=1…N ||[X]:,j|| ensures that the 
colatitude angle between u and any vector [X]:,j 

is between 0˚ and 45˚, then avoiding numerical 
errors that otherwise would occur for angles near 
90˚.  

Step 15 initializes the auxiliary matrix A, which 
stores the projection of the estimated 
endmembers signatures. Assume that there exists 
at least one pure pixel of each endmember in the 
input sample R. Each time the loop for is 
executed, a vector f orthonormal to the space 
spanned by the columns of the auxiliary matrix 
A is randomly generated and y is projected onto 

f . Knowing that pure endmembers occupy the 
vertices of a simplex, then a ≤ fT [Y]:,i≤b, for i = 
1,…,N, where values a and b correspond only to 
pure pixels. The endmember signature 
corresponding to max ([|a| |b|]) is stored. The 
next time loop for is executed, f is orthogonal to 
the space spanned by the signatures already 
determined. Since f is the projection of a zero-
mean Gaussian independent random vector onto 
the orthogonal space spanned by the columns of 
[A]:,1:i, then the probability of f being null is zero. 
Note that the underlying reason for generating a 
random vector is only to get a non null projection 
onto the orthogonal space generated by the 
columns of A. Figure 4.2 shows the input 
samples and the chosen pixels, after the 
projection  v = fTY. Then a second vector f 
orthonormal to the endmember a is generated and 
the second endmember is stored. Finally, steps 
25 and 27 compute the columns of matrix ܯ෡ , 
which contain the estimated endmembers 
signatures in the L-dimensional space. 

E. Minimum volume simplex analysis algorithm 
Let  1 2, , ..., p n

NY y y y R    is a matrix holding 

in its columns the spectral vectors p
iY R , for 

1,2,..., ,i n  of a given hyperspectral data set. 
Although not strictly necessary, we assume in 
this version of the algorithm that a 
dimensionality reduction step has been applied to 
the data set and the vectors p

iY R are 

represented in the signal subspace spanned by 
the endmember spectral signatures. Under the 
linear mixing model, we have spectral 
signatures. Under the linear mixing model, we 
have 

Y MS                       (7) 

S.t.: 0,1 1T T
p nS S   

Where, 1 2, ,..., p p
pM m m m R     is the mixing 

matrix ( im  denotes the ith  endmember signature 

and p is the number of endmembers), and 
p nS R   is the abundance matrix containing the 

fractions ( ,[ ]i jS denotes the fraction of material 

im at pixel j ). For each pixel, the fractions 

should be no less than zero, and sum to 1, that is, 
the fraction vectors belong to the probability 
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simplex. Therefore, the spectral vectors iY  

belong, as well, to a simplex set with vertices im

, for 1,2,...,i p . 

Given Y, and inspired by the seminal work, we 
infer matrices M and S by fitting a minimum 
volume simplex to the data subject to the 
constraints in eq, (7). This can be achieved by 
finding the matrix M with minimum volume 
defined by its columns under the constraints in 
eq. (7). It can be formulated as the following 
optimization problem: 

* arg min det( )M M                 (8) 

s.t.: ,0,1 1T T
p NQY QY   

Where, 1Q M  . Since det( ) 1/ det( )Q M , we 

can replace the problem in eq. (8) with the 

following: 

* arg max log det( )Q Q            (9) 

s.t.: ,0,1 1T T
p NQY QY   

Optimizations eq. (8) and (9) are nonlinear, 
although the constraints are linear. Problem eq. 
(8) is nonconvex and has many local minima. So, 
problem eq. (9) is nonconcave and has many 
local maxima. There-fore, there is no hope in 
finding systematically the global optima of (9). 
The MVSA algorithm, we introduce below aims 
at “good” suboptimal solutions of optimization 
problem (9). 

Our first step is to simplify the set of constraints 
1 1T T

p NQY   by noting that every spectral vector y 

in the data set can be written as a linear 
combination of p linearly independent vectors 

taken from the data set, say 1 2, ,...,p i i ipY y y y   
, where the weights add to one: i.e., py Y  , 

where 1 1T
p   . It turns out then, the constraint 

1 1T T
p NQY  is equivalent to 1 1T T

p p NQY   or else to
11 1 ( )T T

p N pQ Y  . Defining 11 ( )T
m N pq Y  , we get 

the equality constraint 11 1 ( )T T
p N pQ Y  . Then, the 

problem (9) simplifies to 

* arg max log det( )Q Q       (10) 

s.t.: 0,1T
p mQY Q q   

We solve the optimization problem (10) by 
finding the solution of the respective Kuhn-
Tucker equations using sequential quadratic 
programming (SQP) methods. This methods 
belongs to the constrained Newton (or quasi-
Newton) and guarantee superliner convergence 
by accumulating second-order information 
regarding 

The Kuhn-Tucker equations. Each quadratic 
problem builds a quadratic approximation for the 
Lagrangianfunction associated to (10). Forthis 
reason, we supply the gradient and the Hessian 
of fin each SQP iteration. 

