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 
Abstract— Congestion is an important issue 
in networks and significantly affects network 
performance. The Scheduler acts as the 
central switch arbiter. The fundamental 
component in systems which contain shared 
resources are arbiters and a centralized 
arbiter is a tightly integrated design for its 
input requests. In this study, we propose a 
new centralized arbiter, which may be used in 
arbitration of a crossbar switch in NoC 
routers. We design Islip arbiter using Islip 
scheduling algorithm with mesh router for 
NoC More integration of system component 
into single die are allowed increasingly by 
smaller feature sizes as fabrication 
technology continues to improve. The limiting 
factor for performance can be made by 
communication between these components 
unless embodying the correct scheduling 
algorithm. 
Keywords— Network-on-Chip, 
System-on-Chip, On-chip routing switch, 
Scheduler, Islip, Synthesis  

I. INTRODUCTION 

In traditional System-on-Chip (SoC) design, 
shared buses are used for data transfer among 
various subsystems. As SoC design involves a 
larger number of subsystems, so that it becomes 
more complex and traditional bus-based 
architecture gives rise to new paradigm for 
on-chip communication. This paradigm is called 
Network-on-Chip (NoC). The most constraining 
aspects in the design of embedded system is the 
complexity, following the rapid technological  

 
 

 
evolution. The issues of cost and timing add the 
difficulties in realization of network-on-chip, 
NoC, applications, where many IPs (Intellectual 
Property) such as processor cores, memories, 
DSP processors and peripheral devices are 
placed together, on a single die. Most often, 
these modules communicate by means of a 
shared resource, the on-chip network. The 
increasing demand for higher bandwidth on the 
network lines, the increasing complexity of the 
individual devices and an operating frequency 
hitting new limits with almost every new design, 
place the communication and/or computation 
resources arbitration being the performance 
bottleneck of the NoC system. To avoid large 
latencies between the cores on the chip the 
arbitration is desired to be completed within one 
clock cycle (e.g., between a processing element 
(PE) and a memory block). The overall delay 
introduced by the arbitration should be low so 
that it will not impact the overall system clock 
frequency to achieve the arbitration in 
one clock cycle, which introduces new 
challenges for the design of the arbiters. The key 
research problems in the design of NoC include 
but are not limited to topology, channel width, 
buffer size, floor plan, routing, switching, 
scheduling, and IP mapping [8]. The 
components of the NoC include the network 
adapter, the routing node, and the network links 
[13]. The routing node in turn consists of four 
major components: the input ports, the scheduler, 
the crossbar switch, and the output ports. 
Scheduling algorithms have been developed by a 
number of researchers [5] [6][7][8], for research 
prototypes [2][4], and commercial products [3]. 
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What makes a good crossbar scheduling 
algorithm for the backplane of a router?  

We desire algorithms with the following 
properties:  

• High Throughput — An algorithm that keeps 
the backlog low in the VOQs(virtual output 
queuing). Ideally, the algorithm will sustain an 
offered load up to 100% on each input and 
output.  

• Starvation Free — The algorithm should not 
allow any VOQ to be unserved indefinitely.  

• Fast — To achieve the highest bandwidth 
switch, it is important that the scheduling 
algorithm does not become the performance 
bottleneck. The algorithm should therefore 
select a crossbar configuration as quickly as 
possible.  

• Simple to implement — If the algorithm is to 
be fast in practice, it must be implemented in 
special-purpose hardware; preferably within a 
single chip. 
Satisfying the above criterion here we present 
Islip arbiter using Islip scheduling algorithm 
with on-chip mesh router. In this study, we 
explore the adaptation of network techniques 
and methodology for addressing two particular 
issues in next-generation buffer less NoC design: 
congestion management and scalability. Buffer 
less NoCs have recently gained serious 
consideration in the architecture community due 
to chip area and power constraints. While the 
buffer less NoC has been shown to operate 
efficiently under moderate workloads and 
limited network sizes. 

II. BACKGROUND 

As more complex SoCs begin to emerge, the 
task of communication between the subsystems 
of an SoC cannot be adequately handled by bus 
based communication architectures. NoCs are 
proposed to be a viable alternative to bus based 
architectures for communication within SoCs. 

 
 
A generic 2D mesh NoC architecture is shown 

in figure 1. 
 

