

 ISSN(PRINT):2394-3408,(ONLINE):2394-3416,VOLUME-3,ISSUE-1,2016
5

HYBRID VS MEMORY-TO-MEMORY COMMUNICATION IN
MULTI-CORE PROCESSOR

S. ARUNA MASTANI#1, K. KUSUMA*2
Assistant professor, Dept. Of ECE, JNTUACEA, Anantapur
PG student (DSCE), Dept. Of ECE, JNTUACEA, Anantapur

Email: 1aruna_mastani@yahoo.com, 2kusuma.mohith.9@gmail.com

Abstract: Now a day’s multi-core architecture
introduces new challenges for effective
implementation of inter-core communication,
as Inter-core communication plays an
important role to balance the delay in a multi-
core processor. The two mechanisms used for
inter-core communication are shared-
memory and message-passing
communications. Shared-memory
communication fails to provide sufficient
scalability with the increasing number of
processor, where as message-passing
communication though have high scalability,
but it doesn’t have guaranteed Quality-of-
service (QoS). To overcome the above
drawbacks a combined mechanism named
Hybrid inter-core communication [1] is
prevalent to till date. Recently we proposed a
new technique named Memory-to-Memory
communication which provides the direct
memory to memory communication by using
DMA as memory interface [2]. This paper
mainly concentrates on comparing our
proposed method with the existing methods
till date, with respect to delay. All the inter-
core communication system mechanisms have
been designed in 90nm CMOS using XILINX
12.2 version platform. Comparing the
performance of all communication systems it
is observed that the communication time is
least for Memory-to-Memory communication.

Key words—Chip multiprocessor, Direct
Memory Access, hybrid inter-core
communication, inter-core communication,
shared-memory, multi-core, message-passing,

network-on-chip (NoC), inter-core
synchronization, Memory to Memory.

I. INTRODUCTION

In order to meet performance requirements single
core designs were pushed to higher clock speeds,
thereby the power requirement grew at a faster
rate than the frequency. This power problem was
exacerbated by designs that attempted to
dynamically extract extra performance from the
instruction stream, but it will be noted later that
this led to designs that were complex,
unmanageable and power hungry. To meet these
requirements chip designers turned to multi-core
processors. A multi-core processor is one which
consists of multiple no. of processors on a single
chip. All these processors work in parallel
thereby the overall performance of the multi-core
processor increases. To meet power budget many
efforts are taken to optimise memory hierarchy
and to increase parallelism concurrently.

When certain problem is given to an
embedded processor the throughput depends on
both computing capability and communication
efficiency between cores. To enhance computing
capability there are various technologies such as
Very long instruction word (VLIW), Single
instruction multiple data (SIMD), Super scalar,
Reduced Instruction set computer (RISC) etc.
But there are no matured solutions for inter-core
communication, Hence the research focus on
improving the efficiency of inter-core
communication.

Shared-memory communication is most often
used inter-core communication mechanism due
to its simple programming model but it fails to

 INTERNATIONAL JOURNAL OF ADVANCED COMPUTING AND ELECTRONICS TECHNOLOGY (IJACET)

 ISSN(PRINT):2394-3408,(ONLINE):2394-3416,VOLUME-3,ISSUE-1,2016
6

provide sufficient scalability with the increasing
number of processors ([4]-[6]). Therefore the
designers turned to message-passing
communication mechanism which has high
scalability even with the increase in number of
resources ([7]-[11]). From key features of
shared-memory and message-passing
communication it is clear that different inter-core
communication mechanisms are suitable for
different scenarios. By integrating both the inter-
core communication mechanisms high
throughput and power efficiency can be obtained
([1]). So, a hybrid communication with both
shared-memory and message-passing is effective
compared to individual mechanisms. Recently a
new mechanism called Memory-to-Memory
communication is developed for inter-core
communication. This paper implements both
Hybrid and Memory-to-Memory communication
on a multi-core processor and compares the
performance parameters of both mechanisms.

This system mainly concentrates on
implementation of effective inter-core
communication mechanism rather than the
processor type so, a simple processor with a
router inside it is designed rather than complex
processors. All the three inter-core
communication mechanisms are implemented in
a generalised 16-core processor which is
connected in 3× 6 2D Mesh NoC form that links
16 core processors (PCores) and 2 memory cores
(MCores). Cluster-based architecture is
employed with two clusters where each cluster
contains eight PCores and one MCore. The
PCores present in the cluster can able to access
the MCore present in the same cluster ([3])
directly through hard wires.