Usually, the hyperspectral data sets are huge and, 
thus, the above maximization is heavy from the 
computational point of view. To lighten the 
MVSA algorithm, we initialize it with the set of 

end-members 1 2, ,..., pM m m m     generated by 

the VCA algorithm [6]. We selected VCA 
because it is the fastest among the state-of-the-
art. 

Pure pixel based methods. Since the output of 
VCA is a set of p vectors that are in the data set, 
then we can discard all vectors belonging to the 
convex set generated by the columns of M. If the 
number of endmembers is high, it may happen 
that the initial simplex provided by VCA 
contains very few pixels inside and, therefore, 
most are out-side, violating the non negativity 
constraints and slowing down the algorithm. In 
such cases, we expand the initial simplex to 
increase the number of pixels that are in the 
convex hall of the identified endmembers, which 
speeds up the algorithm. The pseudo code for the 
MVSA method is shown in below. Symbols 

:,( ) jg Q and ,:( )ig Q  stand for, respectively, the thj

column and the iti line of ( )g Q , the gradient of 

( )f Q . 

III. STATISTICAL APPROACHES 

The geometrical based methods give poor results 
whenever the spectral mixtures are highly mixed. 
So whenever number of bands gets increased the 
result of geometrical approaches get reduces. 
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This is also true for increment in number of 
pixels in the image. As we know that in 
geometrical approach it always needs at least one 
pure pixel which is not possible for every image. 
So we have to move on to the statistical methods, 
which are powerful alternative, but come with 
price: higher computational complexity. In this 
approach we don’t need every time a pure pixel 
as well as often the full additive constraint is also 
verified. 

A. NMF 
 

In the unmixing process of hyperspectral data, 
the method of NMF can be applied for the 
minimization of the objective function given by 
eq. (11). So basic NMF problem can be defined 
as: 

Given a nonnegative matrix R∈Ɍm×nand a 
positive integer k ˂ min{m,n}, find nonnegative 
matrices M ∈ Ɍm×kand S∈Ɍk×nto minimize the 
objective function given in eq. (11) . 
 
 

f(M,S)=
1

2
‖R-MS‖F

2  
(11)

The multiplication factor MS is called a NMF of 
our original data set R. Here data Ris not needed 
equal to the multiplication MS. But the 
multiplication MSis an approximate 
factorization term that is having the at most k. 
Another key characteristic of NMF is the ability 
of numerical methods that minimize eq. (11) to 
extract underlying features as basis vectors in M, 
which can then be subsequently used for 
identification and classification. By not allowing 
negative entries in M and S, NMF enables a non-
subtractive combination of parts to form a whole 
[6], [7]. 

Fundamental Algorithms: 

1) Multiplicative update algorithm 
The basic multiplicative algorithm was 
introduced by Lee and Seung (2001) [5], [6]. 
This multiplicative update rules contained the 
mean squared error objective function of eq. (11) 
is given below [5], [6]. 

Here eq. (12) and eq. (13) are the basic update 
equation for this algorithm. 

 
S←S

MTR

MTMS
 (11)

 

M ← M
R	S୘

M	S	S୘
 (12)

 

2) ALS Algorithm 
This algorithm comes with modification in LS 
algorithm where one extra least square step with 
changed fashion is added after the first least 
square step. ALS algorithms were first 
introduced by Paatero, in 1994. But this 
algorithm comes with one limitation, that the 
problem of eq. (11) cannot convex is both the 
matrix M and S. It may convex in only any one 
of them [5], [6].  

B. Constrained  NMF 

In this simple NMF problem our objective 
function shown in eq. (11) makes the solution 
nonunique for the factorization of R into M and 
S matrix so that there is necessity to add different 
constraints to make the solution unique. 

The adaptive potential function given by the eq. 
(13) is used to represent the characteristic as a 
piecewise smoothness of spectral data. 

gሺxሻ=-e
x2

γൗ +1 (13)

Here the in this function constant 1 is added to 
make the results of it nonnegative. And γ is a 
positive parameter whichcontrols the shape of 
this potential function. 

