

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-2, ISSUE-11, 2015

50


Abstract— NFS-GANESHA is an NFS
version 2-4 server that runs in the user
address space instead of as part of the
operating system kernel. GANESHA is not a
replacement for the NFSv4 server
implemented in the kernel; it is a brand new
program, with its own advantages and
disadvantages. Using the NFS protocol in user
mode provides huge benefits like allocating
large pieces of memory, making internal
caches , portability etc . Inspite of having so
many benefits NFS GANESHA server is still
a single point of failure in a network. Should
a server fail , all the clients serviced by the
server are denied service leading to huge
losses . This paper proposes a clustering
support for existing NFS GANESHA server .
We propose to provide communication links
between existing servers and transform them
into a cluster such that each node is aware
about the working of all other nodes . If a node
fails, control is rapidly transferred to another
node in transparent manner so that the client
does not face any hindrance .

Index Terms— CTDB , Clustering ,
Distributed File System , NFS-GANESHA ,
Samba ,VFS

I. INTRODUCTION

 Network File System (NFS) is a distributed file
system protocol originally developed by Sun
Microsystems in 1984[1] , allowing a user on a
client computer to access files over a network
much like how a local storage is accessed. NFS
is a client/server application that lets a computer
user view and optionally store and update file on
a remote computer as though they were on the
user's own computer. This file access is
completely transparent to the client, and works
across a variety of server and host architectures.
The user's system acts as a NFS client while the
system from where data is to be accessed or
manipulated acts as the NFS server. Both of them
require that you also have TCP/IP installed since
the NFS server and client use TCP/IP as the
program that sends and updates the files back and
forth.
When someone accesses a file over NFS, the
kernel places an RPC call to nfsd (the NFS
daemon) on the server machine. This call takes
the file handle, the name of the file to be
accessed, and the user's user and group id as
parameters. These are used in determining access
rights to the specified file. In order to prevent
unauthorized users from reading or modifying
files, user and group ids must be the same on both
hosts. On most implementations, the NFS

DEVELOPING AND INTEGRATING A CLUSTERING PLUGIN
FOR NFS-GANESHA

 1Rohan Koul , 2Ashutosh Bhadoria , 3Sukhada Bhingarkar, 4Nikhil Ajgaonkar ,
 5Aditya Kamath

 1,2,4,5B.E Student, 3Assistant Professor
Department of Computer Engineering

MIT College of Engineering , Pune
Email:1rohansainath@gmail.com , 2ashu.f1117@gmail.com,

3sukhada.bhingarkar@mitcoe.edu.in, 4nikhilnma@gmail.com, 5adikamath.99@gmail.com

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-2, ISSUE-11, 2015

51

functionality of both client and server are
implemented as kernel-level daemons that are
started from user space at system boot. These are
the NFS daemon (nfsd) on the server host, and
the Block I/O Daemon (biod) running on the
client host.

Currently NFS server is implemented in the
kernel space as opposed to a userspace
application. Implementing NFS server in kernel
space gives a boost to performance as well as
interoperability. In general, a kernel server's
strengths are closer integration with the vfs and
the exported filesystem. We can make up for that
by providing more kernel interfaces (such as the
filehandle system calls), but that's not easy. On
the other hand, some of the filesystems people
want to export these days (like gluster) actually
live mainly in userspace. Those can be exported
by the kernel nfsd using FUSE but again
extensions to the FUSE[2] interfaces may be
required for newer features, and there may be
performance issues. Due to above reasons the
kernel-space NFS server is preferred over the
user-space one.

NFS-GANESHA is a NFS version 2-4 server
that runs in the user address space instead of as
part of the operating system kernel. Filesystem in
Userspace (FUSE) lets you run a filesystem in
the user address space instead of as part of the
Linux kernel, but the FUSE support in the Linux
kernel from many Linux distributions does not
allow you to export FUSE through NFS. NFS-
GANESHA lets you expose FUSE through NFS
without patching your kernel. NFS-GANESHA
accesses the underlying data through a File
System Abstraction Layer (FSAL)[3] , allowing
you to plug in your own storage mechanism and
access it from any NFS client. NFS-GANESHA
provides a FUSE-compatible FSAL to allow you
to quickly access a FUSE filesystem over NFS
while avoiding the need for data to bounce
through the kernel FUSE mechanism on the NFS
server. Inspite of all this NFS-GANESHA is still
a single point of failure . Should a server fail , all
the clients connected to it get halted and the
whole network collapses . This paper proposes a

innovative and efficient solution in the form of
an clustering plugin to the existing servers . A
communication link is created amongst existing
servers to form a cluster so that every server is
aware about the working status of all other
servers . Should one of the servers fail control is
transferred to another server within the cluster .
This switching happens in the background
without the client being aware of it . Hence the
client doesnt face any hindrance in work in case
of a node failure .

