

 ISSN(PRINT):2394-3408,(ONLINE):2394-3416,VOLUME-2,ISSUE-4,2015
44


Abstract— Congestion is an important issue
in networks and significantly affects network
performance. The Scheduler acts as the
central switch arbiter. The fundamental
component in systems which contain shared
resources are arbiters and a centralized
arbiter is a tightly integrated design for its
input requests. In this study, we propose a
new centralized arbiter, which may be used in
arbitration of a crossbar switch in NoC
routers. We design Islip arbiter using Islip
scheduling algorithm with mesh router for
NoC More integration of system component
into single die are allowed increasingly by
smaller feature sizes as fabrication
technology continues to improve. The limiting
factor for performance can be made by
communication between these components
unless embodying the correct scheduling
algorithm.
Keywords— Network-on-Chip,
System-on-Chip, On-chip routing switch,
Scheduler, Islip, Synthesis

I. INTRODUCTION

In traditional System-on-Chip (SoC) design,
shared buses are used for data transfer among
various subsystems. As SoC design involves a
larger number of subsystems, so that it becomes
more complex and traditional bus-based
architecture gives rise to new paradigm for
on-chip communication. This paradigm is called
Network-on-Chip (NoC). The most constraining
aspects in the design of embedded system is the
complexity, following the rapid technological

evolution. The issues of cost and timing add the
difficulties in realization of network-on-chip,
NoC, applications, where many IPs (Intellectual
Property) such as processor cores, memories,
DSP processors and peripheral devices are
placed together, on a single die. Most often,
these modules communicate by means of a
shared resource, the on-chip network. The
increasing demand for higher bandwidth on the
network lines, the increasing complexity of the
individual devices and an operating frequency
hitting new limits with almost every new design,
place the communication and/or computation
resources arbitration being the performance
bottleneck of the NoC system. To avoid large
latencies between the cores on the chip the
arbitration is desired to be completed within one
clock cycle (e.g., between a processing element
(PE) and a memory block). The overall delay
introduced by the arbitration should be low so
that it will not impact the overall system clock
frequency to achieve the arbitration in
one clock cycle, which introduces new
challenges for the design of the arbiters. The key
research problems in the design of NoC include
but are not limited to topology, channel width,
buffer size, floor plan, routing, switching,
scheduling, and IP mapping [8]. The
components of the NoC include the network
adapter, the routing node, and the network links
[13]. The routing node in turn consists of four
major components: the input ports, the scheduler,
the crossbar switch, and the output ports.
Scheduling algorithms have been developed by a
number of researchers [5] [6][7][8], for research
prototypes [2][4], and commercial products [3].

DESIGN OF EFFICIENT ROUTING ALGORITHM FOR
CONGESTION CONTROL IN NOC

1Pawar Ruchira Pradeep
M. E, E&TC Signal Processing, Dr. D Y Patil School of engineering, Ambi, Pune

Email:1ruchira4391@gmail.com

 INTERNATIONAL JOURNAL OF ADVANCED COMPUTING AND ELECTRONICS TECHNOLOGY (IJACET)

 ISSN(PRINT):2394-3408,(ONLINE):2394-3416,VOLUME-2,ISSUE-4,2015
45

What makes a good crossbar scheduling
algorithm for the backplane of a router?

We desire algorithms with the following
properties:

• High Throughput — An algorithm that keeps
the backlog low in the VOQs(virtual output
queuing). Ideally, the algorithm will sustain an
offered load up to 100% on each input and
output.

• Starvation Free — The algorithm should not
allow any VOQ to be unserved indefinitely.

• Fast — To achieve the highest bandwidth
switch, it is important that the scheduling
algorithm does not become the performance
bottleneck. The algorithm should therefore
select a crossbar configuration as quickly as
possible.

• Simple to implement — If the algorithm is to
be fast in practice, it must be implemented in
special-purpose hardware; preferably within a
single chip.
Satisfying the above criterion here we present
Islip arbiter using Islip scheduling algorithm
with on-chip mesh router. In this study, we
explore the adaptation of network techniques
and methodology for addressing two particular
issues in next-generation buffer less NoC design:
congestion management and scalability. Buffer
less NoCs have recently gained serious
consideration in the architecture community due
to chip area and power constraints. While the
buffer less NoC has been shown to operate
efficiently under moderate workloads and
limited network sizes.

