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Abstract 
The demand for stream processing is 
increasing these days. The reason is that, 
organizations need to process data fast to 
react to changing business needs and 
conditions on real time. The value of stream 
processing systems mainly come from the 
timeliness of the results that they can provide. 
Today, stream processing finds its application 
in almost every industry - wherever stream 
data is generated through human activities, 
machine data or sensors data. Many 
distributed stream processing frameworks are 
currently available. This paper evaluates the 
stream processing framework Spark 
Streaming to identify how well it fits into the 
eight requirements of real time stream 
processing proposed by [3].    
Index Terms: micro batches, real time, stream 
processing, Spark Streaming.  

I. INTRODUCTION  
Big data is a very popular term these days. It is 
mainly characterized by the three V's - Volume, 
Variety and Velocity. Volume refers to the 
quantity of data. Variety refers to the range of 
data types and sources. While velocity 
determines how fast the data is generated and 
processed to meet the demands. Stream 
processing is about the velocity aspect of big 
data. Some business problems that can be solved 
using Stream processing are fraud detection, 
pricing and analytics, intelligence and 
surveillance. The streams of data are 
accumulated from different sources and are 
considered most valuable when they arrive. So it 
makes sense to process these data as soon as they 
arrive using real time streaming analytics.  

II. BACKGROUND  
Many stream processing frameworks are 

currently available. From the Apache landscape 
three major frameworks that are available for 
stream processing are Spark Streaming, Storm 
and Samza. Their major traits are summarized in 
the Table I.  
A. Spark Streaming Model  

 In general Spark Streaming model works as 
follows:  
 Spark Streaming can ingest data from multiple 
sources.    
  
Features  

Real Time Stream Processing Systems  

Spark  
Streaming  

Storm  Samza  

Stream  
Processing  
Model  

Microbatching  Native  Native  

Programming 
Model  

Declarative  Compositional Compositi
onal  

Data  
Guarantees  

Exactly once  Atleast once  Atleast 
once  

Maturity  High  High  Medium  
Latency  Medium  Very low  Low  
Throughput  High  Low  High  

Table. I  
like Kafka, Flume, Kinesis, Twitter or even tcp 
sockets. The data is then processed using the high 
level algorithms. And the processed data is 
finally pushed to dashboards, filesystems or 
HDFS. Spark Streaming model is illustrated in 
Fig.1.  

Spark Streaming uses a microbatching method 
for processing data streams. As data arrives, it 
forms microbatches over intervals of time. Each 
microbatch forms an RDD, the major abstraction 
in Spark. RDD is an immutable distributed 
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collection of objects. RDDs are partitioned and 
computed across multiple nodes in a cluster in 
parallel. RDD is the concept of Spark that 
supports the main features of failure recovery, 
scalability load balancing.  

B. Spark Streaming Components  

The architecture of Spark Streaming is shown in 
Fig.2.   
The components are briefly described below: A 
Spark Streaming application will have a driver 
program that has the main method. A Streaming 
Context is an object defined to specify the 
processing to be applied to the streams of data 
that continuously arrive.   
Driver: Connects to the cluster manager to 
request for resources. It is also responsible for 
creating DAG of tasks corresponding to 
streaming job and submitting it to the cluster for 
execution.  
Cluster Managers: Spark can work with a 
Standalone cluster manager, Mesos or YARN. 
They are responsible for allocating resources for 
execution.  

 
Fig. 1 Spark Streaming Model 

   
Fig. 2 Spark Streaming Architecture  

  
Workers: These are the nodes where the 
execution happens. They have executors that 

execute tasks and have cache to support the task 
execution.   
Receiver: In a Spark Streaming application the 
major component is the receiver, that is a task 
that runs throughout the application life time, to 
receive streams of data. They run within an 
executor in a worker node.  
  

The following sections describe each of the 
eight requirements of a Real Time Stream 
processing System [ref] and illustrates the 
features of Spark Streaming that best fits into 
those requirements. The features of Spark 
Streaming are assessed in terms of the version 
1.6.  

RULE I  
The first requirement for a real-time stream 
processing system is to process messages “in-
stream”, without any requirement to store them 
to perform any operation or sequence of 
operations. Ideally the system should also use 
an active (i.e., non-polling) processing model 
[3].  
  

