

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-2, ISSUE-12, 2015
 78

SURVEY: HEURISTIC SEARCH FOR SHORTEST
PATHFINDING IN GAMES

1Amit S. Wale , 2Taranpreet Singh Saini , 3Ahmed Mohammad Ali, 4Vandana S. Jagtap
Maharashtra Institute of Technology, Pune University Pune, India

Email: 1amitwale009@gmail.com, 2saini_13sf@yahoo.co.in, 3am343793@gmail.com
4vandana.jagtap@mitpune.edu.in

Abstract—Shortest path finding has been one
of the most important research areas in
gaming for several years. Path finding is
computer games is a major problem that
many video games are facing. Many search
algorithms are present to solve the shortest
path problem such as Djkstra’s algorithm,
Iterative Deepening Depth First Search
algorithm and Breadth First Search
algorithm. A* algorithm as a provably best
possible way out for path finding. In the
beginning slice, outline of path finding is
presented. Then the information of A*
algorithm are addressed as a base of giving a
number of optimization techniques from
different angles. At last, a number of
examples of how the path finding techniques
are used in games and a conclusion are
drawn.

Keywords—path finding, A*, optimal path,
shortest path

I. INTRODUCTION

Pathfinding generally says something about
to discover the shortest way between end
points. examples of such problems join going
across (from place to place) map, telephone
business trade design for the way, complex
network keeping direction at sea and machine
made to act like man line of motion map. As
the importance of ready, without fear industry
increases, pathfinding has become a pleasing to
all and putting stop to hard question in ready,
without fear industry. Games like role-playing
games and at the same time secret design
games often have persons in a work sent on

persons sent on special works from their current
placing to a pre-selected or player strong of
purpose place where one is going. The most
common question under discussion of
pathfinding in a viewing part ready, without
fear is how to keep from obstacles with brains
and look for out the most good at producing an
effect footway over different land.

 Early answers to the hard question of
pathfinding in computer playing activity, such
as distance down first look for, done again and
again making more deep, measure first look for,
Djkstra’s algorithm , best first look for, A*
algorithm, and done again and again making lot
of deep A* , were shortly controlled by the
complete increasing change growth in the being
complex of the ready, without fear. More good
at producing an effect answers are needed so in
connection with be able to get answer to
pathfinding problems on a more complex
general condition with limited time and useable
things[1].

 Because of the very great good outcome of A*
algorithm in footway decisions at law, many
persons making observations are pinning their
hopes on speeding up A* so in connection with
please the changing needs of the ready, without
fear. Much attempt has been made to optimize
this algorithm over the past decades and many
of revised algorithms have been introduced
well. Examples of such optimizations join
getting (making) better heuristic ways of doing,
optimizing map pictures of, putting into use for
first time new facts structures and making
feeble, poor memory needed things. The next
part provides an overview of A* techniques

 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-2, ISSUE-12, 2015
 79

which are widely used in current ready, without
fear industry [2].

II. LITERATURE SURVEY

2.1 Breadth First Search

 Breadth-First search (BFS) is an algorithm
where root node is expanded first, followed by
all the successors of the root nodes, then their
successors, and it will go until the goal node is
found. In general, all the nodes are expanded at
a given depth in the search tree before any
nodes at the next level are expanded.

 Breadth first search will never get trapped
exploring the useless path forever. If there is a
solution, BFS will definitely find it out. If there
is more than one solution then BFS can find the
minimal one that requires less number of steps
[3].

 The main drawback of Breadth first search is
its memory requirement. Since each level of the
tree must be saved in order to generate the next
level, and the amount of memory is
proportional to the number of nodes stored, the
space complexity of BFS is O(bd). As a result,
BFS is severely space-bound in practice so will
exhaust the memory available on typical
computers in a matter of minutes. If the
solution is farther away from the root, breath
first search will consume lot of time [4]. The
representations of order how nodes are
expanded are as shown in the figure.

 Fig. 1 Breadth First Search

2.2 Dijkstra’s Algorithm

 E.Dijkstra developed this traditional
algorithm for traversing graphs with edges of
dissimilar angles of unlike weights. At every
step, the search seem to be at the untreated
node nearby to the start node, looks at the
node’s neighbors, and sets or bring up to date
their respective distances from the initial.
Dijkstra's algorithm or a alternative of it is
known as uniform-cost search and formulated
as an example of the more common plan of
best-first search.

 Finds shortest path in O(E+ V Log(V)) if you
use a min priority queue. This is true only if

you implement priority queue with Fibonacci
heap, then amortized operation over it will take
O(1). Otherwise, if you use any other
implementation of priority queue it should take
Elog (E) + V. Fails in cases where you have a
negative edge [5].

