

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697,VOLUME-2, ISSUE-4,2015
77


Abstract- As all we know that the usage of
smartphone is increasing very rapidly
because of the numerous services it provides
to the end user. As a result of this many
organization are willing to support
customer-owned smartphone in order to
increase the productivity of business user.
Now, as it is providing so many services there
is a necessity to provide security measures in
order to protect data on smartphone. This
manuscript provides policy based framework
called as MOSES which allow user to create
separate environment related to different
context definition within the same device.
Index Terms—virtualization, security profile,
isolation, taint values, context.

I. INTRODUCTION

 Today’s world is tightening with the progress
of cell phone machinery. As the numbers of cell
phone users are growing day by day, services are
also increasing very rapidly. Beginning with old
simple handsets which could be used for making
calls, sending messages, cell phones have
drastically changed user’s life and became one
of the most important parts of it. But now it has
countless uses such as making calls, playing
games, music, browsing internet and many more.
And by means of these new emerging

equipment’s and its services, there is a
requirement of new operating systems and
software’s.

A. What Is an Android?

Many operating systems have evolved in past
16 years. Beginning with black and white cell
phone to latest smartphones or tablet, mobile
operating system has become popular and come
far off. Especially for smart phones, Mobile OS
has greatly evolved from Palm OS in 1996 to
Windows pocket PC in 2000 then to Blackberry
OS and Android. Now-a-days most widely used
mobile OS is Android which is nothing but a
bunch of software consisting of not only
operating system but also key and middleware
applications.

B. Final Stage

Android is a most widely used and powerful
Operating system which supports a countless
applications that runs on smartphones. The
usage of these applications has made life relaxed
and innovative for smartphone users. It was
established by Google. It permits users to choose
and download the applications which are
developed by third party vendor. Hardware
component that supports Android OS are mainly
founded on ARM architecture policy. Some of
the current features and specifications of android
are:

MOSES: SUPPORTING AND IMPLEMENTING SAFETY
ENVIRONMENT USING ANTI-THEFT CONCEPT ON

SMARTPHONE
1Ms. Roshni M. Sherkar, 2Prof. Ravi V. Mante, 3Dr. Prashant N. Chatur

1MTech Scholar (CSE Dept.), 2Asst. Professor (CSE Dept.), 3Head of Dept. (CSE Dept.)
Email:1rinku.sherkar@gmail.com, 2mante.ravi@gmail.com, 3chatur.prashant@gmail.com

 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697,VOLUME-2, ISSUE-4,2015
78

Fig. 1.1 Features and Specification of Android OS

C. Android Applications

 Android is nothing but the extension on
JAVA platform hence all Android applications
are transcribed in java programming language. It
is accessible as open source for inventors to
invent applications that can be further used for
selling in android market. Around 200000
applications were developed for Android OS
with near about 3 billion+ downloads were made.
Android bank on Linux version 2.6 for core
system services such as security, memory
management, process management, network
stack, and driver model.

Following are the basics of Android
applications:

• Android applications are self-possessed of
one or more application components such as
activities, services, content providers, broadcast
receivers and intents.

• The role of each component is different as
compared to overall applications behavior and
each component can be activated individually.

• Another important part is the manifest file
which must include all components in the
application and should also include all
application requirements, like as the minimum
requirement of Android version and any
hardware configurations.

• Non-code application resources such as
images, strings, layout files, etc. should consist
of replacements for dissimilar device.

In short, it is becoming a very effective and
efficient tool for increasing productivity of
business users. Many companies are willing to
support customer owned smartphone because of
increasing productivity of their customer and
keep updated while they being on the move.
Despite of this positive scenario, Android

smartphones needs some security concerns. For
example, malicious applications may access
mails, SMS, and personal/private data stored on
cell phone. Not only these malicious
applications but an also legitimate application
needs security concerns. Hence it is very
important to provide internal and external
security to it. The solution is given by
policy-based framework called as MOSES in
which this can be possible by separating data and
apps related to corporate world from recreational
apps and personal/private data. Within the same
devices, separate environments are created
which can run in their own address space. Data
and apps related to first environment cannot
access data from second environment. This can
be possible with the help of virtualization. It is
nothing but creating virtual versions of different
instances of OS that can run separately on the
same device. Two types of virtualization:

Para-virtualization is virtualization in which
the guest operating system (the one being
virtualized) is aware that it is a guest and
accordingly has drivers that, instead of issuing
hardware commands, simply issues commands
directly to the host operating system. This will
include things such as memory management as
well.

