

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-11, ISSUE-2, 2024

31

FUNCTION AS A SERVICE (FAAS) CLOUD COMPUTING

MODEL FOR EVENT DRIVEN APPLICATIONS –AN OVERVIEW
N.Deepa, Assistant Professor, Department of IT, Kongunadu Arts and Science College,

Coimbatore, Tamilnadu, India. Email: deepanarayanasamy11@gmail.com.

ABSTRACT
Function as a Service (FaaS) is a form of
cloud computing that allows developers to
execute individual functions or pieces of code
in response to specific events without
managing the underlying infrastructure. In
FaaS, developers can upload blocks of code,
which are triggered by events such as HTTP
requests, database changes, or file uploads.
The platform automatically scales the
resources up or down based on demand,
allowing developers to focus solely on writing
and deploying code without managing
servers or infrastructure. Popular FaaS
providers include AWS Lambda, Google
Cloud Functions, and Microsoft Azure
Functions. FaaS is known for its scalability,
cost-effectiveness, and pay-as-you-go pricing
model.This paper is an overview of the
Function as a Service (FaaS) cloud
computing model.
Keywords: Serverless computing, cloud
model, FaaS, event driven applications.

INTRODUCTION
Serverlesscomputing is revolutionising the
cloud. It has transformed the way applications
are developed and deployed. Likewise,basic
server-oriented architecturesare responsible for
managing servers and infrastructure. Serverless
computing abstracts the underlying
infrastructure, allowing developers to focus
mainly on the code.
Function as a Service (FaaS)** is a cloud
computing model where cloud providers
manage the infrastructure needed to execute
code.The functions are triggered by events,
HTTP requests, database changes, or file
uploads (Figure 1).
Here's an overview of FaaS in the context of
cloud computing:

1. Event-Driven Execution: FaaS platforms
execute functions in response to events
triggered by external sources such as HTTP
requests, database changes, file uploads,
message queues, or scheduled timers. Functions
are stateless and are designed to perform a
specific task or respond to a particular event.

Figure 1 Working of Serverless Architecture

2. Pay-Per-Use Model: With FaaS, users are
billed based on the number of executions and
the compute time consumed by their functions.
Since resources are allocated dynamically and
scaled automatically based on demand, users
only pay for the actual compute resources
consumed during function execution. This pay-
per-use model can result in cost savings
compared to traditional cloud computing
models where users pay for provisioned
resources regardless of usage.
3. Scalability and Elasticity: FaaS platforms
handle the scalability and elasticity of resources
transparently to users. Functions can scale
horizontally to accommodate varying workloads
and traffic patterns without requiring manual
intervention. This makes FaaS ideal for
applications with unpredictable or fluctuating
workloads.
4. Abstraction of Infrastructure: FaaS abstracts
away the underlying infrastructure, including
servers, networking, and operating systems,
from developers. Users can focus on writing
and deploying code without worrying about

 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-11, ISSUE-2, 2024

32

provisioning, managing, or scaling the
infrastructure. This abstraction simplifies
development, reduces operational overhead, and
accelerates time-to-market for applications.
5. Vendor-Specific Implementations: Major
cloud providers such as Amazon Web Services
(AWS) Lambda, Google Cloud Functions,
Microsoft Azure Functions, and IBM Cloud
Functions offer their own FaaS platforms with
similar but vendor-specific features and
capabilities. Each platform provides integration
with other cloud services and tools, allowing
developers to build sophisticated serverless
applications.

6. Use Cases: FaaS is well-suited for a wide
range of use cases, including web and mobile
backends, data processing pipelines, real-time
analytics, IoT (Internet of Things) applications,
chatbots, and event-driven architectures.