 
                        Fig. 1: SoC based on NoC 

 The SoC consists of a number of resources. 
These resources communicate with each other 
using an NoC. The NoC consists of the switches 
and point-to-point links. The internal structure of 
the NoC switch is given in figure 2. 

 

 
Fig. 2: NoC Switch Schematic 

Each switch consists of four distinct 
components. A set of input blocks are connected 
to incoming packet lines. These input blocks 
contain buffers to queue the incoming packets so 
that they can be stored until they are ready to be 
transferred over the shared crossbar matrix. A set 
of output blocks are connected to the outgoing 
packet lines. No buffers are required in the 
output blocks as there is no possibility of conflict 
due to the absence of any shared resources at the 
outputs. The central crossbar matrix provides a 
direct link between each pair of input and output 
blocks. Finally, a scheduler is required to 
perform arbitration in to enable fair access to the 
common crossbar fabric for all incoming 
packets. 

A. NoCs in Multi-Core Architectures: 

In a chip multiprocessor (CMP) architecture, 
the NoC generally connects the processor nodes 
and their private caches with the shared cache 
banks and memory controllers. A NoC might 
also carry other control traffic, such as interrupt 
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requests, but it primarily exists to service cache 
miss requests. In this architecture, a high-speed 
router exists at each node, which connects the 
core to its neighbors by links. 

B. Buffer less NoCs and Routing: 

Specifically, recent work has shown that it is 
possible to completely eliminate buffers from 
the routers of on-chip networks routers. In such 
buffer less NoCs, application performance 
degrades minimally for low-to-moderate 
network intensity workloads, while some work 
shows that power consumption decreases by 
20-40%, router area on die is reduced by 75%, 
and implementation complexity also decreases 
[ 16]. 

III. A GENERIC ROUND ROBIN 

ARBITER (RRA) 

 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1:  Generic Round Robin Arbiter 
architecture 

 
The operation of the RRA is as follows. At the 
beginning of every clock cycle, each input with a 
request sets the corresponding bit in the Request 
to high. Input Selector decides the input that 
would be granted next, based on the Request and 
the current value of RPT. If there is a request 
from the input pointed by RPT (i.e., Request 
[RPT] = high), this input will be granted by 
setting the Grant output value to the index of this 
input, g. If there is no request from the input 
pointed by RPT, but there are other requests, the 
Input Selector grants the first input with a 
request following the pointer in a circular 
manner (i.e., if there is any request from inputs i 
> RPT, the smallest indexed input, g > RPT with 
a request will be granted. If there are no requests 

from inputs i > RPT, but there are requests from 
inputs, i < RPT, the smallest indexed input, g 6= 
RPT with a request, will be granted.). At the end 
of the clock cycle, the Pointer Updater sets the 
pointer value to the input next to the granted 
input in a circular manner (i.e., RPT = (g + 1) 
mod N). If there is no request from any inputs, 
the RPT will not change. An optional no request 
(NoReq) output port can be added to the generic 
RRA, which will be high when no input has a 
request.  

I. Limitations on the Scalability of RRA:  
The most time-consuming operation of the 

generic RRA is the granting of the requests by 
the Input selector, which also dominates the 
critical path delay. The complexity of the Input 
Selector is due to two main issues: (1) The issue 
of changing priority: The priority of the inputs 
changes as inputs are granted and the RPT value 
changes. This requires the Input Selector circuit 
to consider all possible priority settings. (2) The 
issue of circular priority order: The priority order 
is circular, which makes the priority processing 
even harder. This leads to two separate 
conditions for the grant decisions: Grant 
decisions for requests at or below the Request 
[RPT] and grant decisions for requests above 
Request [RPT]. Any grant produced by the  
Former decision has a higher priority over any 
grant produced by the latter decision. This two 
parted decision deepens the critical path. These 
two issues are even more pronounced as the 
RRA size gets larger (i.e., an RRA with more 
inputs). Also RRA has its throughput near about 
63%. 

IV. THE ISLIP SCHEDULING 

ALGORITHM 

The Islip algorithm is designed to meet our 
goals. Islip is an iterative algorithm — during 
each time slot, multiple iterations are performed 
to select a crossbar configuration, matching 
inputs to outputs. The Islip algorithm uses 
rotating priority (“round-robin”) arbitration to 
schedule each active input and output in turn. 
The main characteristic of Islip is its simplicity; 
it is readily implemented in hardware and can 
operate at high speed. Islip attempts to quickly 
converge on a conflict-free match in multiple 
iterations, where each iteration consists of three 
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steps. All inputs and outputs are initially 
unmatched and only those inputs and outputs not 
matched at the end of one iteration are eligible 
for matching in the next. 
The steps for each iteration are as follows:  

Step 1.: Request- Each input sends a request to 
every output for which it has a queued cell. 

