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ABSTRACT—Internet of Things (IoT) aims 
at providing connectivity between every 
computing entity. However, this facilitation 
is also leading to more cyber threats which 
may exploit the presence of a vulnerability of 
a period of time. One such vulnerability is 
the zero-day threat that may lead to zero-day 
attacks which are detrimental to an 
enterprise as well as the network security. In 
this, a study is presented on the zero-day 
threats for IoT networks and a context graph 
based framework is presented to provide a 
strategy for mitigating these attacks. The 
proposed approach uses a distributed 
diagnosis system for classifying the context at 
the central service provider as well as at the 
local user site. Once a potential zero-day 
attack is identified, a critical data sharing 
protocol is used to transmit alert messages 
and reestablish the trust between the 
network entities and the IoT devices. The 
results show that the distributed approach is 
capable of mitigating the zero-day threats 
efficiently with 33% and 21% improvements 
in terms of cost of operation and 
communication overheads, respectively, in 
comparison with the centralized diagnosis 
system. 
Key words—IoT, Zero-day attacks, 5G, 
context-graphs, cloud computing; 
deployment model; service level agreement; 
utility computing; privacy; platform as a 
service; software as a service; infrastructure 
as a service; Denial of service attack; Cyber 
Security; Cloud Security; Network ; Cyber; 
Cyber Threats; Threat Analysis; 
Information Security; Data security. 
1. Introduction 

The communication networks are observing a 
tremendous increase in the number of devices 
which are predicted to go beyond 40% (of that 
were active in 2012) by 2020. All these devices 
have been arranged under a common term of 
“Internet of Things” (IoT). IoT allows 
integration of the vast variety of communication 
devices irrespective of their operational 
technology, which is also a challenging issue as 
a common firmware is required for all the 
devices [1-7]. A common firmware makes it 
easier to control and manage various IoT 
devices without many overheads. Common 
software platforms allow easy configurations as 
well as easy diagnosis of faulty operations. 
However, a common firmware also subjects the 
IoT components to various types of threats 
which can infiltrate the operational defense of 
these devices. Some of the key features required 
by IoT networks are remote diagnosis and 
management, data analytic, software upgrades, 
information passing and processing, and user 
mobility identification. All these form a type of 
application which allows access to the entire 
network once a particular feature is exploited 
[8-19]. 
 
Since there is no formal definition of IoT, same 
attacks which are applicable to any computing 
entity hold true in their case. Also, reduction in 
the human interventions and use of more 
automated systems in the IoT networks make it 
extremely important to secure the entire 
network as it may reveal critical information. 
Apart from these, IoT networks are also 
considered as an integral part of civilian and 
military expeditions focusing surveillance, 
navigation, localization, equipment control, and 
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currency transfers, etc. Recent trends have 
focused on using RFID tags as embedded 
sources for IoT devices that do not connect to 
the network directly. Although, such strategy 
holds safe for the majority of application 
scenarios, but manipulation with RFID tags can 

easily make these vulnerable similar to a normal 
computing entity [20-31]. Thus, security of IoT 
devices irrespective of the mode and type of 
connectivity is of utmost importance and has 
been an area of concern for a majority of the 
security researchers across the globe. 

 
Fig. 1: An illustration of the window of vulnerability for zero-day attacks 

Considering a common platform for IoT 
devices, most of the business enterprises and 
vendors focus on making version-based IoT 
firmware that can be easily upgraded and 
controlled. Such scenarios are possible by using 
a software-assisted networking. However, a 
software-assisted networking suffers from a 
major issue of zero-day vulnerabilities. 
Considering the level of deployment and 
configuration of networks, zero-day 
vulnerabilities are extremely dangerous for IoT 
networks. Exploitation of a zero-day 
vulnerability can lead to a zero-day attack. 
Control over a single unit of IoT software may 
expose the entire architecture [32-43].  
 
2. Background: Zero-day Attacks  
The name “Zero-day” is coined considering the 
negligible time available in mitigating these 
threats. The number of days for which an 
anomaly has been known directly affects the 
countermeasures and also the probability of 
remaining affected. It also has to do a lot with 
those software users who do not update security 
patches regularly. Once a vulnerability is 
publicized, it is mandatory for the particular 
application users to immediately switch to the 
stable releases. However, failure in doing so 

leads to various consequences in the form of 
cyber-attacks. 
 