Fig. 2 Dijkstra’s Algorithm

2.3 Depth-First Search

 Depth-first search always proceeds to the
deepest level of the search tree, where the
nodes have no successors. After expanding
these nodes, the search “back up” to the next
shallowest node that still has unexplored
successors. This is unlike the breadth first
search, which visits all the siblings of a node
before any children. In cases where the tree is
very depth to make sure that the search
terminates [6]. The demonstration of arrange
how nodes are expanded are as shown in the
figure.

Fig. 3 Depth First Search

2.4 Iterative Deepening Depth-First Search

 Iterative deepening depth-first search is a
general strategy, which is often used in
combination with depth first search that finds
the best depth limit. This is done by gradually
increasing the depth limit until a goal is found.
A goal is found when the depth limit reaches
the depth of the shallowest goal node. This
combines the benefits of depth first search and
breadth first search [7].

2.5 Best First Search

 Best first search uses a heuristic function:
f(n)= h(n) in searching for the goal node. This

 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-2, ISSUE-12, 2015
 80

search tries to expand the node that is closest to
the goal, believing that this likely to lead to a
solution quickly.

2.6 Bidirectional Depth-First Searches

 Bidirectional breadth-first search is an
enhancement of the simple breadth first search
by starting two simultaneous breadth-first
searches from the start and goal node and
stopping when the two searches meet in the
middle. The diagram shows the schematic view
of a bi-directional search that is about to
succeed, when a branch from the start node
meets a branch from the goal node. The
arrangement of order how it works and nodes
are expanded are as shown in the figure.

Fig.4 Bi-Directional Search

Among these above algorithms, A* search
algorithm is the best-established algorithm for
the general searching of optimal paths. It is sure
to find the shortest path, as long as the heuristic
estimate, h(n), is admissible. In addition, it
makes the most efficient use of the heuristic
function. That is, no search that uses the same
heuristic function h(n) and finds optimal paths
will expand fewer nodes than A*.

2.7 A* Algorithm
A* is a basic search algorithm that can be used
to find out result to numerous problems,
heuristic search for pathfinding is one of them.
For pathfinding A* algorithm again and again
examines the most hopeful unknown areas it
has seen. When a placing is had a look for, the
algorithm is completed if that placing is the
end, purpose; in other way, it makes note of all
that places neighbors for further discovery. A*
is probably the most pleasing to all footway
having experience algorithm in ready, without
fear AI (Artificial Intelligence) [8].

 Fig. 5 Pseudo code for A* Algorithm

 n

 m

 <m,p> {p/e}- current
 <m,q>- previously calculated distance

 Fig. 6 A* Algorithm

In the typical language used when discussing

about A*, g(n) indicates the accurate cost from
initial point to any point n, h(n) signifies the
estimated cost from any point n to the goal, and
f(n)= g(n) + h(n). Fig. 1 lays out the algorithm
step by step.

III. RELEVANT APPLICATIONS IN

COMPUTER GAMES

 As a general pathfinding algorithm in
ready, without fear industry, A* algorithm has
been sent in name for to a wide range of
computer playing activity. Although the
algorithm itself is simple, not hard to get
clearly, putting into effect in a true computer
ready, without fear is non-trivial. This part has
a discussion several pleasing to all computer
games in terms of pathfinding and uses a
pleasing to all connected ready, without fear as
an example to make clear to how the different
map pictures of can force of meeting blow on
the doing a play of pathfinding.
3.1 Path Finding Challenge in Game Industry
Age of Empires is a classic real-time strategy
game. It uses grids to characterize map
positions. A 256×256 grid yields 65,536
possible locations. The moving of the military

OPEN=Nodes on frontier CLOSED=Expanded node
OPEN= {<s,nil>}
While OPEN is not empty
Remove from OPEN the node <n,p> with minimum f(n)
Place <n,p> on CLOSED
If n is a goal node,
Return success (path P)
For each edge connecting n and m with cost c

 If <m,q> is on CLOSED and {p/e} is cheaper

 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-2, ISSUE-12, 2015
 81

unit can be made-simple as if moving a not in
agreement through a complex network. A*
algorithm is sent in name for to existence-stage
of empires. Although it looks error less based
on reasoning, many existence-stages of empires
players are in a bad state of mind by the very
great pathfinding. An example of such
problems is that when a group of units goes
around forest to get to another position, half of
them get stuck in the trees as made clear in
number in sign. Such situations always come
about especially when the measure of space
between parts of forest increases.

Fig. 7 Screenshot from Age Of Empires

Another secret design ready, without fear
society in high stage of development V uses
hexagonal puts thin bricks to represent map
places as made clear in number in sign. A
pathfinding algorithm is sent in name for to
control the military unit moving to the desired
placing through a group of walk able hexagonal
puts thin bricks. similar to existence-stage of
empires, society in high stage of development
V still lets go on with bad pathfinding although
it is the latest ready, without fear of society in
high stage of development number, order,
group, line which was given out in November
2010.