II. BACKGROUND

As more complex SoCs begin to emerge, the
task of communication between the subsystems
of an SoC cannot be adequately handled by bus
based communication architectures. NoCs are
proposed to be a viable alternative to bus based
architectures for communication within SoCs.

A generic 2D mesh NoC architecture is shown

in figure 1.

 Fig. 1: SoC based on NoC

 The SoC consists of a number of resources.
These resources communicate with each other
using an NoC. The NoC consists of the switches
and point-to-point links. The internal structure of
the NoC switch is given in figure 2.

Fig. 2: NoC Switch Schematic

Each switch consists of four distinct
components. A set of input blocks are connected
to incoming packet lines. These input blocks
contain buffers to queue the incoming packets so
that they can be stored until they are ready to be
transferred over the shared crossbar matrix. A set
of output blocks are connected to the outgoing
packet lines. No buffers are required in the
output blocks as there is no possibility of conflict
due to the absence of any shared resources at the
outputs. The central crossbar matrix provides a
direct link between each pair of input and output
blocks. Finally, a scheduler is required to
perform arbitration in to enable fair access to the
common crossbar fabric for all incoming
packets.

A. NoCs in Multi-Core Architectures:

In a chip multiprocessor (CMP) architecture,
the NoC generally connects the processor nodes
and their private caches with the shared cache
banks and memory controllers. A NoC might
also carry other control traffic, such as interrupt

 INTERNATIONAL JOURNAL OF ADVANCED COMPUTING AND ELECTRONICS TECHNOLOGY (IJACET)

 ISSN(PRINT):2394-3408,(ONLINE):2394-3416,VOLUME-2,ISSUE-4,2015
46

requests, but it primarily exists to service cache
miss requests. In this architecture, a high-speed
router exists at each node, which connects the
core to its neighbors by links.

B. Buffer less NoCs and Routing:

Specifically, recent work has shown that it is
possible to completely eliminate buffers from
the routers of on-chip networks routers. In such
buffer less NoCs, application performance
degrades minimally for low-to-moderate
network intensity workloads, while some work
shows that power consumption decreases by
20-40%, router area on die is reduced by 75%,
and implementation complexity also decreases
[16].

III. A GENERIC ROUND ROBIN

ARBITER (RRA)

Fig. 1: Generic Round Robin Arbiter
architecture

The operation of the RRA is as follows. At the
beginning of every clock cycle, each input with a
request sets the corresponding bit in the Request
to high. Input Selector decides the input that
would be granted next, based on the Request and
the current value of RPT. If there is a request
from the input pointed by RPT (i.e., Request
[RPT] = high), this input will be granted by
setting the Grant output value to the index of this
input, g. If there is no request from the input
pointed by RPT, but there are other requests, the
Input Selector grants the first input with a
request following the pointer in a circular
manner (i.e., if there is any request from inputs i
> RPT, the smallest indexed input, g > RPT with
a request will be granted. If there are no requests

from inputs i > RPT, but there are requests from
inputs, i < RPT, the smallest indexed input, g 6=
RPT with a request, will be granted.). At the end
of the clock cycle, the Pointer Updater sets the
pointer value to the input next to the granted
input in a circular manner (i.e., RPT = (g + 1)
mod N). If there is no request from any inputs,
the RPT will not change. An optional no request
(NoReq) output port can be added to the generic
RRA, which will be high when no input has a
request.

I. Limitations on the Scalability of RRA:
The most time-consuming operation of the

generic RRA is the granting of the requests by
the Input selector, which also dominates the
critical path delay. The complexity of the Input
Selector is due to two main issues: (1) The issue
of changing priority: The priority of the inputs
changes as inputs are granted and the RPT value
changes. This requires the Input Selector circuit
to consider all possible priority settings. (2) The
issue of circular priority order: The priority order
is circular, which makes the priority processing
even harder. This leads to two separate
conditions for the grant decisions: Grant
decisions for requests at or below the Request
[RPT] and grant decisions for requests above
Request [RPT]. Any grant produced by the
Former decision has a higher priority over any
grant produced by the latter decision. This two
parted decision deepens the critical path. These
two issues are even more pronounced as the
RRA size gets larger (i.e., an RRA with more
inputs). Also RRA has its throughput near about
63%.