Full Virtualization is virtualization in which
the guest operating system is unaware that it is in
a virtualized environment, and therefore
hardware is virtualized by the host operating
system so that the guest can issue commands to
what it thinks is actual hardware, but really are
just simulated hardware devices created by the
host.

D. Android Architecture

Android OS consists of four main layers
kernel, libraries, android runtime, applications
framework and applications.

Linux kernel: Bottom layer is Linux kernel
layer which provides basic functionality of
system such as memory management, process
management, device management as keypad,
camera, display etc. The kernel manages all the
things that Linux is thoroughly good at for
example networking and a vast array of device
drivers, which take out the burden of interfacing
to peripheral hardware.

 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697,VOLUME-2, ISSUE-4,2015
79

Libraries: On top of Linux kernel layer there is
a bunch of libraries including open-source Web
browser engine WebKit, well known library libc,
SQLite database is an important repository for
storing and sharing of application data, libraries
to record and play video and audio, SSL libraries
are trustworthy for Internet security etc.
Android Runtime: This part provides a vital
component called Dalvik Virtual Machine
(DVM) which is a sort of Java Virtual Machine
specially designed and optimized for Android
OS.
The DVM rely on Linux core features such as
memory management and multi-threading,
which is inherent in the Java language. The
DVM allows every Android application to run in
its own address space, with its own instance of
the DVM. The Android runtime also gives a set
of core libraries which allows Android
application developers to write Android
applications using standard Java programming
language.
Application Framework: The Application
Framework layer is responsible for many
higher-level services to applications in the form
of Java classes. Application developers are
relying on these services in their applications.
Applications: Android applications are at the
top layer. You are able to write your application
to be installed on this layer only. For example,
Contact Books, Browser, Games, Media player
etc.

Fig. 1.2 Android Architecture

II. REVIEW OF LITERATURE

Countless solutions are there to plan to

advance the safety of Android. We are going to
consider only those that are correlated to our
system. On Android platform, user has to grant
all permissions at installation time which are
requested in the manifest file. In short it supports
an all-or-nothing approach, which is the user has
to either grant all the permissions specified in the
manifest or abort the installation of the
application. Moreover, permission cannot be
revoked at runtime.

In order to solve this problem several solutions
have been proposed. This section provides gives
review on related work which describes research
efforts in order to increased security on Android
platform. There are many solutions which help
to improve security measures on Android. Some
of them that related to our work are considered.

Basically, what happens on Android, at
installation time users has to grant applications
the permissions which are requested in the
manifest file. Android endures an all-or-nothing
approach that is the user has to either allow all
the permissions specified in the manifest or abort
the installation of the application. Moreover,
permission cannot be reversed at runtime. In
order to solve this problem several solutions
have been proposed.

Apex [2] provides policy based framework for
android that allows a user to selectively
grant/restrict permissions to applications as well
as user had several options on restricting the
usage of resources i.e. user was allow using
some functionality of application while
restricting the access to resources which was
critical/costly. It also described an extended
package installer called as Poly that allowed the
user to set these conditions through an easy
interface. In this paper authors had incorporated
only simple conditions such as restricting the
time of usage and the time of the day on which to
allow permission. This simplification was for
user convenience.

In Secure Application INTeraction [3] aimed
at run time, communication between
applications were to security policies. Policies
which were given in Saint had performed
permissions checks by restricting access based
on run-time state such as location, phone or
network configuration, time, etc. Saint addressed
the current security problems on Android. They

 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697,VOLUME-2, ISSUE-4,2015
80

were at the beginning of integration of more
applications and the policies.

 CRePE [4] allowed a user to create policies
that could automatically control the granting of
permissions during runtime. Current smartphone
systems permitted the user to use only contextual
information to identify the working of the
application. This makes difficult for the wide
adoption of this technology to its full potential.
This drawback was filled by proposing CRePE, a
fine-grained Context-Related Policy
Enforcement System for Android. While the
concept of context-related access control is not
an innovative idea. In particular, a context was
defined by the state of variables imported by
physical (low level) sensors, like time and
location; additional processing on these data via
software (high level) sensors; or particular
interactions with the users or third parties.
CRePE allows context-related policies to be set
even at runtime by both the user and authorized
third parties locally via an application or
remotely via SMS, MMS, Bluetooth, and
QR-code.

In MockDroid [5], is a modified version of the
Android operating system which allowed a user
to `mock' an application's access to a resource.
In this system was able to limit the access of
installed application by filtering out information
they were accessing. This resource was
subsequently reported as empty or unavailable
whenever the application requests access. This
approach allowed users to reverse access to
particular resources at run-time, encouraging
users to consider the trade-off between
functionality and the disclosure of personal
information whilst they use an application For
instance, an application querying the IMEI
number of phone may receive fake results even if
the original is on the phone.