This paper is organised as below. Section II
describes the designing and implementation of
existing methods. Section III describes the
implementing work. Section IV presents the
measured results. Section V concludes the paper.
Section VI describes the future work.

II. EXISTING METHODS
Inter-core communication is defined as the
communication between multiple no. of
processors integrated on a single chip. Power and
cost budgets limits high computability processors
to be integrated on a chip thereby the overall
performance of multi-core processor relies
highly on inter-core communication. Thus the
throughput is highly relevant to inter-core

communication. Till now only two types of inter-
core communication mechanisms exist for an
embedded processor. The first one is Shared-
memory communication which is implemented
by making use of a shared cache or memory
units. Typical examples are cortexA9,
UltraSPARC, HYDRA etc. The features of
shared-memory communication are simple
programming, used for transferring of large
blocks of data. It faces several challenges which
limits its use in future processors. First its low
scalability, more than 8 cores are not allowed to
share a single memory. In an 8 core processor the
interconnections take area equivalent to 3cores
and consume power equivalent to one core.
Second cache coherence issues are very complex
which results in more hardware overhead.

 Because of its high scalability the second
type of communication i.e., Message-passing
communication attracts many designers. It is
implemented by connecting the processors in a
Network in certain topology like mesh, bus, ring
etc. Typical examples are ASAP, Intel-80 tile etc.
In spite of its strong scalability it has complex
programming model, and the quality of service
(QoS) is not guaranteed. Table-1 shows the
features of shared-memory communication and
message-passing communication.

1) Shared-Memory Communication:

The processors which are present in the same

cluster can access the MCore with fixed priority
order ([4]-[6]). The max no. of PCores in a
cluster is limited to eight. The processor on the
top left corner has highest priority and the PCore
on the Bottom right corner has lowest priority.
High inter-core synchronization efficiency has
been achieved through hardware-aided mailbox
mechanism. Shared-Memory communication
involves mainly three steps, First the source
PCore stores the data in to shared memory, next
it sends a synchronization signal to the
destination PCore, Finally the Destination PCore
access the data from shared memory after the
synchronization signal is received. Fig-1 shows
the steps for shared-memory communication.
And Fig-2 shows implementation of shared-
memory communication within a cluster having
8PCores and 1MCore.

 INTERNATIONAL JOURNAL OF ADVANCED COMPUTING AND ELECTRONICS TECHNOLOGY (IJACET)

 ISSN(PRINT):2394-3408,(ONLINE):2394-3416,VOLUME-3,ISSUE-1,2016
7

TABLE-1
Comparison of Shared-Memory and Message-Passing inter-core communications

Method Shared Memory Message passing
Usage
Pro
Con
Medium

Large, unsplit data block
Simple programming
Lower scalability
Shared cache/memory

Frequent, scattered data
Better scalability
Uncertain channel
Network-on-chip

Scenario Computational data flow Control data flow

Graphics

Fig-1.Three steps in a typical shared-memory communication: (1) Src PCore stores data to shared
memory in MCore; (2) Src PCore sends synchronizationsignal to Dest PCore; (3) Dest PCore loads
data from shared memory when synchronization signal is received.

Fig-2. Shared-memory communication within a cluster. Fig-3. Message-passing communication
within a cluster.
2) Message-Passing Communication:

Mesh NoC supports Message-Passing
communication where an XY dimension ordered
wormhole routing algorithm is implemented.
Even the shared-memory communication is
implemented only within the cluster, The
Message-passing communication is implemented

between any two processors in the chip (i.e., with
in the cluster or outside the cluster). It is more
scalable and is mainly used for transferring of
frequent and scattered data.

A part from its advantages it has 2
bottlenecks. The first one is the uncertainty in the
communication channel. The network with

 INTERNATIONAL JOURNAL OF ADVANCED COMPUTING AND ELECTRONICS TECHNOLOGY (IJACET)

 ISSN(PRINT):2394-3408,(ONLINE):2394-3416,VOLUME-3,ISSUE-1,2016
8

heavy traffic will block the data packets in the
channel hence the latency gets increased. The
second bottleneck lies in the data transferring
between the processor and router. Fig-3 shows
the data path in message-passing communication
inside a cluster having 8 PCores and 1MCore.