Fig. 8 Screenshot from Civilization V

Fig. 9 Grid Representation on square and
hexagonal cells

 However, made a comparison with secret
design games which join hundreds and
thousands of units at the same time, A* works
much better in first-person one firing gun
games like Counter-Strike which only has to do
with a few units moving around at the same
time. A account might be that the increasing
change growth in the number of units moving
around at the same time makes the ready,
without fear air much more full of energy and it
is hard to make ready most good selection paths
for hundreds and thousands of units in true time
using limited CPU and memory useable things.
Massively multiplayer connected is another
example which has to do with at the same time
pathfinding intensively, like World of
WardCraft.

IV. FUTURE WORK

 A possible make observations is to go on
optimizing A* algorithm from these views or to
trading group number times another
optimization methods into one single answer.
Another way to make some sense of mixed into
to the play activity AI town is to send in name
for these techniques formed above to the true
computer games because not all of the
techniques described in this paper have been
widely used in current ready, without fear
industry. The reason why they are gone over
again in this paper is that they are the hottest
topics in the learned in theory field of
pathfinding and many persons making
observations are attempting to get free to take
them into true playing activity. It is seen
coming that this make observations help ready,
without fear industry has a basic getting rightly
about the future make observations direction in
pathfinding.

V. ACKNOWLEDGEMENT

 We would like to thank our Ass. Prof.
Vandana Jagtap (Artificial Intelligence) for
excellent supervision and good advices.

VI. CONCLUSION
 This paper with science observations several
pleasing to all algorithms and methods
according to the optimization of footway
having experience in playing activity. A*
algorithm is the most pleasing to all algorithm
in pathfinding. It is hard-pressed to discover a

 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-2, ISSUE-12, 2015
 82

better algorithm since A* is provably most
good selection. A great amount of work has
been put into speeding it up by optimizing it
from different views. The ways to get better the
operation of A* looking-for join optimizing the
close relation look for space, making feeble,
poor the memory use, getting (making) better
heuristic group events and giving name of
person when meeting for first time new facts
structures.

References

[1] Y. C. Hui, E. C. Prakash, and N. S.
Chaudhari, “Game AI: artificial
intelligence for 3D path finding,” 2004
IEEE Reg. 10 Conf. TENCON 2004., vol.
B, pp. 306–309, 2004.

[2] X. Wu and S. Zhang, “The study and
application of artificial intelligence
pathfinding algorithm in game domain,”
2011 Int. Conf. Comput. Sci. Serv. Syst.
CSSS 2011 - Proc., pp. 3772–3774,
2011.

[3] T. Pepels, M. H. M. Winands, and M.
Lanctot, “Real-time monte carlo tree
search in Ms Pac-Man,” IEEE Trans.
Comput. Intell. AI Games, vol. 6, no. 3,
pp. 245–257, 2014.

[4] V. Bulitko, Y. Björnsson, N. R.
Sturtevant, and R. Lawrence, “Real-time
heuristic search for pathfinding in video
games,” Artif. Intell. Comput. Games,
pp. 1–30, 2011.

[5] J.-Y. Wang and Y.-B. Lin, “Game AI:
Simulating Car Racing Game by
Applying Pathfinding Algorithms,” Int.

J. Mach. Learn. Comput., vol. 2, no. 1,
pp. 13–18, 2012.

[6] X. Cui and H. Shi, “A*-based
pathfinding in modern computer games,”
Int. J. Comput. Sci. …, vol. 11, no. 1, pp.
125–130, 2011.

[7] R. Graham, H. Mccabe, and S. Sheridan,
“Pathfinding in ComputerGames 1
Introduction 2 Game World Geometry.”

[8] J. Togelius, M. Preuss, N. Beume, S.
Wessing, J. Hagelbäck, and G. N.
Yannakakis, “Multiobjective exploration
of the StarCraftmapspace,” Proc. 2010
IEEE Conf. Comput. Intell.
Games,CIG2010,pp. 265–272, 2010.

[9] L. Cardamone, G. N. Yannakakis, J.
Togelius, and P. L. Lanzi, “Evolving
interesting maps for a first person
shooter,” Lect. Notes Comput. Sci.
(including Subser. Lect. Notes Artif.
Intell. Lect. Notes Bioinformatics), vol.
6624 LNCS, pp. 63–72, 2011.

[10] X. Cui and H. Shi, “Direction Oriented
Pathfinding in Video Games,” vol. 2, no.
4, pp. 1–11, 2011.

[11] M. Buro, “Part 3 : Map Representations
& Geometric Path Planning,” Outlook.

[12] Y. Björnsson and K. Halldórsson,
“Improved Heuristics for Optimal Path-
finding on Game Maps.,” Aiide, pp. 9–
14, 2006.

[13] A. Koefoed-hansen, “Representations for
Path Finding in Planar Environments,” p.
73, 2012

.