KEY FEATURES IN EVENT-DRIVEN
APPLICATIONS
1. Event-Driven Architecture (EDA):
Event-driven applications are built on the
principle of reacting to events or triggers. These
events could be user actions, system events, or
messages from other services. FaaS fits well
with this architecture because functions can be
triggered by events.
2.Trigger Mechanisms:
FaaS platforms offer various trigger
mechanisms to initiate function executions.
Common triggers include HTTP requests,
database changes (such as inserts, updates, or
deletions), file uploads, message queue events,
and timer-based triggers.
3.Scalability:
One of the key benefits of using FaaS for event-
driven applications is automatic scalability.
Functions are only invoked when triggered, and
the FaaS platform handles the scaling of
resources based on the incoming workload. This
ensures that applications can handle fluctuations
in traffic efficiently.
4.Cost Efficiency:
With FaaS, users only pay for the compute
resources consumed during function execution.
Since functions are short-lived and only run in
response to events, users can achieve cost
savings compared to traditional server-based
architectures where resources are provisioned
and maintained continuously.

5. Decoupled Components:
FaaS encourages the development of loosely
coupled and independent functions, each
responsible for a specific task or event handling.
This modular approach simplifies development,
maintenance, and scaling of event-driven
applications.

6. Use Cases:
Event-driven applications powered by FaaS are
suitable for various scenarios including real-
time data processing, IoT (Internet of Things)
applications, microservices architectures,
webhooks, and event sourcing systems.

USE CASES FOR EVENT DRIVEN
APPLICATIONS
1. Real-Time Data Processing:
In an e-commerce platform, FaaS functions can
process user transactions in real-time.When a
user completes a purchase, an event triggers a
FaaS function, which validates the transaction,
updates inventory levels, sends order
confirmation emails, and updates analytics
dashboards.Real-time data processing enables
immediate response to user actions, ensuring
accurate inventory management, timely
notifications, and up-to-date analytics for
business insights.
2. Scheduled Tasks and Cron Jobs:
A media streaming service needs to generate
daily recommendations for users based on
viewing history.Scheduled FaaS functions
execute daily to analyze user behavior, update
recommendation models, and generate
personalized content
recommendations.Scheduled tasks automate
repetitive processes, ensuring timely updates
and personalized experiences for users without
manual intervention.
3. Webhooks and External Integrations:
An online tickting platform integrates with
payment gateways to process ticket
purchases.Webhook events from payment
gateways trigger FaaS functions, which verify
payment status, update ticket inventory,
generate tickets, and notify users.FaaS enables
seamless integration with external services,
allowing the application to respond to external
events and maintain consistency across systems.
4.IoT Device Integration:
A smart home system processes sensor data
from IoT devices to automate home controls.
IoT sensor events trigger FaaS functions to

 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-11, ISSUE-2, 2024

33

analyze data, detect anomalies (e.g., sudden
temperature changes), adjust thermostat
settings, and notify homeowners. FaaS enables
real-time processing of IoT data, enabling
automated responses and proactive notifications
for improved safety, comfort, and energy
efficiency.
5.File and Data Processing:
A document management system processes
uploaded files for indexing and search.File
upload events trigger FaaS functions, which
extract text, analyze content, extract metadata,
and index documents for search. FaaS
simplifies file processing workflows, allowing
applications to efficiently handle large volumes
of data without managing complex
infrastructure.
6. Chatbots and Conversational Interfaces:
A customer support chatbot responds to user
inquiries and resolves issues.User messages
trigger FaaS functions, which analyze intents,
retrieve information from knowledge bases, and
provide relevant responses. FaaS enables
scalable and responsive chatbot interactions,
improving customer satisfaction and reducing
support overhead.
7. Event-Driven Microservices:
A microservices-based e-commerce platform
processes orders, inventory, and payments.FaaS
functions represent individual microservices,
communicating via events to process orders,
update inventory, and handle payments.FaaS
simplifies microservices architectures, enabling
independent development, deployment, and
scaling of individual services based on demand.
These use cases demonstrate how FaaS can be
leveraged in event-driven applications to
streamline processes, integrate with external
systems, automate tasks, and deliver real-time
insights and experiences to users.

