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Abstract— Neuroscience-inspired AI 
integrates principles of synaptic plasticity 
into adaptive algorithms. 
Neuroscience-inspired AI has garnered 
significant attention for its ability to emulate 
the brain's remarkable adaptability through 
synaptic plasticity. Synaptic plasticity, the 
mechanism by which neuronal connections 
strengthen or weaken in response to activity, 
serves as a foundational principle for 
developing adaptive algorithms in artificial 
neural networks. The interconnection of AI 
and neuroscience is a fascinating one, with 
tremendous work going on in this field across 
the globe. The synergy between AI and 
neuroscience helps in fostering research and 
advancements in the field of cognitive science, 
which thereby leads to the creation of finer, 
better algorithms that help in emulating the 
brain’s adaptability. These two fields, when 
combined, play a crucial role in helping 
machines understand, learn, and adapt to 
dynamic environments. In this article, I have 
dived deep into the concept of neuro-inspired 
adaptive algorithms, which in simple terms 
can be described as smart tools that learn 
from experience. Based on the learnings from 
these experiences, they adapt to new 
situations, leading to the improvisation of AI 
systems. In this paper, I have tried to answer 
questions like what is synaptic plasticity? 
What are adaptive algorithms? How does 
synaptic plasticity inspired from the 
biological brain influence the architecture of 
adaptive algorithms? Which adaptive 
algorithms does AI incorporate? How can 
neuroplasticity be bridged with AI? Which 

common principles connect them both? I 
have first tried to explain the neurobiological 
structure of plasticity as well as its types. 
Then, I have described the 
neuroscience-inspired adaptive algorithms. 
And finally, I have put forward the common 
concepts that link them. 
Index Terms—Synaptic Plasticity, Adaptive 
Algorithms, Artificial Intelligence, 
Brain-Computer Interfaces, Learning,   
Memory  

I. INTRODUCTION 
  Both the fascinating fields of neuroscience and 
AI are known to be intertwined in nature, 
marked by a high degree of interconnection, thus 
resulting in a field called neurally inspired AI. 
This interconnection has resulted from the 
mutual understanding and influence that each 
field provides to the other. Albeit form different 
perspectives, both the fields are focused on 
understanding and replicating intelligent 
behavior.  

A. Neuro-inspired AI 
AI systems take inspiration and seek 

validation [1] from neuroscience to come up 
with better algorithms and architecture, for 
creating more biologically plausible models. 

There are several ways AI draws inspiration 
form neuroscience: 

1. Neural networks: the structure and 
functioning of ANN is directly inspired by 
biological neural networks in the brain [3]. 

2. BCI: BCIs or BMIs, which aim to establish 
links between brain and external devices, 
make the use of AI algorithms for 
interpreting neural signals and translating 
them into commands for controlling 
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devices, prosthetics, and even virtual 
environments [2]. 

3. Attentional, learning and memory 
mechanisms: while processing complex 
stimuli, the human brain can selectively 
prioritize relevant information; this has 
applications in image recognition and NLP. 
There are several AI learning processes 
that have been inspired from the learning 
processes observed in the brain, such as 
unsupervised learning, supervised learning, 
and reinforcement learning.  Synaptic 
plasticity, short- and long-term memory 
architectures, and memory consolidation 
mechanisms provide inspiration for the 
design of AI memory systems. 

4. Embodied AI: this concept involves 
integrating AI systems with robotic bodies 
by drawing inspiration from the way 
humans and animals interact with their 
environments [4]. 

Biological plausibility, a concept which is 
closely tied to seeking validation from the 
human brain, involves creating AI systems that 
replicate the processes exhibited by the 
biological brain, and operate in a manner 
consistent with a healthy human brain. If we are 
to create AI systems for the brain, it’s important 
that they are biologically plausible [8]. 
Synaptic plasticity, the dynamic adjustment of 
the strength and efficacy of connections between 
neurons in the biological brain, provides a 
compelling blueprint for adaptive algorithms in 
artificial systems. Mimicking the principles of 
synaptic plasticity allows algorithms to learn and 
adapt based on experience, much like the way 
the brain refines its connections through learning 
and memory processes. In adaptive algorithms 
inspired by synaptic plasticity, connections are 
reinforced or weakened based on the input 
patterns they encounter, enabling the system to 
optimize its performance over time. This 
adaptability facilitates efficient information 
processing, learning from new data, and the 
ability to respond effectively to changing 
environments, making synaptic plasticity a 
valuable inspiration for the development of 
sophisticated and flexible artificial intelligence 
systems. This remarkable ability to adapt, learn 
and reorganize itself is said to influence future 
behavior and thoughts. It plays an extremely 
critical role in learning and memory mechanisms 

in biological brains and has heavily influenced 
the design of AI algorithms [1], [5], [6].  