III. IMPLEMENTING WORK

Initially Shared-memory communication is most
often used mechanism, but it fails to provide
sufficient scalability with the increasing no. of
processors in a cluster. Therefore message-
passing communication came in to existence
with high scalability but the QoS is not
guaranteed here. With the integration of both
communication mechanisms the performance
increases. So, a Hybrid inter-core
communication is developed. Among the two
based up on the type of data the system is
processing, a particular communication scheme
is decided. With the increasing number of
processors the complexity of hybrid inter-core
communication increases. In order to avoid these
disadvantages a Memory-to-Memory
communication is introduced which can directly
transfer the data between all memory’s of the
clusters present in the processor through a
memory interface. This paper implements both
the Hybrid and Memory-to-Memory
communications on a general 16 core processor
and compares their performances.

 A. Hybrid inter-core communication:
 Shared-memory communication is low
scalable with increasing number of processors
and it is extremely complex

which results in high power consumption.
Whereas the Message-passing communication is
highly scalable but it suffers from 2bottlenecks.
They are contention of data packets and how to
differentiate data between processor and a router.
To overcome the drawbacks of individual inter-
core communication mechanisms a Hybrid
communication is developed. On which the low

scalability of Shared-Memory scheme and
contention of packets in message-passing scheme
is solved because of existence of message-
passing and shared-memory communication on
the same multi-core processor.

And the second bottleneck is removed by
using 2 input FIFO’s in PCore on which the data
coming from another PCore is stored in 1st FIFO
and the data coming from MCore is stored in 2nd
FIFO there by it can easily differentiate the data
coming from router in to processor. To
implement Hybrid inter-core communication in
16Core processor it needs to be arranged in a 2D
manner which seems to be a 3×6 mesh Network-
on-Chip supports message passing
communication. A cluster based memory
hierarchy is employed to support shared-memory
communication i.e., Total 16Core processors and
2 memory processors are arranged in 2 clusters
where each cluster consists of 8PCores and
1MCore. Shared-Memory communication is
possible only within the cluster.
 Fig-3 shows the architectural overview of
hybrid inter-core communication in 16Core
processor. The first processor is considered to be
the source processor and the sixteenth processor
is considered to be the destination processor.
Here the path in which the data from source
PCore to destination PCore is transferred is
shown in Fig-3. First the data from source
processor is transferred to MCore1 present in the
same cluster then it is transferred to PCore3
which is present in the same cluster up to this
shared memory communication is implemented
to transfer the data. Next the data from PCore3 is
moved to PCore9 present in second cluster using
message passing communication and from
PCore9 it is stored in MCore2 and finally the data
present in the memory is loaded by the
destination processor PCore16. Here the path that
is considered is worst case path. Compared to
individual shared-memory and Message-passing
communications Hybrid communication is very
effective and results in high performance.

 INTERNATIONAL JOURNAL OF ADVANCED COMPUTING AND ELECTRONICS TECHNOLOGY (IJACET)

 ISSN(PRINT):2394-3408,(ONLINE):2394-3416,VOLUME-3,ISSUE-1,2016
9

Fig-3. Architectural overview of Hybrid inter-core communication in 16Core processor.

Fig-4. Architecture overview of Memory-to-Memory communication in 16core processor.

B. Memory-to-Memory communication:
Even though Hybrid communication is very

effective for providing the inter-core
communication in multi-core processors it has a
disadvantage of very complex to maintain with
increasing number of processors and clusters. To
avoid this new technique called Memory-to-
Memory communication is implemented [2]. A
Memory-to-Memory communication is one
which directly transfers the data between the
memory cores (MCores) of clusters with in a
multi-core processor through a memory
interface. Direct Memory Access (DMA) can
used as a memory interface. DMA is one of
several methods for coordinating the timing of
data transfers between an input/output (I/O)
device and the processing unit or memory in a
computer. DMA is one of the faster types of
synchronization mechanism which provides
improvement in terms of both latency and
throughput. DMA allows the I/O device to access
the memory directly, without using the core.