This requirement suggests that a real time 
stream processing system should be an active 
system that is data/event driven and should avoid 
storing data to disk before the data is processed. 
This is because accesses to disk can introduce 
unwanted latencies in the processing, which 
would badly impact the timeliness of the results. 
Spark streaming achieves this goal by making use 
of in-memory computations in a large cluster in a 
fault tolerant manner. It uses an abstraction called 
RDD for this purpose. an RDD is a read-only, 
partitioned collection of records. RDDs are fault-
tolerant, parallel data structures that allows users 
to explicitly persist intermediate results in 
memory, control their partitioning to optimize 
data placement, and manipulate them using a rich 
set of operators. This in memory computations 
offer Spark Streaming a great speed up and 
allows it to deliver results with minimum latency.  
Streams of data can be processed in two ways. 
One is the native method while the other is the 
micro batching method. In native method each 
record or event is processed one by one as it 
arrives in the stream.  
While in microbatching method, streams of data 
that arrive are grouped to small batches over 
predetermined batch intervals. All the data that 
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form a microbatch are processed together. Spark 
Streaming uses the microbatching method, where 
an RDD is formed out of a microbatch of data 
and is partitioned across the cluster of machines 
to be processed in parallel (in-memory). Thus in 
Spark Streaming the real time data streams are 
converted to DStreams (discretized streams) and 
processed. These DStreams are in turn a 
collection of RDDs.  
  

RULE II   
The second requirement is to support a high-level 
“StreamSQL” language with built-in extensible 
stream oriented primitives and operators [3].  
  

This requirement suggests the need to have a 
high level language (with a rich set of stream 
specific operators) for processing continuous 
streams of data. This would greatly reduce 
development cycles and maintenance costs for 
streaming applications.  

Spark streaming which is an extension to the 
Spark Core provides high level APIs in Java, 
Scala, Python and R. In general it provides a 
Declarative API with high order functions or 
operators. This makes programming easier, as the 
programmer does not have to deal with the low 
level details as the system would internally create 
and optimize the topology.  
  

Spark Streaming handles data streams as 
DStreams (discretized streams). And it supports 
a rich set of transformation and output operations 
that can process or modify the DStreams. Some 
common transformation functions available on 
DStreams are map, flatMap, reduceByKey, 
cogroup etc. A number of output operations are 
also supported on DStreams. Output operations 
trigger the actual execution of all the DStream 
transformations and allows DStream’s data to be 
pushed out to external systems. Some examples 
of the output operations are print, 
saveAsTextFiles, saveAsHadoopFiles etc. Spark 
Streaming also provides windowed 
computations, which allows to apply 
transformations over a sliding window of data. 
the concept of windowed operations can be 
visualized as in  
Fig.3.  
  

  
  

Fig. 3 Windowed Operations  
  

Some commonly used window operations are 
reduce By Window,  reduce By Key And  
Window.  
  

In addition to the transformations and output 
operations listed above, Spark provides an 
additional module Spark SQL for structured data 
processing. There are a number of ways to 
interact with Spark SQL, which include SQL, 
Data Frames API and Data Sets API. All these 
interactions work on the same optimized Spark 
SQL engine. SQL interface allows to interact 
with datasets using basic sql syntax or hiveql 
queries. Data Frames API allows access to data 
in form of data frames, that organize distributed 
collections of data as named columns. Data Sets 
API is a new experimental addition in Spark 1.6.  
  

Thus Spark streaming with its API and Spark 
SQL provides an extensible set of operators that 
can process stream data to retrieve intelligence 
from it.  

RULE III   
The third requirement is to have built-in 
mechanisms to provide resiliency against stream 
“imperfections”, including missing and out-of-
order data, which are commonly present in real-
world data streams [3].  

The two main notions in time in streaming are: 
event time and processing time.  

Event time: is the time at which an event 
happened or the event was created in the real 
world. Usually a time stamp is encoded with the 
data when it is created.  

Processing time: is the time measured by a 
machine that runs the stream processing 
application to process the event  
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  Mostly in networks there will be a difference 
between event and processing times, introduced 
due to many reasons, like network delays, data 
rate spikes etc. This causes out of order data. As 
in  real-time systems, data is never stored, the 
infrastructure must make provisions for handling 
data that is delayed, missing, or out-of-sequence. 
Spark currently does not support this feature but 
its future version will come up with the 
capabilities to handle event time and out of order 
data. It will give support for the concepts of 
'event time' and 'slack' durations to help manage 
stream imperfections.    

RULE IV  
The fourth requirement is that a stream 
processing engine must guarantee predictable 
and repeatable outcomes [3].  
  

Traditional stream processing systems use a 
continuous operator model. But in that model its 
difficult to handle features like quick fault 
recovery, load balancing etc. Spark Streaming 
uses a different model wherein it structures 
computations as a set of short, stateless 
deterministic tasks on RDD partitions that are 
distributed across the cluster. DStreams and 
RDDs track a lineage for fault recovery and for 
handling stragglers. A lineage is basically a graph 
of deterministic operations used to build a 
DStream/RDD. Lineages are tracked at the level 
of partitions. Thus if a node fails, the RDD 
partitions that were running on it can be rebuilt 
by using the information in the lineage. That is in 
case of failures the partitions on the node will be 
recomputed by re running the tasks in the lineage, 
on the original data (of the partition).  
  