CHALLENGES
While Function as a Service (FaaS) offers many
benefits for event-driven applications, it also
comes with its set of challenges:
1. Cold Start Latency:FaaS platforms may
experience cold start latency, where the initial
invocation of a function takes longer due to the
need to provision resources. This latency can
impact response times for time-sensitive
applications, particularly those requiring real-
time processing.
2. Limited Execution Time: FaaS platforms
impose limits on the maximum execution time

for functions, typically ranging from a few
seconds to several minutes. Long-running tasks
may exceed these limits, requiring developers to
partition workloads or implement mechanisms
for task continuation and state management.
3. State Management: FaaS functions are
inherently stateless, meaning they do not
maintain state between invocations. Managing
state across multiple function invocations can
be challenging, especially for workflows
requiring context or continuity between events.
4. Event Consistency and Ordering: Ensuring
event consistency and ordering across
distributed systems can be complex in event-
driven architectures. FaaS platforms may not
guarantee the order of event delivery or provide
mechanisms for event replay, requiring
developers to implement custom solutions for
event processing and synchronization.
5. Debugging and Monitoring: Debugging and
monitoring distributed event-driven applications
can be challenging due to the ephemeral nature
of functions and the distributed nature of event
streams. Developers may face difficulties in
tracing and diagnosing issues across multiple
functions, services, and event sources.
6. Vendor Lock-In: Adopting FaaS platforms
may result in vendor lock-in, as each provider
offers proprietary features, integrations, and
pricing models. Migrating applications between
FaaS providers may require significant effort
and may not be seamless due to platform-
specific dependencies and limitations.
7. Resource Limits and Scalability: FaaS
platforms impose resource limits on the number
of concurrent executions, memory, and CPU
allocated to functions. Applications
experiencing sudden spikes in traffic or
processing load may encounter resource
constraints, impacting performance and
scalability.
8. Security and Compliance:Security
considerations such as data privacy, access
controls, and compliance requirements must be
carefully addressed in event-driven
applications. FaaS platforms may introduce
security risks related to function isolation, data
protection, and unauthorized access to
resources.
9. Integration Complexity: Integrating FaaS
functions with existing systems, services, and
workflows can be complex, particularly in
hybrid or multi-cloud environments.
Compatibility issues, protocol mismatches, and

 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-11, ISSUE-2, 2024

34

interoperability challenges may arise when
integrating with external APIs, databases, or
legacy systems.
10. Operational Overhead: While FaaS
abstracts away infrastructure management, it
introduces new operational challenges related to
deployment, monitoring, logging, and
configuration management. DevOps practices
and tooling may need to evolve to
accommodate the unique characteristics of
event-driven serverless architectures.

CONCLUSION
Addressing these challenges requires careful
consideration of architectural design,
implementation best practices, and the selection
of appropriate tools and technologies to build
resilient, scalable, and efficient event-driven
applications using FaaS.

REFERENCES
1. Davenport, T. H., &Ronanki, R. (2015).
"Analytics 3.0." Harvard Business Review,
93(12), 64-72.
2. Kellerman, B. (2015). "The Cloud Comes of
Age." McKinsey Quarterly, 4.
3. Mueller, B., Hadjidimitriou, S., & Haas, Q.
(2015). "The Emergence of 5G: Evolution or
Revolution?" IEEE Communications Magazine,
53(2), 52-58.
4. Marr, B. (2015). "Big Data: The Key
Emerging Technology." Forbes, 3(14).
5. Yu, H., Wen, Y., & Hu, W. (2015). "Toward
Low-Latency Internet Content Delivery to
Mobile Users."IEEE Internet Computing, 19(4),
24-32.
6. Hasselbring, W., & Waller, J. (2015).
"Research in Software Engineering at German
Universities." IEEE Software, 32(6), 87-94.
7. Lee, J., Bagheri, B., & Kao, H. A. (2015). "A
Cyber-Physical Systems Architecture for
Industry 4.0-Based Manufacturing Systems."
Manufacturing Letters, 3, 18-23.
8. Verma, D. C. (2015). "Next-Generation
Cloud Computing: New Trends and Research
Directions." Journal of Grid Computing, 13(4),
437-444.
9. Narayanan, S., &Irani, L. (2015). "The Future
of Cryptocurrencies: Bitcoin and Beyond."IEEE
Transactions on Dependable and Secure
Computing, 12(4), 1-1.
10. Mukherjee, S., & Sharma, S. K. (2015).
"Green Computing: A Sustainable Way of
Computing - A Review." Engineering Science