The memory-to-memory communication
between clusters in 16Core processor is
implemented simply in five steps first the data is
loaded in to the source processor (PCore 1)
through an input FIFO. Second the data from
source processor is loaded directly in to memory
core present in the same cluster. Next by using a
memory interface the data is loaded in to the
interfacing component and this data is transferred

from interfacing component to memory core
present in the second

cluster. Next the data from second MCore is
directly loaded by destination Processor core
(PCore 16). Lastly the data from destination
processor is collected through an output FIFO.
Fig-4 shows the architecture overview of
Memory-to-Memory communication in 16Core
processor. It is observed that among the two
communication mechanisms the communication
path is greatly reduced from cluster to cluster in
case of Inter-memory communication i.e., The
path from source to the destination requires only
3 intermediate components hence it is very
efficient to use memory to memory
communication in multi-core processors
compared to shared-memory, message-passing
and Hybrid inter-core communications.

IV. RESULTS AND DISCUSSION
In VLSI the performance parameters are Area,
Delay and power. For any system performance is
expressed in these three parameters only. Inter-
core communication mainly concentrates on
reduction of delay from source to destination
processor, so this system mainly focuses on delay
parameters of communication mechanisms rather
than area and power. The simulation results are
obtained by testing the communication
mechanisms on a 16 core processor

 INTERNATIONAL JOURNAL OF ADVANCED COMPUTING AND ELECTRONICS TECHNOLOGY (IJACET)

 ISSN(PRINT):2394-3408,(ONLINE):2394-3416,VOLUME-3,ISSUE-1,2016
10

1) Delay:
In multi-core processors the throughput

mainly depends on computing capability and
communication efficiency between cores. This
paper mainly concentrates on inter-core
communication rather than computing capability
so the throughputs of two communication
mechanisms are compared. Fig-5 shows the
simulation results of Hybrid inter-core
communication in which the input data is given
as 0F0F0F0F to the input FIFO and it is collected
at the output FIFO after 370ns. If the same input
is allowed to pass using shared-memory and
message-passing communication mechanisms
then it takes 610 and 470ns respectively. So
compared to Shared-memory and Message-
passing, Hybrid inter-core communication is
more effective. But compared to Hybrid
communication Memory-to-Memory
communication is more efficient. Fig-6 shows
the simulation results of Memory-to-Memory
communication in which the input data is given
as 0F0F0F0F to the input FIFO and it is collected
at the output FIFO after 330ns. These two
communication delays are represented with
yellow lines in their simulation results. Hence

from these results it is observed that the Memory-
to-Memory communication is very much
effective and results in high performance
compared to shared-memory and message-
passing communications.

2) Area and power:

The proposed cache-free architecture can
significantly reduce chip area. Moreover,
embedded applications usually require limited
memory resources, so only 256 KB on-chip
memory units are implemented. The no of LUT
slices required to implement Hybrid
communication and memory-to-memory
communication are represented in Table-2.
Table-2 shows the comparison of performance
parameters of Hybrid and Memory-to-Memory
communication. Two key features contribute to
the low power consumption. First, cache is
discarded in the proposed cluster-based memory
hierarchy therefore related hardware overhead is
also reduced. Second the data locality is
improved by using extended register file and with
separation of private and shared memory.

TABLE-2
Comparison of Hybrid and Memory-to-Memory communication

Parameter Shared-
Memory
Communication

Message-
Passing
communication

Hybrid inter-
core
communication

Memory-to-
Memory
communication

No. of sliced
Registers

770 868 681 573

No. of sliced
LUT’s

1279 1363 1015 922

No. of fully used
LUT’s

607 644 475 445

No. of bonded
IOB’s

73 73 73 73

Transmission
Delay

610ns 470ns 370ns 330ns

 INTERNATIONAL JOURNAL OF ADVANCED COMPUTING AND ELECTRONICS TECHNOLOGY (IJACET)

 ISSN(PRINT):2394-3408,(ONLINE):2394-3416,VOLUME-3,ISSUE-1,2016
11

Fig-5. Simulation results of Hybrid inter-core communication.

Fig-6. Simulation results of memory-to-memory communication.