B. Synaptic plasticity’s role in adaptive 
learning 
Adaptive learning, in the context of the 

biological brain, refers to the ability of the brain 
to modify its structure and function based on 
experience, allowing an organism to adjust and 
improve its behaviour in response to changing 
environmental demands. Key aspects of 
neuroplasticity involve role in learning, 
memory, and recovery from injury, which will 
be explored in the upcoming sections. 

In this paper, I have put forward the concept 
that synaptic plasticity can be used as a blueprint 
for adaptive algorithms, by exploring- 

1. Neuroplasticity in biological brain in the 
second section. 

2. Neuroplasticity-inspired adaptive AI 
algorithms in the third section. 

3. Common principles that link synaptic 
plasticity and AI in the fourth section. 

The fifth section contains conclusions. And 
finally, in the sixth section, covers future scope. 
In this review, I will try to answer questions like 
what is synaptic plasticity? How does synaptic 
plasticity inspired from the biological brain 
influence the architecture of adaptive 
algorithms? Which adaptive algorithms does AI 
incorporate? How can neuroplasticity be bridged 
with AI and which common principles connect 
them both?  

II. NEUROPLASTICITY IN THE 
BIOLOGICAL BRAIN 

Neuroplasticity plays a crucial role in adaptive 
learning by providing the biological foundation 
for the brain's ability to reorganize itself in 
response to experiences, stimuli, and learning. 
The primary mechanism through which adaptive 
learning occurs in the biological brain is synaptic 
plasticity. Synapses, which are the connections 
between neurons, change in strength and 
efficacy in response to patterns of neural 
activity. There are two main forms of 
neuroplasticity: 

1. Long-term Potentiation (LTP): This is a 
process by which repeated and persistent 
stimulation of a synapse leads to an 
increase in its strength. It involves the 
strengthening of the connections between 
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neurons, making the transmission of 
signals more efficient [1]. 

2. Long-term Depression (LTD): In contrast, 
LTD involves the weakening of synaptic 
connections due to low-frequency or less 
persistent neural activity. This process is 
crucial for refining neural circuits and 
eliminating unnecessary connections [1]. 

Adaptive learning, in the context of 
neuroplasticity, involves changes at both the 
structural and functional levels of the brain. 
Structural plasticity involves physical changes in 
the brain's structure, including the formation of 
new synapses (synaptogenesis) or the 
elimination of existing ones (synaptic pruning). 
Neurogenesis, the birth of new neurons, occurs 
in certain regions of the brain, such as the 
hippocampus, throughout life. On the other 
hand, Functional plasticity refers to changes in 
the function of existing neural circuits. It 
includes modifications in synaptic strength, as 
seen in synaptic plasticity, and alterations in the 
patterns of neural activity. Functional plasticity 
allows the brain to adapt to changing demands, 
redistribute tasks among different regions, and 
compensate for damage or loss of function [7]. 

In our brain, neurons have a cover called 
myelin sheath which helps messages travel 
faster. Myelination relates to memory because it 
enhances the efficiency of communication 
between neurons in the brain. When you learn 
something new or form a memory, the process of 
myelination strengthens the connections 
between neurons by adding protective covers 
(myelin sheaths) to their communication 
pathways. This myelination helps signals travel 
faster and more effectively, contributing to the 
encoding, consolidation, and retrieval of 
memories [10]. 

In 1973, Bliss and Lomo discovered a specific 
type of synaptic strengthening called long-term 
potentiation (LTP) in the hippocampus, a brain 
region important for making various kinds of 
memories. This finding showed that certain 
neurons can change their connections based on 
activity, supporting the idea that synaptic 
strengthening is crucial for memory formation 
[9].  

A. The role played by synaptic plasticity in 
learning and memory 
The role played by neuroplasticity in learning 

and memory is indispensable. It is fundamental 

for shaping the neural circuits responsible for 
acquiring, storing, and retrieving information, 
according to [10], [6], [1], [22], and [23]. 