The paper is organized as follows : Section II
deals with Literature survey of the various
technologies closely related to NFS-GANESHA.
Section III presents a brief description of the
various modules used in GANESHA . Section IV
proposes an innovative design strategy for
providing clustering support to GANESHA .
Section V concludes the paper .

II. LITERATURE SURVEY

NFS protocol has been in existence for a long
time now . Sun used version 1 only for in-house
experimental purposes. When the development
team added substantial changes to NFS version 1
and released it outside of Sun, they decided to
release the new version as v2, so that version
interoperation and RPC version fallback could be
tested [4] . As time passed by further refinements
and additional features were incorporated into
the protocol which led to development of NFSv3
[5] and NFSv4 [6] . Version 3 added support for
64-bit file sizes and offsets, support for
asynchronous writes on the server, additional file
attributes in many replies . Version 4 added
strong security, and introduces a stateful
protocol. Version 4 became the first version
developed with the Internet Engineering Task
Force (IETF) after Sun Microsystems handed
over the development of the NFS protocols. NFS
version 4.1 aims to provide protocol support to
take advantage of clustered server deployments
including the ability to provide scalable parallel
access to files distributed among multiple servers

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-2, ISSUE-11, 2015

52

(pNFS extension). NFS version 4.2 is currently
being developed [7].

A . Samba Server

Samba[8] is important to understand for
understanding of development of protocols in
user-space . Samba server runs on Unix and
Linux/GNU operating systems. Windows clients
can talk to Linux/GNU/Unix systems through
Samba server. It provides the interoperability
between Windows and Linux/Unix systems.
Initially it was created to provide printer sharing
and file sharing mechanisms between
Unix/Linux and Windows. As of now Samba
project is doing much more than just file and
printer sharing like autorization, authentication ,
service announcement etc . Samba server
basically works as a semantic translation
engine/machine. Windows clients talk in
Windows syntax e.g. SMB protocol. And
Unix/Linux/GNU file-systems understand
requests in POSIX. Samba converts Windows
syntax to Unix/GNU syntax and vice versa.
Samba code is very modular in nature. Samba
VFS code is divided in to two parts i.e. Samba
VFS layer and VFS modules. The purpose of
Samba VFS layer is to act as an interface
between Samba server and below layers. When
Samba server get requests from Windows clients
through SMB[9] protocol requests, it passes it to
Samba VFS modules. Samba VFS modules i.e.
plugin is a shared library (.so) and it implements
some or all functions which Samba VFS layer i.e.
interface makes available. Samba VFS modules
can be stacked on each other(if they are designed
to be stacked). Samba VFS layer passes the
request to VFS modules. If the Samba share is
done for a native Linux/Unix file-system, the call
goes to default VFS module. The default VFS
module forwards call to System layer i.e.
operating system. For User space file-system like
GlusterFS, VFS layer calls are implemented
through a VFS module i.e. VFS plugin for
GlusterFS .The plugin redirects the requests (i.e
fops) to GlusterFS[10] APIs i.e. libgfapi. It

implements or maps all VFS layer calls using
libgfapi. Fig.1 is the schematic diagram of how
communication works between different layers.

Figure 1 : Working of SAMBA

The client requests come to Samba server and
Samba servers redirects the calls to GlusterFS’s
VFS plugin through Samba VFS layer. VFS
plugin calls relevant libgfapi fucntions. Libgfapi
acts as a client, contacts glusterd for vol file
information (i.e. information about gluster
volume, translators, involved nodes) , then
forward requests to appropriate glusterfsd i.e.
brick processes where requests actually get
serviced.

Without GlusterFS VFS plugin, we can still
share GlusterFS volume through Samba server.
This can be done through native glusterfs mount
i.e. FUSE (file system in user space). We need to
mount the volume using FUSE i.e .glusterfs
native mount in the same machine where Samba
server is running, then share the mount point
using Samba server. As we are not using the VFS
plugin for GlusterFS here, Samba will treat the
mounted GlusterFS volume as a native file-
system. The default VFS module will be used
and the file-system calls will be sent to operating
system. The flow is same as any native file
system shared through Samba.
B . Filesystem Abstraction Layer :
This abstraction layer enables an operating
system to support different filesystems, even if
they differ greatly in supported features or
behavior. Such a generic interface for any type of
filesystem is feasible only because the kernel

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-2, ISSUE-11, 2015

53

itself implements an abstraction layer around its
low-level filesystem interface. This is possible
because the VFS provides a common file model
that is capable of representing any conceivable
filesystem's general features and behavior. This
abstraction layer enables the kernel to support
many types of filesystems easily and cleanly.
The figure below shows the actual working of
VFS . The clients connected to NFS-GANESHA
can be using different types of filesystems ,
which can be very dissimilar in their nature and
implementation . The FSAL sits on top of the
distributed file system and acts as a translation
engine to make requests to the underlying file
system . This layer performs trasnslation
according to the type of underlying filesystem
protocol . It is a very important part in creating a
portable distributed server .