For stateful operations checkpointing is 
enabled by default. When checkpointing is 
enabled, lineages are not allowed to grow 
indefinitely. This is done by removing the parts 
of the lineage once checkpointing is done.  
  
Thus with the features of lineages and 
checkpointing Spark Streaming ensures 
predictable and repeatable outcomes.  
  

RULE V   
The fifth requirement is to have the capability to 
efficiently store, access, and modify state 
information, and combine it with live streaming 

data. For seamless integration, the system should 
use a uniform language when dealing with either 
type of data [3].  
  

A very common application for this would be 
in fraud detection, in transactions. For doing this 
effectively, the usual transaction pattern should 
be learned and stored as a signature and when a 
new transaction arrives on real time, it has to 
compared against the stored signature. If a 
difference is detected during the comparison, a 
fraud is detected. For doing this in real time, 
stream processing systems should be capable to 
well integrate with stored data.  
  

Spark Streaming integrates well with Hadoop 
and most of the available NoSql stores. The main 
programming abstraction in Spark Streaming, the 
DStream or RDDs allow batch and streaming 
workloads to interoperate seamlessly. Users can 
apply arbitrary Spark functions on each batch of 
streaming data: for example, an RDD can be 
formed from a static data set (say a file on HDFS) 
and this can be easily joined with a DStream 
using the 'join' operator, as shown in the example:  
  
val filerdd  =  sparkContext.hadoopFile("file to 
be joined") kafkaDStream.transform 
{batchRDD=> batchRDD.join(filerdd).filter(..)}  
  

Another common example found in production 
is Spark Streaming's integration with the 
Cassandra store.  
DataStax has provided a Spark-Cassandra 
connector that can enable Spark Streaming to 
effectively communicate with Cassandra. This 
connector handles type conversions between the 
two and also internally aligns Spark partitions 
with that of Cassandra partitions to get great 
performance for reads and writes. The 
configuration parameters of the connector, 
Cassandra and Spark Streaming should be 
intelligently tweaked to get the desired 
performance for the application.  
  
Spark's concept of RDD and microbatching helps 
it very well integrate streaming and batch data for 
real time analytics.  
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RULE VI   
The sixth requirement is to ensure that the 
applications are up and available, and the 
integrity of the data maintained at all times, 
despite failures [3].  
  

One major advantage of Spark Streaming is 
that it provides strong fault tolerance. As long as 
the input data is stored reliably, Spark Streaming 
will always offer “exactly once” semantics. (i.e., 
as if all of the data was processed without any 
nodes failing), even if workers, driver or receiver 
fails in between.  
  

Spark Streaming ensures its exactly once 
semantics, by supporting driver, worker and 
receiver fault-tolerance.  
  
A. Driver Fault tolerance  
In order to ensure that the driver program is up 
and running all the time, check pointing should 
be enabled. Check pointing allows to save data 
periodically to a reliable storage like HDFS.   
Check pointing keeps track of the state of the 
program, so if it crashes in between, Spark 
Streaming can read how far the previous run of 
the program got in processing the data and take 
over from there.  
When Spark Streaming works with the 
Standalone cluster manager, we can make use of 
the --supervise flag to ensure that the driver 
program restarts automatically if it crashes.  
  
B. Worker Fault Tolerance  
For worker fault tolerance Spark Streaming 
utilizes the RDD lineages. In between if a worker 
node fails, the RDD partitions on it can be 
recovered by using the information in the 
lineage. That is all the tasks in the linage will be 
re run on the original RDD partition data to get 
back to the RDD state at which the node had 
failed.  
  
C. Receiver Fault Tolerance  

In Spark Streaming a receiver is a long running 
task, that keeps receiving the data from the input 
source. So fault tolerance of the receiver is 
important for ensuring zero data loss. Receivers 
can be reliable or unreliable. reliable receivers are 
the ones that can acknowledge the data it has 
received. reliable receivers are used in 

combination with reliable senders. Reliable 
receivers ensure zero data loss and exactly once 
semantics by receiving the data, replicating it and 
then acknowledging it back. Once the data is 
acknowledged by the receiver, the sender can 
update its offsets, to point to the next data to be 
retrieved.  
  

Thus with the driver, worker and receiver fault-
tolerance capabilities, Spark Streaming 
framework is highly available and it ensures 24/7 
operation for stream processing applications.  
  

RULE VII   
The seventh requirement is to have the capability 
to distribute processing across multiple 
processors and machines to achieve incremental 
scalability. Ideally, the distribution should be 
automatic and transparent [3].  
  