B. Formation of Memories 
Long-Term Potentiation (LTP): During 

learning, repeated and persistent stimulation of a 
synapse can lead to the strengthening of that 
connection, a process known as long-term 
potentiation (LTP). This strengthened synaptic 
connection is associated with the encoding of 
memories, contributing to the formation of 
long-term memories. 

C. Adaptation to Experience 
Experience-Dependent Plasticity: Plasticity 

allows the brain to adapt to experiences. For 
example, in sensory areas of the brain, exposure 
to new stimuli can lead to changes in synaptic 
connections, enhancing the processing of 
relevant information. This adaptability is crucial 
for learning from the environment. 

D. Memory Consolidation 
Sleep-Dependent Plasticity: During sleep, the 

brain undergoes processes of synaptic 
downscaling and memory consolidation. 
Plasticity mechanisms play a role in stabilizing 
and strengthening the memories acquired during 
wakefulness, ensuring their integration into 
long-term storage. 

E. Neural Network Rewiring 
Structural Plasticity: Plasticity is not only 

about strengthening or weakening existing 
connections but also involves structural changes. 
Structural plasticity allows for the formation of 
new synapses and the elimination of unnecessary 
ones, contributing to the rewiring of neural 
networks that underlie learning and memory. 

F. Pattern Recognition 
Hebbian Plasticity: The Hebbian principle, 

often summarized as "cells that fire together wire 
together," captures the essence of synaptic 
plasticity in learning. When two neurons are 
activated simultaneously, their synaptic 
connection tends to strengthen, facilitating the 
recognition of patterns and associations in 
information processing. 

G. Spatial Memory and Navigation 
Place Cells in the Hippocampus:  In the 

hippocampus, a brain region crucial for spatial 
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memory, plasticity mechanisms contribute to the 
formation of "place cells." These neurons 
develop specific firing patterns associated with 
locations, aiding in spatial navigation and 
memory of environments. 

III. NEURO-INSPIRED ADAPTIVE AI 
ALGORITHMS 

Role played by neuroplasticity in influencing 
the architecture of adaptive algorithms: 

Firstly, as explained above, it enables learning 
by adjusting the strength of connections between 
neurons. Similarly, in adaptive algorithms, this 
concept is emulated to allow the system to learn 
from data and adapt to changing conditions. 
Secondly, in neural network models inspired by 
synaptic plasticity, the connections between 
artificial neurons have adjustable weights. These 
weights are modified during the learning process 
based on the input data and desired outputs, 
similar to how synapses are strengthened or 
weakened in the biological brain [3]. Synaptic 
plasticity is often associated with unsupervised 
learning, where the algorithm learns from 
patterns in the input data without explicit labels. 
Adaptive algorithms draw from this concept to 
autonomously discover and adapt to patterns in 
the data [11]. Some adaptive algorithms, such as 
spiking neural networks (SNNs), are directly 
inspired by the spiking behaviour of neurons and 
the temporal aspects of synaptic plasticity. SNNs 
leverage the timing of spikes to capture 
information, allowing for more biologically 
realistic learning [12]. Synaptic plasticity 
contributes to memory formation in the 
biological brain. In adaptive algorithms, the 
learned patterns serve as a form of memory, 
enabling the system to recall and apply 
knowledge in new situations [9]. The 
organization of neural connections based on 
synaptic plasticity principles contributes to the 
efficient processing of information in the brain. 
Adaptive algorithms leverage similar principles 
to optimize their architecture for effective 
information processing and pattern recognition 
[14]. 

By mimicking the brain's neural architecture 
and functionality, neuro-inspired AI algorithms 
seek to enhance the efficiency, flexibility, and 
adaptability of artificial intelligence systems, 
offering innovative solutions for complex tasks 
such as pattern recognition, decision-making, 

and autonomous learning. Let us have a look at 
the details of the adaptive algorithms 
corresponding to the ways mentioned above. 

1. Learning and adaptation (Adagrad, Adam): 
These algorithms dynamically adjust 
learning rates during training, mimicking 
the brain's ability to adapt its learning 
based on the complexity and 
characteristics of the task at hand [14]. 

2. Connection weights (Backpropagation with 
Gradient Descent (e.g., Multilayer 
Perceptrons)): according to [15], 
backpropagation with Gradient Descent, 
like Multilayer Perceptrons, is like a 
learning process where the algorithm 
adjusts its understanding by repeatedly 
checking and correcting its mistakes, 
allowing it to get better at tasks such as 
recognizing patterns or making 
predictions. 