The goal of TISSA [6] was to prevent private
information leakage by untrusted third-party
smartphone application. Suppose any
application requested to send a piece of data
which may be private at that time it sent request
to content provider. Instead of serving the
request directly, it checked the current privacy
setting for the application because user can
change / readjust the permission for application
at runtime. If reading was permitted then system

returned normal result and if not then provide
empty / anonymized / fake result.
Taintdroid [7] was responsible for tracking the
flow of information between the applications.
Taintdroid automatically taints the data from
sensitive sources and applies taint on the data
that were moving out through the smartphone
over internet. When this happened, Taintdroid
kept the record of the tainted data, which
application sending the data, destination of
tainted data. But the limitation of this is that it
only kept the record of tainted data and was not
able to provide security measure for sending data
through unauthorized third party application.
Also some legitimate applications are
responsible for leaking out sensitive data which
may cause harm to end-user.

This was solved by MOSES [1], in which
separation between the safety environments (SE)
was given depending upon different context.
Each safety environment consists of its own apps
and data and associated with its context. For
example, application and data related to
corporate world is separated from personal
application and data. Safety environments are
nothing but the set of protocols to limit the
execution of application and data on particular
environment. Here context is the most important
term because; context provides security
measures to smartphones. Context is a Boolean
term which can be obtained from physical and
logical sensors.
When the context returns true value SE
associated with it is activated. It may happen that
context is associated with one or more SE hence,
to solve this each SE has assigned the priority.
SE having highest priority will be activated first
than the lower one. It may happen that two SE is
having same priority in that case SE which had
been activated will remain in processing. In
MOSES [1] switching between the SE was
possible by using virtual phone technique given
in the Cells [8].

III. MOSES ARCHITECTURE

As given in [1], MOSES architecture consists
of the components presented in Figure. 2. Main
part of MOSES is the phenomenon of Context.
The Context Detector System is responsible for

 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697,VOLUME-2, ISSUE-4,2015
81

activating/deactivating of context. When it
happens, the component Context Detector
System notifies about this to the Security Profile
Manager. The Security Profile Manager handle
this information linking a SP with the Context.
The component Security Profile Manager is used
for the activation and deactivation of Security
Profiles. The Security Profile Manager works as
follow:

The Moses Hypervisor is the component that
acts as a policy decision point (PDP) in MOSES.
The Moses Hypervisor provides a central point
for MOSES security checks against the policies
defined for the active SP to regulate access to
resources. The Moses Hypervisor delegates the
policy checks to its two managers: the Moses
App Manager and the Moses Rules Manager.
The former is responsible for deciding which
apps are allowed to be executed within a SP. The
latter takes care of managing Special Rules.

The Moses Policy Manager acts as the policy
administrator point (PAP) in MOSES. It
provides the API for creating, updating and
deleting MOSES policies. It also allows a user to
define, modify, remove monitored Contexts and
assign them to SPs. Moreover, this component
also controls access to MOSES policy database
(moses.db) allowing only applications with
special permissions to interact with this
component.

The Moses Taint Manager component
manages the “shadow database” which stores the
taint values used by Taintroid. In MOSES, we
can taint specific rows of a content provider: to
be able to perform per row filtering when an app
access data in the content provider. For instance,
it is possible to filter out from the query result
data the rows which contain the information
about device identifiers or user contacts. Given
the fact that the enforcement of policies depends
on the information provided by the Moses Taint
Manager, this component acts as a policy
information point (PIP).
The decisions taken by the Moses Hypervisor
need to be enforced by the policy enforcement
point (PEP). MOSES affects several components
within Android middleware where decisions
need to be enforced. For this reason, the PEP
includes several Android components offering
system services such as Location Manager and

Activity Manager Service. Moreover, some
Android core classes (such as the OS File
System and OS Network System) are modified
to enforce decisions regarding the access to the
file system and network, respectively.

Fig. 3.1 MOSES Architecture

The enforcement of separated SPs requires

special components to manage application
processes and file system views. When a new SP
is activated, it might deny the execution of some
applications allowed in the previous profile. If
these applications are running during the profile
switch, then we need to stop their processes. The
Moses Reaper is the component responsible for
shutting down processes of applications no
longer allowed in the new SP after the switch. In
MOSES, applications have access to different
data depending on the active profile. To separate
data between profiles different file system view
are supported. This functionality is provided by
the Moses Mounter. To allow the user of the
device to interact with MOSES, we provide two
MOSES applications: the Moses Sp Changer and
the Moses Policy Gui. The Moses Sp Changer
allows the user to manually activate a SP. It
communicates with the Moses Hypervisor and
sends it a signal to switch to the profile required
by the user. The Moses Policy Gui allows the
user to manage SPs.