IV. THE ISLIP SCHEDULING

ALGORITHM

The Islip algorithm is designed to meet our
goals. Islip is an iterative algorithm — during
each time slot, multiple iterations are performed
to select a crossbar configuration, matching
inputs to outputs. The Islip algorithm uses
rotating priority (“round-robin”) arbitration to
schedule each active input and output in turn.
The main characteristic of Islip is its simplicity;
it is readily implemented in hardware and can
operate at high speed. Islip attempts to quickly
converge on a conflict-free match in multiple
iterations, where each iteration consists of three

 INTERNATIONAL JOURNAL OF ADVANCED COMPUTING AND ELECTRONICS TECHNOLOGY (IJACET)

 ISSN(PRINT):2394-3408,(ONLINE):2394-3416,VOLUME-2,ISSUE-4,2015
47

steps. All inputs and outputs are initially
unmatched and only those inputs and outputs not
matched at the end of one iteration are eligible
for matching in the next.
The steps for each iteration are as follows:

Step 1.: Request- Each input sends a request to
every output for which it has a queued cell.

Step 2: Grant- If an output receives any
requests, it chooses the one that appears next in a
fixed, round-robin schedule starting from the
highest priority element. The output notifies
each input whether or not its request was
granted.

Step 3: Accept.- If an input receives a grant, it
accepts the one that appears next in a fixed,
round-robin schedule starting from the highest
priority element. The pointer to the highest
priority element of the round-robin schedule is
incremented (modulo N) to one location beyond
the accepted output. The pointer to the highest
priority element at the corresponding output is
incremented (modulo N) to one location beyond
the granted input. The pointers are only updated
if and only if the grant is accepted after the first
iteration. By considering only unmatched inputs
and outputs, each iteration matches inputs and
outputs that were not matched during earlier
iterations.

V. SCHEDULAR ARCHITECTURE

The function of the scheduler is to arbitrate
between requests from input blocks to output
blocks. The arbitration scheme is based on a
maximal size approach proposed in reference
[14]. It is a variant of round robin matching,
which is shown to prevent starvation under
uniform traffic [14]. A scheduling decision is
arrived at in three steps: (a) Requests are sent
from the input blocks to the output grant
generation arbiters. (b) Grant signals are
generated by the output grant arbiters and sent to
input accept arbiters. (c) Accept signals are
generated by the input accept arbiters and these
signals represent the final scheduling decision.
This decision is sent back to the input blocks as
well as the crossbar switch to enable transfer of
packets from the input blocks to the output
blocks. The top level diagram of the scheduler is
shown in figure 3.

Fig 3: Scheduler Block Diagram

Each arbiter consists of a programmable priority
encoder and a pointer to hold the value of the
previously granted and accepted request. Figure
4 depicts the arbiter schematic.

Fig 4: Arbiter Schematic

The programmable priority encoder generates a
grant signal in response to a request signal based
on a simple round robin scheme. Figure 5 depicts
the programmable priority encoder schematic.
The programmable priority encoder is realized
using a hybrid design composed of two simple
priority encoders. The programmable priority
encoder design is based on thermometer
encoding [15]. This design occupies less area
compared to more classic programmable priority
encoder designs. The most timing-critical
component of the scheduler design is the
Programmable Priority Encoder (PPE) utilized
by each Arbiter. The speed of the programmable
priority encoder will determine how fast the
arbitration logic can run, and is likely to be the
critical paths of the overall interconnect design.

 INTERNATIONAL JOURNAL OF ADVANCED COMPUTING AND ELECTRONICS TECHNOLOGY (IJACET)

 ISSN(PRINT):2394-3408,(ONLINE):2394-3416,VOLUME-2,ISSUE-4,2015
48

VI. IP CORE FPGA DESIGN

IMPLEMENTATION METHODOLOGY

 Goal: To develop a synthesizable IP core in
HDL, for Islip scheduler block of the routing
logic.