and Technology, an International Journal, 18(1),
1-7.
11. Elgendy, N., Elmougy, A., &Shahin, M.
(2015). "A Survey of Data Mining Techniques
for Social Network Analysis." Journal of King
Saud University - Computer and Information
Sciences, 27(1), 3-28.
12. Zhang, S., Zhang, S., Chen, X., Hu, J.,
Wang, H., & Wen, Y. (2015). "Vehicular Cyber-
Physical Systems for Intelligent Transportation
Systems: Challenges and Opportunities." IEEE
Transactions on Vehicular Technology, 64(12),
5348-5365.
13. Sundmaeker, H., Guillemin, P., Friess, P.,
&Woelfflé, S. (2015). "Vision and Challenges
for Realising the Internet of Things." Cluster of
European Research Projects on the Internet of
Things.
14. Nucci, A., &Gorgoglione, M. (2015). "A
Survey of Social Media Analysis: Techniques,
Tools, and Platforms." AI Communications,
28(4), 609-627.
15. Jabeen, F., Zafar, F., &Qamar, U. (2015).
"Wireless Sensor Networks: A Survey." Journal
of Computer Networks and Communications, 1-
19.
16. Abdollahpouri, H., & Hussain, O. K. (2015).
"A Survey of Distributed Data Stream
Processing Systems." ACM Computing Surveys
(CSUR), 47(4), 1-36.
17. Roman, R., Najera, P., & Lopez, J. (2015).
"Securing the Internet of Things." Computer,
48(9), 51-58.
18. Ganz, A., Langendorfer, P., &Fettweis, G. P.
(2015). "Low Latency Ultra-Reliable
Communication in Factory Automation
Scenarios." IEEE Transactions on Industrial
Informatics, 11(6), 1542-1550.

19. Hammad, M. A., Hussain, O. K., & Faye, I.
(2015). "A Survey on Energy-Efficient Routing
Techniques with QoS Assurances for Wireless
Multimedia Sensor Networks." Sensors, 15(8),
19394-19420.
20. Mourtzis, D., &Doukas, M. (2015).
"Developing Cloud-Based Predictive
Maintenance Services Through Big Data."
Procedia CIRP, 32, 159-164.
21. Misra, S., &Mondal, A. (2015). "Cyber
Physical Systems: A Survey." In 2015 IEEE 1st
International Conference on Cyber-Physical
Systems, Networks, and Applications (CPSNA)
(pp. 1-5).IEEE.

 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-11, ISSUE-2, 2024

35

22. Khedr, A., Ali, H., & Ali, A. A. (2015). "A
Survey of Security in Wireless Sensor
Networks."In 2015 12th International
Conference on Computer Engineering and
Systems (ICCES) (pp. 125-130).IEEE.
23. Wang, C., Leung, V. C., & Han, S. (2015).
"A Survey of Application-Layer Multicast
Protocols for Mobile Ad Hoc Networks."
Journal of Computer Networks and
Communications, 1-11.
24. Ma, X., Dai, H. N., Qiu, M., & Zhang, Z.
(2015). "A Survey of Fog Computing." In 2015
Second International Conference on Computer
Science and Mechanical Automation (pp. 122-
125). IEEE.
25. Iera, A., Molinaro, A., & Ruggeri, G.
(2015). "The Internet of Things: 20th
Tyrrhenian Workshop on Digital
Communications." Springer.

	N.Deepa, Assistant Professor, Department of IT, Kongunadu Arts and Science College, Coimbatore, Tamilnadu, India. Email: deepanarayanasamy11@gmail.com.