C . CLUSTER DRC

The NFS reply cache, also known as the
Duplicate Request/Reply Cache (DRC)[11]
helps a server to identify duplicate requests and
avoid repeated processing of non-idempotent
operations. Generally, idempotent operations
can be safely repeated and will cause no harm,
but non-idempotent operations, can only be
executed once. For example exclusive create can
be a success on first attempt,

FIG.2
WORKING OF FSAL
but if the same operation is retried, it will fail
because the file is already created. NFS-Ganesha
maintains a Duplicate Reply Cache in node's
local memory. In a clustered environment, there
are issues because the duplicate reply cache is
not cluster-aware and in the case of recovery or
fail-over, if the NFS request is replayed on
another server, then that server has no knowledge
of the reply cache and may result in incorrect

behavior. This clustered DRC design is based on
“best effort”. It does not make any guarantees
that the all the DRC entries will synced to the
backup node and will be available immediately
after fail-over. It could happen that there are
some DRC entries that never make it to the
backup server before the server fails.

D . CMAL (Cluster Management Abstraction
Layer) :
The CMAL, provides an abstraction layer for
cluster manager support. It is a generic layer that
would interface with different backend cluster
managers. The backend cluster manager will be
a dynamically linked layer. So the CMAL layer
would have function pointers based on the
CMAL that is dynamically linked. The backend
CMAL would interface with the available cluster
manager .
The CMAL has following basic functions
associated with it :
init_cmal : Initialize the CMAL interface. Set up
backup node information.
add_drc_entry(xid, entry) : Stores the DRC
entry in the cluster. This functionality will be
provided by the backend CMAL layer, which
will talk to the available cluster manager.
retrieve_drc_entries(ip_address) : Retrieve all
the DRC entries for a particular sever node.
shutdown_cmal() : Shutdown the CMAL
interface .

III. NFS-GANESHA ARCHITECTURE

GANESHA is designed as a layered product.
Each layer is a module dedicated to a specific
task. Data and meta-data caching, RPC,
SEC_GSS and protocol management,
accessibility to the file system, etc . All these
functionalities are handled by specific modules.
Each module has a well-defined interface . Such
a modular design is good for future code

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-2, ISSUE-11, 2015

54

maintenance. Furthermore, one can write new.
algorithms within a layer leaving the rest of the
source code unchanged . Fig 3 shows the
architecture of GANESHA .

FIG 3 Architecture of NFS-GANESHA

The various modules which are used by
GANESHA are as follows :

A. Managing memory
Memory management is one of the most crucial
task . Almost all modules within GANESHA’s
architecture will have to perform dynamic
memory allocation. For example, a thread
managing a NFS request may need to allocate a
buffer for storing the requested result. If the
regular LibC malloc/free calls are used, there are
risks of fragmenting memory because some
modules will allocate large buffers when others
will use much smaller ones. This could lead to a
situation where part of the memory used by the
program is swapped to disk, and performance
would quickly drop.

For this reason, GANESHA implements its own
memory manager. This module, which is used by
all the other parts of GANESHA, allows each
thread to allocate its own piece of memory at
startup. When a thread needs a buffer, it will look
into this space to find an available chunk of the
correct size. This allocation is managed by the
Buddy Malloc algorithm, the same that is used
by the kernel .

B. Managing the CPU resource :
The second most important resource is CPU

which is easier to manage than memory .
GANESHA ismassively multi-threaded, and will
have dozens of threads at the same time POSIX
calls for managing threads help us a lot here, we
can use them to tell the Linux scheduler not to
manage the pack of threads as a whole, but to
consider each of them separately.[5]. With a
multi-processor machine, such an approach will
allow the workload to “spread across” all of the
CPUs. What is also to be considered is potential
deadlocks. In a multi-threaded environment, it is
logical to have mutexes to protect some
resources from concurrent accesses. But having
bunches of threads is not useful if most of them
are stuck on a bottleneck. Design considerations
were taken into account to avoid this situation.