The most important thing comes into
consideration is storage overhead. As it is
explained earlier about MOSES, separation of
data for different security profiles may be
duplicated. So in general, storage size required
by operating system can be given as,

 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697,VOLUME-2, ISSUE-4,2015
82

s_size = s_size(OS) + size((executing apps)i)

+ size((executing apps data)i)
 (1)
where, s_size(OS) is the total size required by
the operating system of handset, size((executing
apps)i) is the size required for executing the ith
application and size((executing apps data)i) is
the size required for storing ith application’s
data and j is the number of installed applications.
But in specific case of MOSES, size of
application’s data is equal to [1]:

size_MOSES((executing apps data)) =

 (2)
where, k is the security profile. As given in
MOSES architecture, same application can be
assign to two different profiles having different
priorities. In this case, additional copies of
information (n+1) is required to store initial data
of application i.e. replication of data. For
example, suppose Message app is assign in two
profiles then updating present in one profile need
to be replicated in another profile.

IV. DESCRIPTION

This section describes overview of
implementation about the key terms of MOSES
[1]. As we discuss earlier Moses provides
abstraction for data and apps devoted to distinct
contexts that are mounted in a solo device. For
example, commercial data and apps can be
separated from private data and apps within a
solo device. This approach offers sections where
data and apps are stored. MOSES guarantees that
data and apps within a section are inaccessible
from others sections’ data and apps. These
sections are nothing but the Security Profiles in
MOSES. In general, a SP is a set of policies that
regulates what applications can be executed and
what data can be accessed.

As described in [1], one of the terms presented
in MOSES is the automatic activation of SP
depending on the context, in which the device is
being used. SPs are associated with one or more
definitions of Context. A context definition is a
Boolean expression defined over any
information that can be obtained from the
smartphone’s raw sensors (e.g., GPS sensor) and

logical sensors. Logical sensors are functions
which combine raw data from physical sensors
to capture specific user behavior’s (such as
detecting whether the user is running). When a
context definition evaluates to true, the SP
associated with such a context is activated. It is a
possible situation when several contexts, which
are associated with different SPs, may be active
at the same time. To resolve such conflicts, each
SP is also assigned with a priority allowing
MOSES to activate the SP with the highest
priority. If SPs have the same priority, the SP,
which has been activated first, will remain
active. Also it allows user to switch between the
profiles manually for this MOSES provides an
application which forces MOSES to activate the
required SP. Each SP is associated with the
holder of the profile and can be secured with the
password given by holder. Additionally, it
supports remote SP management in which SP is
secured with the password provided by
organization this helps to control tampering with
data.

Fig. 4.1 Snapshots of MOSES application [1]:

(a) Context creation, (b) Security profile
creation, (c) Apps assignment to SP, (d) ABAC
rule generation
Here, ABAC rule is attribute based access
control [13], which enforces in each SP. The
notion is that within each SP, users can define
fine-grained access control policies to restrict
application behavior. For example, the user
might want to negate an application to read the
files on an external storage. In this case, the user
might write a policy which will still let the
application to run within the profile but the
access of this application to files on an external
storage will be limited.

This is all about internal security which can

 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697,VOLUME-2, ISSUE-4,2015
83

secure data present on smartphone. But, what
about external threat? It may happen
unauthorized user is trying to access data present
on the smartphone or suppose it get stolen. In all
circumstances, user is trying to secure his/her
data. In order to provide safety, following
algorithm is given which can protect data from
external threat.

Step 1: User has to create or insert Security
measures in terms of pattern or pin-password
type format in order to provide a kind of security.

Step 2: Check whether the entered measures
are correct or not. If “YES”, then it will direct to
MOSES application. Otherwise, it will direct to
Step 3.

Step 3: System will allow user to enter it
correctly two more times. If user fails again, then
it will direct to Step 4.

Step 4: Check whether internet connection is
available or not. If “YES”, it will wipe all the
data and send it to authorized email-id otherwise
goes to Step 5:

Step 5: It will encrypt the data present on
smartphone and whenever internet connection
become available it will transfer it to authorized
email-id. For encryption, AES algorithm is used.
The Advanced Encryption Standard (AES) is an
encryption algorithm for securing information in
commercial transactions in the private sector.
AES is a symmetric key encryption standard.
The Advanced Encryption Standard consists of
three block ciphers. They are: AES-128,
AES-192, and AES-256. Each of the above
standard ciphers is 128-bit block size with key
sizes of 128, and 192 & 256 bits respectively.

