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Abstract— This paper presents the efficacy of 
Harmony Search Algorithm (HSA) on some 
nonlinear benchmark functions namely sphere 
and rosenbrock functions. The parameters of 
harmony search algorithm are varied and their 
effects are studied. The results show that 
reosenbrock function gives better results by 
taking more number of iterations. 
Index Terms— Harmony Search Algorithm 
(HSA), Metaheuristic Algorithm, Sphere 
Function, Rosenbrock Function 

I. INTRODUCTION 

  From engineering design to business planning 
optimization is everywhere. Optimization implies 
finding the best possible solution of a given 
problem. The aim is to compute the values that 
maximize or minimize an objective function 
subjects to certain constraints. Optimization 
algorithms are broadly classified as deterministic 
and stochastic algorithms. Deterministic algorithms 
i.e. hill-climbing method will produce the same set 
of solutions if the iterations start with the proper 
values of input whereas, stochastic algorithms do 
not repeat the same set of solutions even they are 
called with the same initial starting point due to 
randomness component attached with it, though the 
final results obtained by stochastic algorithms will 
usually converge to the same optimal solutions 
within a given accuracy. Stochastic algorithms 
often have a deterministic component and a random 
component attached with it so that it is possible to 
find global optimal solution in less time. The 
stochastic component can take many forms such as 
simple randomization by randomly sampling the 
search space or by random walks [1].  

Most of the stochastic algorithms are 
considered as meta-heuristic. Some good 
examples are Genetic Algorithms (GA), 
Particle Swarm Optimization (PSO), Firefly 
Algorithm (FFA), Harmony Search (HS) etc 
.Most meta-heuristic algorithms are 
nature-inspired. Two major components of 
any meta-heuristic algorithms are: 
intensification (selection of the best solutions) 
and randomization or diversification. The 
selection of the best solution defines that the 
solutions will converge to the optimality but 
randomization avoids the solutions to be 
trapped at local optima and, at the same time, 
increase the diversity of the solutions to find 
the global optima. The good combination of 
these two components will usually decide the 
capacity of the algorithms. 
An algorithm, developed by Zong woo Geem 
in the year 2001 known as Harmony Search 
Algorithm (HAS) [2-3] is a music-based 
meta-heuristic optimization algorithm. The 
algorithm is inspired by the music harmony 
for getting optimal harmony in every new 
improvisation. The musician finds the best 
harmony in three ways: picks up the best 
harmony from memory, or adjusts the pitch or 
does randomization to get optimal solution of 
the problem. 

The objective of this paper is to find the 
performance of harmony search algorithms 
for some non-linear standard functions. 
Section II discusses the details of harmony 
search algorithm. Section III presented the 
representation of some non-linear benchmark 
functions. Section IV shows the results 
through the variation of harmony search 
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parameters while Section V discusses the 
conclusion and proposes future scope of work. 

II. Harmony Search Algorithm 
The HS algorithm, developed by Zong woo 

Geem, mimics a musical improvisation process in 
which, the musicians in an orchestra try to find a 
fantastic harmony through musical improvisations 
[2]. 
 Musical performances seek a best state (fantastic 
harmony) determined by aesthetic estimation, as the 
optimization problem seek an optimum state [3]. 
When a musician improvises new pitch, he (or she) 
has to follow three steps: Memory Consideration, 
pitch adjustment, randomization. HS has 
successfully been applied to a wide variety of 
practical optimization problems like pipe-network 
design, structural optimization [4], the vehicle 
routing problem [5] etc. 

 
A. Harmony Search Algorithm Steps  
The main step in the procedure of Harmony Search 
Algorithm (HSA) is as follows [6]. 
Step 1.Define objective function. 
Step 2.Initialize HSA algorithm parameters like 
Harmony memory (HM), Harmony memory 
considerating rate (HMCR), Pitch adjusting rate 
(PAR), Number of improvisations (NI), stopping 
criteria, number of decision variables (N). 
Step 3.Generate the initial harmony memory (i= 1 
to number of harmony vectors) randomly within the 
range. 
 