First, reader/writer locks were preferred to
simple mutexes. Because the behavior of reader/
writer locks may differ from one system to
another, a small library was written to provide
this service (which was a required enhancement
in terms of portability). Second, if threads share
resources, this common pool could turn to a
bottleneck when many threads exist together.
This was avoided by allocating resources per
thread. This consideration has a strong impact on
the threads’ behavior, because there can’t be a
dedicated garbage collector. Each thread has to
perform its own garbage collection and has to
reassemble its resources regularly.

C. The Hash Tables: a core module for
associative addressing :

Associative addressing is a service that is
required by many modules in GANESHA—for
example, finding an inode knowing its parent and
name, or finding the structure related to a NFSv4
client, knowing its client ID. The API for this
kind of service is to be called very often: it has to
be very efficient to enhance the daemon’s global
performance. The choice was made to use an
array of Red- Black Trees[12]. RBTs have an
interesting feature: they re-balance themselves
automatically. after add/update operations and so
stay wellbalanced. RBTs use a computed value,

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-2, ISSUE-11, 2015

55

defined as the RBT value in this document, to
identify a specific contiguous region of the tree.
Bottlenecks could occur if a single RBT is used:
several threads could perform add/update
operations at the same time, causing a conflicting
re-balance simultaneously. It then appears that
RBTs are to be protected by read/writer locks
and this could quickly become a bottleneck.
Working around this issue is not difficult: using
several RBTs (stored in an array) will solve it. If
the number of RBTs used islarge (more than 15
times bigger) that the number of concurrent
threads that can access them, then the robability
of having two of them working on the same tree
becomes pretty small.

D. Huge Cache Management :
GANESHA uses a large piece of memory to
build large caches. Data and meta-data caches
will be the largest caches in GANESHA. Let’s
focus first on the meta-data cache, located in the
Cache Inode Layer. Each of itsentries is
associated with an entry in the namespace (a file,
a symbolic link, or a directory [13]).This entry
is itself associated with a related object in the File
System Abstraction Layer identified by a unique
FSAL handle. The meta-data cache layer will
map in memory the structure it reads from the
FSAL calls, and it tries to keep in memory as
many entries as possible, with their parent-
children dependencies. Meta-data cache use hash
tables intensively to address the entries, using the
FSAL handle to address the entry associatively.
With the current version of GANESHA, a simple
write-through cache policy is implemented.

The data cache is not managed separately: if the
content of a file is stored in data cache, this will
become a characteristic of the meta-data cached
entry. The data cache is then a ‘child cache’ to
the meta-data cache: if a file is datacached, then
it is also meta-data cached. This avoid
incoherencies between this two caches since they
are two sides of the same coin. Contents of the
files which are cached are stored in dedicated
directories in a local file system. A data-cache

entry will correspond to two files in this
directory: the index file and the data file. The
index files contain the basic metadata
information about the file; the most important
one is its FSAL handle. The data file is the actual
data corresponding to the cached file. The index
file is used to rebuild the data-cache, in the event
that the server crashes without cleanly flushing
it: the FSAL Handle willbe read from this file
and then the corresponding meta-data cache
entry will be re-inserted as well, making it point
to the data file for reconstructing the data cached
entry.

IV. PROPOSED

ARCHITECTURE/DESIGN

In the current scenario NFS-GANESHA server
is a single point of failure with no scope of
recovery . This can prove to a problem in a
scenario where a lot of important data is being
accessed and transferred to and from the server
by the clients . If the server breaksdown due to
some reason a lot of important data can be lost .
The entire network will be halted and no fruitful
work can be done until the server is up again .
Currently there is an FSAL layer which sits on
top of the shared file system to process the
requets of the clients . We propose a design to
impart clustering support to the existing NFS –
GANESHA servers . The basic idea is to
establish communication links between a group
of servers to form a cluster . As a result each node
in the cluster will be aware about the status of all
other nodes . Also messages can be sent from one
server to another . Fig 4 shows the basic
architecture of the proposed design .