Step 2: Grant- If an output receives any 
requests, it chooses the one that appears next in a 
fixed, round-robin schedule starting from the 
highest priority element. The output notifies 
each input whether or not its request was 
granted.  

Step 3: Accept.- If an input receives a grant, it 
accepts the one that appears next in a fixed, 
round-robin schedule starting from the highest 
priority element. The pointer to the highest 
priority element of the round-robin schedule is 
incremented (modulo N) to one location beyond 
the accepted output. The pointer to the highest 
priority element at the corresponding output is 
incremented (modulo N) to one location beyond 
the granted input. The pointers are only updated 
if and only if the grant is accepted after the first 
iteration. By considering only unmatched inputs 
and outputs, each iteration matches inputs and 
outputs that were not matched during earlier 
iterations. 

V. SCHEDULAR ARCHITECTURE 

The function of the scheduler is to arbitrate 
between requests from input blocks to output 
blocks. The arbitration scheme is based on a 
maximal size approach proposed in reference 
[14]. It is a variant of round robin matching, 
which is shown to prevent starvation under 
uniform traffic [14]. A scheduling decision is 
arrived at in three steps: (a) Requests are sent 
from the input blocks to the output grant 
generation arbiters. (b) Grant signals are 
generated by the output grant arbiters and sent to 
input accept arbiters. (c) Accept signals are 
generated by the input accept arbiters and these 
signals represent the final scheduling decision. 
This decision is sent back to the input blocks as 
well as the crossbar switch to enable transfer of 
packets from the input blocks to the output 
blocks. The top level diagram of the scheduler is 
shown in figure 3. 

 

 
Fig 3: Scheduler Block Diagram 

Each arbiter consists of a programmable priority 
encoder and a pointer to hold the value of the 
previously granted and accepted request. Figure 
4 depicts the arbiter schematic.  
 

 
Fig 4: Arbiter Schematic 

The programmable priority encoder generates a 
grant signal in response to a request signal based 
on a simple round robin scheme. Figure 5 depicts 
the programmable priority encoder schematic. 
The programmable priority encoder is realized 
using a hybrid design composed of two simple 
priority encoders. The programmable priority 
encoder design is based on thermometer 
encoding [15]. This design occupies less area 
compared to more classic programmable priority 
encoder designs. The most timing-critical 
component of the scheduler design is the 
Programmable Priority Encoder (PPE) utilized 
by each Arbiter. The speed of the programmable 
priority encoder will determine how fast the 
arbitration logic can run, and is likely to be the 
critical paths of the overall interconnect design. 
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VI. IP CORE FPGA DESIGN 

IMPLEMENTATION METHODOLOGY 

 Goal: To develop a synthesizable IP core in 
HDL, for Islip    scheduler block of the routing 
logic. 

A. HDL:  
I. Design Description using Verilog-HDL 

B. Verification Scheme:  
I. Functional Simulation using Xilinx ISE 

Simulator 
II. Test bench for top level design using 

Verilog-HDL 
III. Stimulus for testing IP Core 
IV. Simulation results / Timing diagram 

Analysis 
C. FPGA Implementation:  

I. Design to be synthesized using Xilinx ISE 
Software.  

II. Generate a design bit stream for FPGA 
device. 

III. Demo the download of design bit stream on 
FPGA device. 

IV. No further verification on hardware / FPGA 
Kit 

V. FPGA kit will NOT be provided 
VI. Target Technology: Xilinx Spartan / Virtex 

Device.  

VII. CONCLUSION 

An iterative, round-robin algorithm, iSLIP can 
achieve 100% throughput for uniform traffic, yet 
is simple to implement in hardware. Prototype 
and commercial implementations of iSLIP exist 
in systems with aggregate bandwidths ranging 
from 50 to 500 Gb/s. When the traffic is 
nonuniform, iSLIP quickly adapts to a fair 
scheduling policy that is guaranteed never to 
starve an input queue. This new arbiter is fair for 
any input combinations and faster & it is 
designed using Xilinx ISE for simulation of 
Verilog code and Xilinx ISE for synthesis and 
FPGA implementation.                                           
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