3. Unsupervised learning (Self-Organizing 
Maps, Hebbian Learning, ART): Drawing 
inspiration from the brain's ability to 
organize spatial information, SOMs are 
unsupervised learning algorithms that 
create a low-dimensional representation of 
input data, facilitating clustering and 
pattern recognition [16]. Adaptive 
Resonance Theory (ART) is a family of 
neural network models that incorporate 
mechanisms for unsupervised learning and 
pattern recognition. It includes algorithms 
like ART1 and ART2, which use 
competitive learning and synaptic 
plasticity-like mechanisms to dynamically 
adjust their response to new input patterns 
while maintaining stability [28]. 

4. Spinking Neural Networks (SNN): Inspired 
by the spiking behaviour of neurons, SNNs 
model neural activity more closely to the 
biological brain. They use spikes in 
information processing and are well-suited 
for tasks involving temporal dynamics 
[12]. Spike-Timing-Dependent-Plasticity 
(STDP) is a biologically motivated 
learning rule where the changes in synaptic 
strength depend on the timing of spikes in 
the pre-synaptic and post-synaptic 
neurons. This type of plasticity is often 
used in spiking neural networks to capture 
the temporal aspects of neural activity 
[18]. 
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5. Memory and recall (Neural Turing 
Machine): According to [17], NTMs 
integrate memory-augmented 
architectures, resembling the brain's ability 
to store and retrieve information. They are 
adept at tasks that involve learning and 
reasoning over structured data. NTMs are 
employed in scenarios that demand 
memory-augmented architectures, such as 
complex learning and reasoning tasks, 
algorithmic problem-solving, and 
sequential pattern recognition. 

6. Efficient information processing: Liquid 
State Machines (LSM) mimic the brain's 
liquid-like connectivity, allowing for 
dynamic information processing and 
pattern recognition in a highly efficient 
manner [13]. 

IV. BRAIN-COMPUTER INTERFACES 
Brain-Computer Interfaces (BCIs) and 

synaptic plasticity represent a captivating 
intersection in neuroscience and technology. 
BCIs aim to establish direct communication 
pathways between the brain and external 
devices, enabling control or communication 
without relying on traditional peripheral 
pathways. Synaptic plasticity, on the other hand, 
is the brain's remarkable ability to adapt and 
reorganize its neural connections based on 
experience and activity. The synergy between 
BCIs and synaptic plasticity holds promise for 
enhancing BCI performance and usability. As 
BCIs interface with the brain's neural circuits, 
understanding and leveraging synaptic plasticity 
can aid in the development of more adaptive and 
efficient BCI systems. This could involve 
optimizing neurofeedback strategies, designing 
BCI interventions that harness neuroplastic 
processes for skill acquisition, or developing 
closed-loop systems that dynamically adjust 
based on the brain's changing connectivity. 
While research in this domain is ongoing, the 
integration of BCI technology with the 
principles of synaptic plasticity opens avenues 
for creating more responsive, personalized, and 
effective brain-machine interfaces [23][24]. 

Brain-Computer Interfaces (BCIs) and 
adaptive algorithms combine the power of 
neuroscience and machine learning to create 
intelligent systems that respond to users' brain 
signals in real-time. BCIs allow users to interact 

with computers or devices using their thoughts, 
while adaptive algorithms continuously learn 
from these brain signals to improve performance 
and adapt to users' changing needs. This synergy 
holds promise for developing more intuitive and 
efficient BCIs that can adapt to individual users' 
preferences and capabilities over time [23], [25]. 

Adaptive classification methods, including 
supervised, unsupervised, and deep learning 
approaches, play a pivotal role in the 
development of EEG-based Brain-Computer 
Interfaces (BCIs). In the supervised context, 
algorithms like Support Vector Machines 
(SVM) and Convolutional Neural Networks 
(CNNs) learn to recognize specific patterns in 
EEG signals with labelled training data, enabling 
accurate classification of brain states. 
Unsupervised methods, such as clustering 
algorithms like k-means, contribute to BCI 
adaptability by categorizing EEG data without 
predefined labels, allowing for the identification 
of underlying patterns and dynamics. Deep 
learning techniques, including recurrent neural 
networks (RNNs) and long short-term memory 
(LSTM) networks, excel in capturing intricate 
temporal dependencies within EEG signals, 
enhancing BCI performance in tasks involving 
sequential information. This multi-faceted 
approach to adaptive classification ensures the 
versatility and effectiveness of EEG-based BCIs 
across various applications [26], [27]. 