This requirement states that real time stream 
processing systems should be capable to scale 
well to any number of machines and should have 
the ability to automatically load balance across 
the available machines.  
 In stream processing applications, controlling 
the ingestion rate would not be sufficient to 
handle variations in data rates over extended 
periods. A viable solution for it is to allow the 
cluster resources to dynamically scale as per the 
processing demands.  
Spark Streaming currently does not support 
automatic dynamic scaling of cluster resources, 
where resources are dynamically acquired and 
used based on higher processing needs.  

But as Spark inherently divides a large job into 
smaller tasks for execution, this feature can easily 
redistribute tasks to a larger cluster if more nodes 
are acquired from the cluster manager. That is, 
one benefit of writing applications on Spark is its 
ability to scale computation by adding 
(manually) more machines and running in cluster 
mode.  And Spark Streaming provides high level 
APIs with which users can rapidly prototype 
applications on smaller datasets locally, and use 
the unmodified code on even very large clusters.  
  

RULE VIII  
The eighth requirement is that a stream 
processing system must have a highly-optimized, 
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minimal-overhead execution engine to deliver 
real-time response for high-volume applications 
[3].  
  

Apache Spark is a cluster computing platform 
designed to be fast and easy for use. In terms of 
speed it is a great improvement over Map 
Reduce. Spark has the speed advantage because 
of its in memory computations, that allow data to 
be persisted in memory in between computations. 
This avoids the latencies involved in accessing 
disks in between. Spark's in memory 
computations makes it well suited for interactive 
and iterative processing also where Map reduce 
shows a poor performance.  
  
The Spark ecosystem contains multiple closely 
integrated components. The Fig.4. shows spark 
ecosystem.  
  

  
Fig. 4 Spark Ecosystem  

  
 At its core, Spark is a “computational engine”. It 
is responsible for scheduling, distributing, and 
monitoring applications consisting of many 
computational tasks over a cluster. Spark 
provides a number of high level components 
involving different work loads. The different 
high level components are:  
  

• Spark Streaming: for stream processing 
for real time analytics with minimum 
latency  

• MLLib: for machine learning  
• GraphX: for graph processing  
• Spark SQL: used for structured data 

processing   
  
Thus Spark provides a unified stack wherein all 
these components are designed to work together. 
The unified stack provides the following 
advantages:  

  
1) all higher level libraries can take 

advantage of the features, improvements 
and optimizations of the lower layer 
(Spark Core) very easily.  

2) the costs (for deployment, maintenance, 
testing, support, and others)  are reduced, 
as a single system is used instead for 
separate software.    

3) applications can be build that can 
seamlessly combine different processing 
models   

  
In order to get the best performance from Spark, 
major factors to be considered are:  
  
A. Level of Parallelism    

This should be configured in a way that utilizes 
the available resources effectively. If there is too 
little parallelism, Spark may leave resources idle. 
If there is too much parallelism, the overheads 
associated with managing parallelism may build 
up and become significant.  
  
B. Serialization:    

When Spark has to transfer data over the 
network or spill data to disk, it needs to serialize 
objects into a binary format. This comes into play 
during shuffle operations, where potentially large 
amounts of data are transferred. By default Spark 
uses Java’s built-in serializer. Spark also supports 
the use of Kryo, a third-party serialization library 
that improves on Java’s serialization by offering 
both faster serialization  times  and  a 
 more  compact  binary representation. If 
huge data sizes are to be handled, Kryo 
serialization may be better as it can reduce the 
amount of data transferred over the network. But 
if more intense computations are involved in the 
application a better option would be to use Java 
Serialization as it may reduce processing time. To 
derive its benefits, the serialization scheme that 
best fits the application is to be used.  
  
C. Memory Management  
By default Spark will leave 60% of space for 
RDD storage, 20% for shuffle memory, and the 
remaining 20% for user programs. Some 
parameters that can be used to configure the 
memory  usage  are spark. memory. 
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fraction, spark. storage. memory etc. Finding the 
best combination of these parameters would 
 require  to  consider  the 
application's object sizes, shuffle frequency etc.  
  
D. Hardware Provisioning  
The hardware resources that are given to Spark 
will have a significant effect on the completion 
time of your application. The main parameters 
that affect cluster sizing are the amount of 
memory given to each executor, the number of 
cores for each executor, the total number of 
executors etc.  
  

CONCLUSION  
Spark Streaming has proven to be a great tool for 
stream processing by providing real time 
analytics with minimum latency. It achieves 
better fault tolerance properties and scalability. It 
also effectively handles stragglers. Due to its 
unique RDD approach, it stays well ahead of the 
other distributed stream processing frameworks 
and is well adopted in the industry. Spark 
Streaming currently fulfills most of the 
requirements of real time stream processing. 
Future versions of Spark will further excel on 
those features and more to it. 
Further studies can be conducted by comparing 
the relevant features of Spark Streaming with that 
of the other available distributed stream 
processing frameworks to better understand their 
capabilities and to choose the solution that would 

best fit the requirements of the stream processing 
application. 
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