The effect of a zero-day vulnerability also 
depends on the mode of detection. If a 
vulnerability is identified by white hat hackers, 
it allows keeping it low profile until the security 
patches are not available; whereas identification 
of such vulnerabilities by a notorious group 
(black hat hackers) may subject the entire 
enterprise to failure. The vulnerability cycle for 
a zero-day attack may vary from scenario to 
scenario. In some cases, after identification of a 
bug, the hackers operate covertly leading to the 
full zero-day attack, while in some cases, the 
hackers may come forward (overt) and make 
threat public. Thus, it can be analyzed that a 
zero-day attack is not only because of the covert 
behavior of a hacker but also because of the 
delays in updating security patches once these 
are available in the public domain. This is often 
explained in the terms of window of 
vulnerability. The window of vulnerability is 
the time gap in which the number of vulnerable 
systems remaining is negligible. It is evaluated 
as a software timeline considering the discovery 
phase, security patching, intermediate 
exploitation phase and patch applicability 
phase, as shown in Fig. 1. 
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Fig. 2:  An illustration of DDS-assisted IoT network 

3. Proposed Approach  
The network comprises various IoT devices and 
gadgets that operate either individually or 
collectively via a common gateway. The 
communication can be directly between the 
Mobile Node (MN) and the IoT device or 
indirectly between the MN and the IoT device 
via a gateway. The service providers are 
responsible for maintaining trust between the 
IoT and the MN. Currently, the proposed model 
emphasizes on a particular scenario in which an 

IoT device receives security updates that may 
lead to zero-day attacks; or when an attack is 
already launched and security updates confirm 
the attacks. The proposed approach uses 
strategic context graphs to ensure the safety of 
IoT devices against the zero-day attacks. The 
context graphs are implemented using 
Distributed Diagnosis System (DDS). The DDS 
are divided into three parts (shown in Fig. 2), 
namely. 

 

 
Fig. 3: An illustration of strategic context graph formation for an IoT device between the SDS and 
CDS. The decision on matching context is performed at CDS. The counter updates and firmware 
version decisions are also evaluated at the SDS and the CDS. 
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(1) Central Diagnosis System (CDS): CDS is 
installed by the service providers on the central 
node of the network which is responsible for 
generating trust as well as the updates for the 
entire network. CDS is responsible for 
managing the Access Points (APs) control, and 
the operations of gateways for maintaining 
security in the case of high possibilities of 
threats. 
 
(2) Local Diagnosis System (LDS): LDS is 
operated as a dedicated device over the 
gateways. Usually, these are installed with the 
Home Gateways (HGW). LDS interacts with 
the CDS and shares its context graphs with it to 
ensure that all the security procedures are 
followed by the corresponding IoT device. 
 
(3) Semi Diagnosis System (SDS): SDS is 
responsible for directly managing the APs trust 
with the CDS. It shares the context of IoT 
devices which directly interacts with an MN 
without relying on the local gateway. 
 
Strategic Context 
The types of devices operable in a network are 
considered to have valid pre-registered 
signatures along with a counter value. The 
counter value manages the count for the number 
of times the firmware of an IoT device is 
validated or encountered [44-48]. The context 
for each IoT device is managed by its diagnosis 
system and periodically stored in logs and 
shared with the CDS. The context outline used 
in the proposed model is as follows: 
 
Device signatures (Sg): This is the unique 
identity for each device. The signature is the 
embedded information about the IoT device 
which is stored at the CDS once it gets activated 
in the network. 
 
Update Counter (Uc): This is the firmware 
update counter which is randomly selected at 
the beginning of network registrations. These 
are updated using random integer values which 
are finalized by the CDS and change 
periodically without affecting the performance. 
 
Traffic Type (Tp): This defines the context for 
the type of traffic to be generated for and by an 
IoT device. This helps the diagnosis system to 

analyze the content over a particular channel for 
its correctness. 
 
Header Length (Hl): It defines the bit length of 
the header field used by the diagnosis system. It 
contains all the necessary context metadata 
which is to be shared between the LDS, SDS, 
and CDS. 
 
Memory Range (Mr): It denotes the maximum 
and minimum size of the packets generated by 
the IoT device. This helps to simply analyze if 
the size of the initial code is affected or not. 
Usually, these are not mishandled by the 
attackers, but still, in some cases, this is very 
useful to identify if the binaries of the firmware 
are altered or not. 
 