V. CONCLUSION
The drawbacks in shared-memory and message-
passing communication mechanisms are
overcome by using Hybrid inter-core
communication. This paper implements the
Hybrid inter-core communication and Memory-
to-Memory communication in a generalised 16
core processor which has 16 processor cores and
2 memory cores which are arranged in a 3×6 2D
mesh NoC. Both these communication
mechanisms are compared with each other in all
performance parameters. A Hybrid inter-core
communication is implemented by a combination
of shared-memory and message-passing
communication. A memory-to-memory

communication is implemented using a memory
interface called DMA. The DMA used here is a
prototype one which performs only specific
functions. Compared to Shared-Memory and
Message-Passing communications, Hybrid inter-
core communication produces high through put
but compared to Hybrid inter-core
communication the newly proposed Memory-to-
Memory communication results in high
performance. The system is implemented in
90nm CMOS using XILINX 12.2 version
software.

VI. FUTURE WORK

 INTERNATIONAL JOURNAL OF ADVANCED COMPUTING AND ELECTRONICS TECHNOLOGY (IJACET)

 ISSN(PRINT):2394-3408,(ONLINE):2394-3416,VOLUME-3,ISSUE-1,2016
12

The performance of the processor gets still
increased by using pipelined and highly
computable processors

REFERENCES

[1] Zhiyi Yu, and Ruijin Xiao , ”A 16-Core
Processor With Shared-Memory and
Message-Passing
Communications.”IEEE.Trans.circuit
syst.vol.61,No.4,April 2014.

[2] S. Aruna Mastani and K. Kusuma,”A
Novel Technique for inter-core
communication in Multi-core processor”
International conference on advanced
signal processing and communications,
Narasaraopeta engg.college.,pp.114-120,
July 13th 2015.

[3] G. Blake, R. G. Dreslinski, and T. Mudge,
“A survey of multicore processors: A
review of their common attributes,” IEEE
Signal Process. Mag., pp. 26–37, Nov.
2009.

[4] R. Kumar, V. Zyuban, and D. Tullsen,
“Interconnections in multi-core
architecture: Understanding mechanisms,
overheads and scaling,” in Proc. 32nd Int.
Symp. Computer Architecture (ISCA’05),
2005, pp. 408–419.

[5] H.-Y. Kim, Y.-J. Kim, J.-H. Oh, and L.-S.
Kim, “A reconfigurable SIMT processor
for mobile ray tracing with contention
reduction in shared memory,” IEEE Trans.
Circuits Syst. I, Reg. Papers, no. 60, pt. 4,
pp. 938–950, Apr. 2013.

[6] L. Hammond, B.-A. Hubbert, M. Siu, M.-
K. Prabhu,M. Chen, and K. Olukolun, “The

stanford Hydra CMP,” IEEE Micro, vol.
20, no. 2, pp. 71–84, 2000.

[7] A. S. Leon, B. Langley, and L. S. Jinuk,
“The UltraSPARC T1 processor: CMT
reliability,” in Proc. Custom Integrated
Circuits Conf. (CICC’06) Dig. Tech.
Papers, 2006, pp. 555–562.

[8] M.-B. Taylor, J. Kim, J. Miller, D.
Wentzlaff, F. Ghodrat, B. Greenwald, H.
Hoffman, P. Johnson, J.-W. Lee,W. Lee,
A. Ma,A. Saraf,M. Seneski,N. Shnidman,
V. Stumpen, M. Frank, S. Amarasinghe,
and A. Agarwal, “The Raw
microprocessor: A computational fabric
for software circuits and general-purpose
programs,” IEEE Micro, vol. 22, no. 2, pp.
25–35, Mar/Apr. 2002.

[9] Tilera Corp., Tilepro64 Processor Tilera
Product Brief, 2008 [Online].
Available:http://www.tilera.com/pdf/Prod
uct- Brief_TILEPro64_Web_v2.pdf.

[10] S. R. Vangal, J. Howard, G. Ruhl, S.
Dighe, H. Wilson, J. Tschanz, D. Finan, A.
Singh, T. Jacob, S. Jain, V. Erraguntla, C.
Roberts, Y. Hoskote, N. Borkar, and S.
Borkar, “An 80-tile sub-100-WteraFLOPS
processor in 65-nm CMOS,” IEEE J. Solid-
State Circuit, vol. 43, no. 1, pp. 29–41, Jan
2008.

[11] Z. Yu, M. J. Meeuwsen, R. W. Apperson,
O. Sattari, M. Lai, J. W. Webb, E. W.
Work, D. Truong, T. Mohsenin, and B. M.
Baas, “AsAP: An asynchronous array of
simple processors,” IEEE J. Solid-State
Circuits,vol. 43, no. 3, pp. 695–705, Mar
2008.