A. Stackable FSAL
NFS-GANESHA works normally by having a
FSAL sit on top of Distributed file system which
acts as a middle layer to process the requests of
the client . In order to add a clustering plugin we
need to stack multiple FSAL layers on top of
each other . There is a dummy stackable FSAL
called FSAL_NULL in the current version of

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-2, ISSUE-11, 2015

56

NFS-GANESHA which serves no purpose as of
now . We propose to use this design to stack
FSAL_CTDB layer on top of the existing FSAL
layer . The purpose of this layer is to add
clustering support to the servers . We also
propose to use the inbuilt features of Clustered
Trivial Database for managing the cluster . The
Clustered TDB is a shared TDB approach to
distributing locking state. In this approach, all
cluster nodes access the same TDB files. CTDB
provides the same types of functions as TDB but
in a clustered fashion, providing a TDB-style
database that spans multiple physical hosts in a
cluster. The cluster filesystem takes care of
ensuring the TDB contents are consistent across
the cluster . CTDB also provides failover
mechanism to ensure data is not lost if any node
goes down while serving data. It does this with
the use of Virtual IP addresses or Public IP
addresses .
The information regarding the state of all the
servers is stored in small databases called Trivial
Databases . Samba used these databases to
maintain information like password , mapping
information , session information . CTDB
extends this concept to share this information
across a cluster . All these databases are shared
by all nodes such that each one of them can
access and update the records. This means that
these databases must be stored in the shared file

system . To make it simpler, each node of the
cluster has CTDB daemon ctdbd running and
will have a local, old-style tdb stored in a fast
local filesystem. The daemons negotiate only the
metadata for the TDBs over the network. The
actual data read and writes always happens on
the local copy. Ideally this filesystem will be in-
memory, such as on a small ramdisk, but a fast
local disk will also suffice if that is more
administratively convenient. This makes the read
write approach really fast. The contents of this
database on each node will be a subset of the
records in the CTDB (clustered tdb). However,
for Persistent database, when a node wants to
write to a persistent CTDB, it locks the whole
database on the network with a transaction,
performs its read and write, commits and finally
distributes the changes to all the nodes and write
locally too. This way the persistent database is
consistent across all nodes .
CTDB uniquely identifies each of the nodes in
the cluster by the Virtual Node number, VNN. It
maps the physical addresses with the VNN. Also,
CTDB works with two IP networks. The internal
network on the InfiniBand for the CTDB
communication between the nodes. This is same
as that for the clusters internal network for
communication between the nodes. The second
type is the public addresses through which the
clients access the nodes for data.

FIG 4 Proposed architecture for NFS-
GANESHA

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-2, ISSUE-11, 2015

57

V. CONCLUSION

NFS GANESHA is a latest one in the series of
NFS servers . Its large cache management
capability allowed an increase of the incoming
NFS requests on the related machines, a need
that was critical for several other projects . At the
same time being developed in the user space has
provided a great scope for development of many
more features by the external developers . The
proposed clustering support can help to ensure
consistency and provide failover mechanism to
the existing servers which will go a long way in
making GANESHA one of the most robust and
efficient servers.

 REFERENCES
[1] Russel Sandberg, David Goldberg, Steve
Kleiman, Dan Walsh, Bob Lyon (1985). "Design
and Implementation of the Sun Network
Filesystem”

[2] Aditya Rajgarhia , Ashish Gehani ,
“Performance and Extension of User Space File
Systems” , SAC '10 Proceedings of the 2010
ACM Symposium on Applied Computing Pages
206-213

[3] “Filesystem Abstraction Layer” Available
online at :
http://www.makelinux.net/books/lkd2/ch12lev1
sec2

[4] NFS Illustrated (2000) by Brent Callaghan -
ISBN 0-201-32570-5

[5] Callaghan, B., Pawlowski, B. and
P.Staubach, “NFS Version 3 Protocol
Specification,” RFC 1813, The Internet Society,
June, 1995.

[6] S. Shepler, B. Callaghan, D. Robinson, Sun
Microsystems Inc., C. Beame, Hummingbird
Ltd., M. Eisler, D. Noveck, Network Aplliance
Inc. “Network File System (NFS) version 4
Protocol,” RFC 3530, The Internet Society,
2003.

[7] Haynes, Thomas (2013-03-14). "NFS
Version 4 Minor Version 2"

[8] “Samba : An Introduction ” Available online
at :

https://www.samba.org/samba/docs/SambaIntro
.html

[9] EMC corporation White Paper “EMC
VNXe Series: Introduction to SMB 3.0
Support” January 2013

[10] “Storage for your Cloud” , Available
online at : http://www.gluster.org/

[11] “ Cluster DRC ” Available online at :
https://github.com/nfs-ganesha/nfs-
ganesha/wiki/Cluster-DRC

[12] Sun Microsystems, Inc., “NFS: Network
File System Protocol Specification,” RFC 1094,
The Internet Society, March, 1989.

[13] Eisler, M., “NFS Version 2 and Version 3
Security Issues and the NFS Protocol’s Use of
RPCSEC_GSS and Kerberos V5,” RFC 2623,
The Internet Society, June, 1999