A. HDL:
I. Design Description using Verilog-HDL

B. Verification Scheme:
I. Functional Simulation using Xilinx ISE

Simulator
II. Test bench for top level design using

Verilog-HDL
III. Stimulus for testing IP Core
IV. Simulation results / Timing diagram

Analysis
C. FPGA Implementation:

I. Design to be synthesized using Xilinx ISE
Software.

II. Generate a design bit stream for FPGA
device.

III. Demo the download of design bit stream on
FPGA device.

IV. No further verification on hardware / FPGA
Kit

V. FPGA kit will NOT be provided
VI. Target Technology: Xilinx Spartan / Virtex

Device.

VII. CONCLUSION

An iterative, round-robin algorithm, iSLIP can
achieve 100% throughput for uniform traffic, yet
is simple to implement in hardware. Prototype
and commercial implementations of iSLIP exist
in systems with aggregate bandwidths ranging
from 50 to 500 Gb/s. When the traffic is
nonuniform, iSLIP quickly adapts to a fair
scheduling policy that is guaranteed never to
starve an input queue. This new arbiter is fair for
any input combinations and faster & it is
designed using Xilinx ISE for simulation of
Verilog code and Xilinx ISE for synthesis and
FPGA implementation.

REFERENCES
[1] McKeown, N. W. 1995 Scheduling
Algorithms for Input-Queued Cell
Switches.Doctoral Thesis. UMI Order
Number: UMI Order No. GAX96-02658.,
University of California at Berkeley.
[2] C. Partridge; P. Carvey et al. “A
Fifty-Gigabit per Second IP Router,”

Submitted to IEEE/ACM Transactions on
Networking, 1996.
[3] T. Anderson et al. “High Speed Switch
Scheduling for Local Area Networks,” ACM
Trans. on Computer Systems, Nov 1993, pp.
319-352.
[4] N. McKeown et al. “The Tiny Tera: A
small high-bandwidth packet switch core,”
IEEE Micro, Jan-Feb 1997.
[5] LaMaire, R.O.; Serpanos, D.N.;
“Two-dimensional round-robin schedulers
for packet switches with multiple input
queues,” IEEE/ACM Transactions on
Networking, Oct. 1994, vol.2, (no.5):471-82.
[6] Lund, C.; Phillips, S.; Reingold, N.; “Fair
prioritized scheduling in an input-buffered
switch,” Proceedings of the IFIP-IEEE Conf.
on Broadband Communications ‘96,
Montreal, April 1996. p. 358-69.
[7] Hui, J.; Arthurs, E. “A broadband
packet switch for integrated transport,” IEEE
J. Selected Areas Communications, 5, 8, Oct
1987, pp 1264-1273.
[8] Ali, M.; Nguyen, H. “A neural
network implementation of an input access
scheme in a high-speed packet switch,” Proc.
of GLOBECOM 1989, pp.1192-1196.
[9] N. McKeown, “Scheduling Cells in an
input-queued switch,” PhD Thesis,
University of California at Berkeley, May
1995.
[10] N. McKeown, “iSLIP: A Scheduling
Algorithm for Input-Queued Switches,”
Submitted to IEEE Transactions on
Networking.
[13] T. Bjerregaard, and S. Mahadevan, “A
Survey of Research and Practices of
Network-on-Chip,” ACM
Computing Surveys, Vol. 38, March 2006.
[14] N. McKeown, “Scheduling
Algorithms for Input Queued Switches”,
Ph.D. Thesis, Department of
Electrical Engineering and Computer
Science, University of California at
Berkeley, 1995.
[15] P. Gupta and N. McKeown,
“Designing and Implementing a Fast
Crossbar Scheduler”, Micro, IEEE,
Vol. 19, No. 1, pp. 20-28, Jan/Feb 1999
[16] T. Moscibroda and O. Mutlu. A case
for bufferless routing in on-chip networks.
ISCA-36, 2009.