Route (Rt): This field is used to check whether 
an IoT device is operable in LDS, SDS, or CDS 
region. This also allows tracking the actual 
route for managing the context between the 
network entities. 
A. Context Graphs and Strategic Attack 
Detection 
The context graphs are used to generate the 
strategies which help in taking a decision 
regarding the presence of a threat amongst the 
IoT devices. The number of vertices in the 
context graphs is equal to the number of 
processing procedures an IoT device follows 
before generating an output and demanding an 
input. The context explained above forms the 
edges of the graph. After the time instance 
decided in the configuration of the network, the 
LDS and SDS evaluate these graphs for every 
corresponding IoT device ad share it with the 
CDS which also forms its own context graph for 
every IoT device. Along with the context 
graphs, the CDS also forms the context graphs 
for the subordinate network which includes the 
layers of APs, and gateways. 
 
In order to take a strategic decision on the 
management of IoT devices against the zero-
day attacks, the CDS follows a principle of 
modeling the counter and the random integer 
value used to manage the counter by the LDS, 
SDS and the device itself. Then, it performs 
mutual exclusion rule to trace the presence of a 
zero-day threat in the IoT network. The failure 
in the matching of the context stored and the 
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context received from all the subordinates as 
well as the IoT device indicates the presence of 

a zero-day attack. The operational view of the 
proposed approach is illustrated in the Fig. 3. 

 

 
 

Fig. 4: An illustration of critical context/data sharing protocol used after the identification of 
potential zero-day threat or attack in the IoT network. 

 
It is to be noted that the strategic context graphs 
are applicable in the network only in the 
deployment phase, but not in the development 
phase. Thus, the proposed strategy can come 
handy only when a vulnerability is identified by 
the development team at lateral stages as well as 
during the release of security updates as it helps 
in tracking the contextual behavior of every IoT 
device. Once a possibility of attack is found, the 
proposed approach utilizes the critical data 
sharing protocol that helps in eliminating a 
particular IoT device before it exploits the 
entire network. 
 
B. Critical Data Sharing Protocol 
The proposed approach uses a critical 
context/data sharing protocol in the scenarios 
with a potential zero-day threat. The protocol, 
shown in Fig. 4, illustrates the procedures opted 
by the CDS once a threat is identified amongst 
the IoT devices leading to a zero-day 
exploitation. Once a threat policy is violated, 
the CDS sends alarming messages to its 
connected components that are its subordinates 
in the network. The alarming messages are 

followed by the patch for fixing the affected IoT 
device. This is followed by the reestablishment 
of the trust between all the connected 
components with the CDS. Once an alarming 
request is received, each subordinate’s 
diagnosis system shares context information to 
revalidate the trust. By the time, these steps are 
performed, the affected device updates its 
security mechanisms, and registers itself again 
with the CDS leading to the elimination of the 
threat without eliminating the device. On the 
contrary, CDS shares threat information with 
the SDS, trust information with the HGW, 
device information with the LDS, and finally, 
leads it to eliminate the incorrect device. This 
allows mitigating zero-day threats in IoT 
networks. 
 
4. Performance Evaluation 
The proposed approach is evaluated by 
deploying 500 sensors in two modes, namely, 
with CDS only and with CDS, LDS, and SDS. 
The proposed approach is evaluated to analyze 
the effect of DDS on the performance of the 
proposed framework. 
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Fig. 5: Simulation Results 

 
The model defined with similar attacker 
scenario (20% nodes as the attacker) is used to 
evaluate the formation in the proposed approach 
for cost of operation and communication 
overheads. The cost of operation is calculated as 
the time required by the diagnosis system to 
arrive at the decision of zero-day possibility. It 
includes the communication time including the 
context sharing procedures as well as the 
formation of the context graphs at the 
interacting entities. 
 
5. Conclusion 
In this, a study was presented on zero-day 
threats for IoT networks. A context graph based 
framework was presented to provide a strategy 
for deciding on the zero-day attacks. The 
proposed approach used a distributed diagnosis 
system for classifying the context at the central 
service provider as well as at the local user site. 
Also, once a zero-day attack was potentially 
identified, a critical data sharing protocol was 
used to transmit alert messages and reestablish 
the trust between the network entities and the 
IoT devices. This is a progressive paper and the 
details on the full-fledged implementation along 
with critical evaluations will be presented in 
future reports. 
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