Step 4.Determine functional value of initial 
Harmony memory. 
Step 5.Set iteration count, iteration =1 
Step 6.Starting of Harmony Search, if generated 
random value > HMCR, Then select the value of 
parameter randomly as given by, 

( ) (0,1) *inew oldx L x rand bandw idth   

(where,  L( oldx )  is  the  lower  limit  of  Harmony  

memory solution vector and rand is a random 
number generator uniformly distributed in [0, 1]), 
Otherwise, choose value from Harmony memory 
and adjust the pitch as follows: 

( 0 .5 )n e w o ldx x b a n d w id th r a n d    

Step 7.Update the value of objective function and 
replace the worst solution with new better solution. 
Step 8.Check the stopping criteria and iteration > 
maximum iteration, if it is satisfied GOTO step 10  
Step 9.Advance the iteration count by iteration = 
iteration+1 and GOTO step 6. 
Step 10.Find the optimal value of the function. 

 

 
Fig. 1: Flow Chart of HSA 

III.STANDARD FUNCTIONS 
 
A. Sphere Function 
Sphere function is also known as De Jong’s 
function since it is the first function of De 
Jong. It is one of the simplest benchmark 
functions. This function is continuous, 
unimodal and convex. It has following 
general definition as per [7]. 

              
2

1

( )
n

i
i

f x x


   

Test area is usually restricted to hypercube 
−5.12 ≤ xi ≤ 5.12, i = 1. .  n. Global minimum 
f(x) = 0 is obtainable for xi = 0, i = 1 ..  n. The 
variation of harmonies and the 3D plot for 
sphere function are shown in Fig. 2 and Fig. 3 
respectively. 
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Fig. 2: Variation of harmonies in sphere 

function 
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Fig. 3: 3D  plot of sphere function 

 
B. Rosenbrock Function 
 
The Rosenbrock function, also referred to as the 
Valley or Banana function is a popular test problem 
for gradient-based optimization algorithm [8]. The 
function is described by the formula:  

1
2 2 2

1
1

( ) [100( ) (1 ) ]
n

i i i
i

f x x x x





     

Test area is usually restricted to hyphercube −5 ≤ xi 
≤ 5, i = 1,. . . , n. Its global minimum equal f(x) = 0 
is obtainable for xi , i = 1, . . . , n. The variation of 
harmonies and the 3D plot for rosenbrock function 
are shown in Fig. 4 and 5 respectively. 
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Fig.4: Variation of Harmonies of Rosenbrock 
Function                             
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Fig. 5: 3D plot of Rosenbrock Function 
 
 
 

IV. RESULTS 
        
Table I shows the best estimates of sphere and 
rosenbrock functions using harmony search 
algorithm. Table II to VII report the effect of 
Harmony Search parameters namely harmony 
memory accepting rate, harmony memory 
size and pitch adjusting rate on the non-linear 
benchmark functions. 
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Table I  Results of Harmony Search Algorithm 
 

 
Table II 
Results of Rosenbrock function by varying Pitch adjusting rate (PAR) 

 
Table III 
Results of Rosenbrock function by varying Harmony memory Accepting rate (HMCR) 

Functio
n 

Dime
n 

sion 
(N) 

HMS  
PAR 

HMCR 
Search 
Domain 

x1 x2 fmin count 
CPU Time 
(seconds) 

Rosen 
brock 

 
 
 
 
2 
 
 
 
 

 
20 

 
0.7 

0.7 

   [-5 5] 

1.0014 1.0025 
6.8230 x 

10-6 
18898 5.177858 

0.75 1.0011 1.0023 
2.0686x 

10-6 21406 5.768367 

0.8 0.9989 0.9979 
2.2546 x 

10-6 
22378 6.004149 

0.85 1.0009 1.0017 
1.9592 x 

10-6 5530 2.141367 

0.9 0.9971 0.9941 
0.9941 x 

10-6 
21064 5.683221 

 
 
 
 

Function 
Dimen 

sion 
(N) 

HM
S 

PAR HMCR 
Search 

Domain 
x1 x2 fmin count 

CPU time 
(seconds) 

Rosen 
brock 

2 20 0.7 0.95 [-5 5] 0.9975 0.9950 
6.6876 x 

10-6 
3224 1.559414 

Sphere 2 20 0.7 0.95 
[-5.12 
5.12]