Hyperspectral images are having high spectral 
resolution so that they are having strong 
continuity of spectral signature as compare to 
abundance map. So that parameter γ is defined 
for both spectral correlation as well as spatial 
correlation as γm and γs respectively. They both 
should have different values. The adaptive 
potential function g(m−mN) represents the 
piecewise smoothness of the spectral signature 
m. this can be generated by observing the 
spectral signature m and its neighbor mN. 

The ith entry in this adaptive potential function is 
defined as g(mi−mNi) as given in eq. (14). 
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 g൫mi-mNi
൯= ෍ g(mi-mi')

i'∈Ni

 (14)

 
Here Ni = {i − 1, i + 1}. 

Same concept is defined for the piecewise 
smoothness of endmember abundances that can 
be given by g(S - SN).The entry at position (p, k) 
is derived by eq. (15). 

g ቀSpk-SNpk
ቁ=g ൬S

ijp
-

S
Nijp
൰= ෍ g(S

ijp
i'j'∈Nijp

-S
i'j'p

) 

(15

) 

Here Spk= ௜ܵ௝௣and Nijpis the neighborhood of 

௜ܵ௝௣. The assumption is taken as, 
Nijp= {(i − 1) j, (i + 1) j, i (j − 1), i (j + 1)}. 
So our objective function that is only based on 
Euclidian distance given in eq. (3.1) will now 
added with extra constraints. It will be as follow. 

DሺM,Sሻ=EucሺM,Sሻ+αۦgሺM-

MNሻۧ+βۦg(S-SN)ۧ 

(16

) 

Here ۦ.ۧdefines the total sum of the matrix 
elements, such as 

=gሺM-MNሻۧۦ ෍ g(Mlp-MNlp
)

L,P

l,p=1

 (17)

 
Same rule can be applied to matrix S. 

So now for this objective function our updating 
rules are also changed as follows. 

M←M.*
൬RST+α ቀM.*hሺM-MNሻ-g'ሺM-M

(MSST+αM.*hሺM-MNሻ)

(18

) 

 
 

S←S.*
(MTR+β(S.*hሺS-SNሻ-g'ሺS-SNሻ)

MTMS+βS.*h(S-SN))

(19

) 

 
Here ./and .* represents element wise division 
and multiplication respectively and (.)T defines 
the transposition of the any matrix. And, 

h൫mi-mNi
൯=

2

γm

෍ e

-(mi-mi'
)2

γm

i'∈Ni

 (20) 

g'൫mi-mNi
൯=

2

γm

෍൫mi-mi'൯e
-(mi-mi'

)2

γm

i'∈Ni

(21) 

1) Piecewise Smoothness Constraint (nsNMF) 
 

The smoothness of the image is very important 
parameter for unmixing process. Here in this 
algorithm one smoothness matrix C is included 
into our objective function given by eq. (11) will 
now changed to eq. (22) 

f(M,S)=
1

2
‖R-MCS‖F

2 (22) 

Here C∈Ɍp×pis positive symmetric matrix which 
is defined by eq. (23) 

C = (1-θ) I+ 
஘

௉
11் (23) 

Here I is the identity matrix and 1 is the vector of 
ones. Smoothness of C is controls by parameter 
θ (0< θ<1).afar adding this parameter to our 
objective function the algorithm of constraint 
NMF will be implemented. But here now update 
equation for matrix S given by eq. (19) is now 
changed to eq. (24). 

S←S.*
(MCTR+β(S.*hሺS-SNሻ-g'ሺS-SNሻ))

MCTMCS+βS.*h(S-SN))
 (24) 

 

The smoothness constraint may or may not give 
the unique solution for our objective function 
given in eq. (11) so that more constraints will be 
used to get the unique solution. 

2) NMF with Sparseness Constraint (NMFSC) 

This criterion is base on the relationship 
betweenL1 and L2 norm of the measured data. 
The sparseness of the image is a measured 
energy of any vector contained into a small 
number of components. This algorithm only 
changes the update equations for the matrix S by 
setting the L1 and L2 norm as well as the 
nonnegativity constraint. 
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For NMFSC the same algorithm of constraint 
NMF is implemented but only 1 step is added 
that after updating matrix by eq. (19) and then for 
achieving the desired sparseness project each 
row of S. 
 

IV. CONCLUSION 
 

Today spectral unmixing is a very active and 
interesting research topic in the remote sensing 
technologies. By using the spectral sensor the 
captured image is a mixture of various signatures 
of different materials and their fractional 
available in that scene. But in many applications 
we need to identify this material and their 
relative fractions. So this paper represents the 
recent developments in the unmixing field as 
well as the various approaches of unmixing 
problem. 
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