In case of stealing, it may happen that
unauthorized user is handling the cell phone. At
that time, he/she will take out the SIM-CARD
first so what the system will do, it will delete all
the data from it. So that if in future, he/she
accesses the phone he will get blank phone. But,
it might be the case that authorized party wants
to change the SIM-card then the system must
provide the provision that user will be asked
about new SIM-card insertion.

Again, daily back-up will be sent to authorize
email-id.

This is all about how to secure data internally
as well as externally. Because, in today’s
corporate world data is one of the most important

thing in compare with mobile handset. So, this is
the security mechanism which can be helpful to
secure data.

 REFERENCES

[1] Yury Zhauniarovich and et. al., “MOSES:
Supporting and Enforcing Security Profiles
on Smartphones,” (Volume-11, Issue-3),
May-June-14.

[2] M. Nauman, S. Khan, and X. Zhang, “Apex:
Extending Android Permission Model and
Enforcement with User-Defined Runtime
Constraints,” Proc. Fifth ACM Symp.
Information, Computer and Comm. Security
(ASIACCS ’10), pp. 328-332, 2010.

[3] M. Ongtang, S. McLaughlin, W. Enck, and
P. McDaniel, “Semantically Rich
Application-Centric Security in Android,”
Proc. Ann. Computer Security Applications
Conf. (ACSAC ’09), pp. 73-82, 2009.

[4] M. Conti, B. Crispo, E. Fernandes, and Y.
Zhauniarovich, “CRePE: A System for
Enforcing Fine-Grained Context-Related
Policies on Android,” IEEE Trans.
Information Forensics and Security, vol. 7,
no. 5, pp. 1426-1438, Oct. 2012.

[5] A.R. Beresford, A. Rice, and N. Skehin,
“MockDroid: Trading Privacy for
Application Functionality on Smartphones,”
Proc. 12th Workshop Mobile Computing
Systems and Applications (Hot Mobile ’11),
pp. 49-54, 2011.

[6] Y. Zhou, X. Zhang, X. Jiang, and V. Freeh,
“Taming Information- Stealing Smartphone
Applications (on Android),” Proc. Fourth
Int’l Conf. Trust and Trustworthy
Computing (TRUST ’11), pp. 93- 107, 2011.

[7] W. Enck, P. Gilbert, B.-G. Chun, L.P. Cox, J.
Jung, P. McDaniel, and A.N. Sheth,
“Taintdroid: An Information-Flow Tracking
System for Realtime Privacy Monitoring on
Smartphones,” Proc. Ninth USENIX Conf.
Operating Systems Design and
Implementation (OSDI ’10), pp. 1-6, 2010.

[8] J. Andrus, C. Dall, A. V. Hof, O. Laadan, and
J. Nieh, “Cells: A Virtual Mobile
Smartphone Architecture,” proc. 23rd ACM
Symp. Operating Systems Principles
(SOSP’11), pp. 173-187, 2011.

[9] Y. Xu, F. Bruns, E. Gonzalez, S. Traboulsi,
K. Mott, and A. Bilgic, “Performance

 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697,VOLUME-2, ISSUE-4,2015
84

Evaluation of Para-Virtualization on Modern
Mobile Phone Platform,” Proc. Int’l Conf.
Computer, Electrical, and Systems Science
and Eng. (ICCESSE ’10), 2010.

[10] M. Lange, S. Liebergeld, A. Lackorzynski,
A. Warg, and M. Peter, “L4Android: A
Generic Operating System Framework for
Secure Smartphones,” Proc. First ACM
Workshop Security and Privacy in
Smartphones and Mobile Devices (SPSM
’11), pp. 39-50, 2011.

[11] T.U. Dresden, and U. of Technology Berlin,
“L4Android,” http://l4android.org/ 2014

[12] C. Gibler, J. Crussell, J. Erickson, and H.
Chen, “AndroidLeaks: Automatically
Detecting Potential Privacy Leaks in
Android Applications on a Large Scale,”
Proc. Fifth Int’l Conf. Trust and Trustworthy
Computing (TRUST ’12), pp. 291-307, 2012

[13] E. Yuan and J. Tong, “Attributed Based
Access Control (ABAC) for Web Services,”
Proc. IEEE Int’l Conf. Web Services (ICWS
’05), pp. 561-569, 2005.