V. COMMON PRINCIPLES THAT LINK 
SYNAPTIC PLASTICITY AND AI 

Neuroplasticity, adaptive algorithms, AI, and 
BCIs share a symbiotic relationship, with the 
brain's adaptability influencing technology 
development, while advanced algorithms and 
interfaces reciprocally impact neuroplastic 
processes. This mutual interdependence fuels 
progress in intelligent systems, personalized 
therapies, and cutting-edge human-machine 
interactions. Let us have a look at the common 
principles that connect them: 

1. Adaptability: All these fields are centered 
around the concept of adaptability. 
Neuroplasticity reflects the brain's inherent 
ability to adapt and reorganize. Adaptive 
algorithms, AI systems, and BCIs leverage 
this adaptability to improve performance, 
learning, and interaction with technology. 

2. Learning mechanisms: A fundamental 



      
INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR) 

 
ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-11, ISSUE-9, 2024 

DOI: 10.21276/ijcesr.2024.11.9.15 
98 

 

principle shared among these topics is 
learning. Neuroplasticity involves the 
brain's capacity to learn and modify its 
connections. Adaptive algorithms in AI 
and BCIs emulate learning processes, 
enhancing their ability to adapt to new 
information and optimize performance. 

3. Personalization: The emphasis on 
personalization is a key principle. 
Neuroplasticity-driven adaptability allows 
for personalized responses in the brain, 
and this principle extends to adaptive 
algorithms, AI systems, and BCIs, aiming 
to tailor experiences and interventions to 
individual characteristics and needs. 

4. Real-time adaptation: Real-time adaptation 
is a shared principle, reflecting the 
dynamic nature of neuroplasticity and the 
need for immediate adjustments in 
adaptive algorithms, AI responses, and 
BCI interactions. This ensures timely and 
relevant responses to changing conditions. 

5. Feedback loops: Feedback loops play a 
crucial role in refining and improving 
performance. Neuroplasticity involves 
feedback mechanisms in the brain, and 
adaptive algorithms, AI systems, and BCIs 
utilize feedback loops for continuous 
learning and adjustment. 

These shared principles underscore the 
interconnected nature of neuroplasticity, 
adaptive algorithms, AI, and BCIs, driving 
advancements that hold the potential to 
transform how we understand and interact with 
both our brains and technology [6], [19], and 
[20]. 

VI. CONCLUSION 
Neuro-inspired AI, a concept mimicking the 

adaptability of the human brain, utilizes adaptive 
algorithms and synaptic plasticity to create 
intelligent systems that learn and evolve with 
input data. Analogous to how our brains form 
and reshape connections through experience, 
these algorithms within neuro-inspired AI 
promise to optimize machine learning systems. 
The principle of neuroplasticity, inherent in the 
biological brain, finds application in 
neuro-inspired AI algorithms, signifying their 
capacity to reorganize and adapt in response to 
learning and experience. 

It profoundly influences how we learn and 
remember things by acting as a guiding 

principle, shaping adaptive algorithms to 
recognize patterns, adjust responses, and evolve 
over time. 

Brain-Computer Interfaces (BCIs), at the 
forefront of technology and neuroscience 
convergence, play a crucial role in this synergy. 
By infusing BCIs with principles derived from 
neuroplasticity, developers aspire to create more 
adaptive interfaces capable of resonating with 
the dynamic neural states of users, thereby 
enhancing efficiency and user experience. This 
integration is further amplified by adaptive 
classification methods, including supervised, 
unsupervised, and deep learning techniques. In 
EEG-based BCIs, these adaptive classifiers 
discern intricate patterns in brain signals, 
categorize data, and capture temporal 
dependencies, advancing the development of 
more responsive and personalized 
brain-machine interactions. 

In summary, the amalgamation of 
neuro-inspired principles with advanced 
technology enhances our understanding of the 
brain and propels the creation of intelligent 
systems that learn, adapt, and optimize 
interactions with changing neural processes.                                           

VII. FUTURE SCOPE 
My future research interest is exploring how 

our brain's adaptability (neuroplasticity) can 
inspire better adaptive algorithms, artificial 
intelligence, and brain-computer interfaces 
(BCIs). I aim to contribute to developing 
personalized therapies and smarter technologies, 
envisioning a future where our brains and 
technology work together seamlessly for 
improved well-being and cognitive abilities. 
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