0.0029 0.0001 
8.4162 x 

10-6 
560 1.846967 

Functio
n 

Dimens
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Search 
Domain 

x1 x2 fmin count 
CPU 
Time 

(seconds) 

Rosen 
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2 

 

 

 

 

 

20 

 

0.7 

0.7 

   [-5 5] 

1.0014 1.0025 
6.8230 x 

10-6 
18898 5.177858 

0.75 1.0011 1.0023 
2.0686x 

10-6 
21406 5.768367 

0.8 0.9989 0.9979 
2.2546 x 

10-6 
22378 6.004149 

0.85 1.0009 1.0017 
1.9592 x 

10-6 
5530 2.141367 

0.9 0.9971 0.9941 
0.9941 x 

10-6 
21064 5.683221 
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Table IV 
Results of Rosenbrock function by varying Harmony Memory Size (HMS) 
 

Function 

Dime
n 

sion 
(N) 

HMS PAR 
HMC

R 
Search 
Domain 

x1 x2 fmin count 
CPU Time  
(seconds) 

Rosen 
brock 

 
 
 
 

2 
 
 
 
 

 
10 

 

0.7 0.95  [-5 5] 

0.9986 0.9969 
8.7541x 

10-6 
9197 2.970938 

30 0.9989 0.9975 
6.4426x 

10-6 21211 5.632414 

40 1.0008 1.0017 
7.7780x 

10-7 
8674 2.786523 

50 0.9988 0.9975 
1.5890x 

10-6 
20793 5.577444 

60 1.0023 1.0047 
6.4308x 

10-6 
16240 4.515762 

 
Table V 
Results of Sphere function by varying Harmony Memory Considering rate (HMCR) 

 
Table VI 
Results of Sphere function by varying Harmony memory Size (HMS) 
 

 
 
 
 
 
 
 
 

Functi
on 

Dimen 
sion 
(N) 

H
MS 

PAR HMCR 
Search 
Domain 

x1 x2 fmin count 
CPU Time 
(seconds) 

Sphere 

 
 
 
 

2 
 
 
 
 

 
20 

 
0.7 

0.7 
 
 
 
 
 

[-5.12 
5.12] 

0.0018 -0.0008 
3.9856x 

10-6 
371 0.865585 

0.75 0.9484 0.1737 
9.2960x 

10-7 1049 1.069324 

0.8 -0.0003 -0.0015 
2.4409x 

10-6 
302 0.859589 

0.85 0.0014 -0.0019 
5.4515x 

10-6 497 0.884250 

0.9 0.0021 0.0012 
5.9454x 

10-6 
257 0.835925 

Funct
ion 

Dimen 
sion 
(N) 

HM
S 

PA
R 

HMC
R 

Search 
Domain 

x1 x2 fmin count 
CPU Time 
(seconds) 

Sphe
re 

 
 
 
 
2 
 
 
 
 

 
20 

 

0.5 

0.95 

 
 
 
 

[-5.12 
5.12] 

0.001
3 

0.0023 
7.1269x 

10-6 
395 0.963389 

0.55 
-0.00

22 
-0.0023 

9.7974x 
10-6 

406 0.888991 

0.6 
0.000

2 
-0.0011 

1.3386 
x 10-6 

312 0.886139 

0.65 
0.636

6 
0.3009 

4.9575 
x10-6 

288 0.900525 
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Table VII 
Results of Sphere function by varying Harmony memory Size (HMS) 

 
 

CONCLUSION  
In this paper, we have studied the effects of   

harmony search parameters on nonlinear 

standard functions such as: sphere, and 

rosenbrock. It can be concluded that by varying 

harmony search parameters, the rosenbrock 

function takes more time to give the accurate 

results. The proposed method can further be 

applied to some constrained optimization 

problems. 
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on 

Dimen 
sion 
(N) 

HMS PAR 
HM
CR 

Search 
Domain 

x1 x2 fmin count 
 

CPU Time 
(seconds) 

Sphere 

 
 
 
 
2 
 
 
 
 

 
10 

 

0.7 0.95 
 

  [-5.12 
5.12] 

-0.002
2 

-0.0003 
4.8402 x 

10-6 
284 

 
0.871129 

30 
-0.000

9 
0.0019 
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