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Abstract: Wireless sensor networks are 
turning out to be progressively attractive to 
researchers and industries, due to extensive 
variety of applications. Middleware serves to 
overcome the gap between the high-level 
requirements of the application programs 
and underlying operations of WSN. Agilla is 
a portable agent middleware that encourages 
the rapid deployment of adaptive 
applications in wireless sensor networks 
(WSNs). Agilla allows users to create and 
inject special programs called mobile agents 
that coordinate through local tuple spaces, 
and relocate across the WSN performing 
application-specific tasks. Agents can 
alterably enter and exit a network and can 
autonomously clone and migrate themselves 
in response to environmental changes. 
AgentInjector can be used to inject agents 
into a network. A simulation is performed on 
the mobile agents running on Agilla 
middleware intended for sensor networks. 
The simulations are performed using 
TOSSIM assuming that Agilla middleware is 
installed on the sensor nodes which are 
running TinyOS operating system. Simulated 
is performed on different agents 
corresponding to various functions and the 
time taken for agent software to run in the 
simulated environment is measured. The 
results of migration delay and reliability in 
the simulation of agents is calculated. 
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1. INTRODUCTION 

Wireless sensor networks (WSNs) comprises of 
small sensors deeply embedded within the 
environment. WSNs must deal with highly 
dynamic environments. For instance, while a fire 
tracking network deployed in a forest may 
remain inactive most of the time, a wildfire may 
break out and spread unpredictably, rapidly 
triggering numerous network activities. 
Therefore, WSN applications need to be highly 
flexible and adaptive, which places an additional 
burden on the application developer. 
 Middleware solutions are developed as the link 
between application and low level operating 
system to solve many wireless sensor network 
issues, or the loss of coverage occurs. There are 
diverse sorts of middleware’s developed for 
distinctive purposes. Middleware’s can be 
classified considering their programming 
approaches, as database approach, virtual 
machine approach, adaptive approach and agent 
based approach. 
 
    The Database methodology regards the entire 
sensor deployment as an appropriated database. 
Generally it has a simple interface to use, like 
SQL that make enquiries to gather target 
information. It is great at consistently queries, 
but does not support actual time applications, so 
at times it just gives estimated results.  
 
   Virtual machine middleware methodology is 
utilized to reducing general force and asset 
utilization. The system comprises of virtual 
machines and translators. Designers compose 
applications into little modules, and infusing and 
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conveying modules through system, and finally 
virtual machines interpret the modules to 
implement application 
 
   For some predefined reason, application 
specific middleware could alter system setups as 
per application necessities. It has a structure that 
deliveries different system measures by picking 
suitable protocol in its network protocol stack. 
Diverse sensors combination and system setups 
give distinctive performance of QoS to meet 
related application requirements.  
 
   Agent based approach mobile agents, support 
migration and use a local shared memory to 
provide local communication. The main feature 
of mobile agent middleware is the applications 
are treat as modules for injection and distribution 
through the network using mobile codes.  
 
   Since mobile agent middleware has not been 
transferred to the simulation environment, 
software (Agent Injector) is used to perform 
simulation of Agilla middleware on TOSSIM 
[10] which is a simulation platform of WSN with 
nodes running TinyOS [11]. These agents, 
running on the Agilla middleware which is 
installed on the motes, are allowed to perform 
different tasks and the performance of the 
system when running this software is evaluated.  
 

2. RELATED WORK 

   A traditional approach for WSN adaption is to 
reprogram it over the wireless network. Systems 
that enable this can be divided based on what is 
reprogrammed, that is, native code, interpreted 
code, or both. Two systems that reprogram 
native code are Deluge [Hui and Culler 2004] 
and MOAP [Stathopoulos et al. 2003]. They are 
designed to transfer large program binaries, 
enable the network to be arbitrarily 
reprogrammed, but incur high overhead and 
latency.  
 
   To address this, SOS [Han et al. 2005], Contiki 
[Dunkels et al. 2004], and Impala [Liu and 
Martonosi 2003] are systems that enable partial 
reprogramming of binary code by providing a 
micro-kernel that supports dynamically linked 
modules. Since modules are relatively small, the 
cost of reprogramming is lower.  
 

Systems that reprogram interpreted code include 
Mat´e [Levis and Culler 2002], Application-
Specific Virtual Machines (ASVM) [Levis et al. 
2005], Melete [Yu et al. 2006], and SensorWare 
[Boulis et al. 2003]. In Mat´e and its successor 
ASVM, applications are divided into capsules 
that are flooded throughout the network. Each 
node stores the most recent version of a capsule 
and runs the application by interpreting the 
capsules using a Virtual Machine (VM).  
 
    The reprogramming systems share a common 
feature: The decision on when and where to 
reprogram the network is determined centrally at 
a base station, often by a human operator. In 
contrast, Agilla provides a fundamentally 
different programming model based on mobile 
agents and tuple spaces that are especially well 
suited for self-adaptive applications in WSNs. 
Mobile agents can make adaptation decisions 
locally and autonomously within the network via 
migration (i.e., moving and cloning). Since 
network nodes are directly exposed to the 
environment, they can more quickly detect 
changes and 
better determine when software adaptation is 
necessary. 
 
    Mobile agents have been used in the Internet 
.These systems are designed to run on Internet 
servers, efficient resource utilization is not their 
main focus. Mobile agents have also been used 
in wireless ad hoc networks. Systems that 
provide this include LIME [Murphy et al. 2006], 
Limone [Fok et al. 2004], and Smart Messages 
[Kang et al. 2004]. All three were designed for 
relatively resource rich devices and are thus not 
appropriate for WSNs. For example, LIME 
supports tuple spaces that span multiple hosts 
incurring transactional costs [Carbunar et al. 
2004], while Limone allocates a tuple space for 
each agent, rendering the cost of migration 
untenable. Smart Messages only supports a 
single thread of execution per node, meaning it 
cannot support multiple applications. 
 
    Mobile agents have previously been 
considered for use in wireless sensor networks. 
For example, mobile agents can perform certain 
operations like data integration [Qi et al. 2003, 
2001a, 2001b] and tracking [Tseng et al. 2004a] 
better than traditional client/server mechanisms, 
and can be made energy efficient [Marsh et al. 
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2005; Tong et al. 2003]. While these efforts 
promote the use of mobile agents in wireless 
sensor networks, they were not actually 
deployed or evaluated in a real network. Instead, 
they were evaluated theoretically, in simulation, 
or using networks consisting of relatively 
resource-rich devices. 
    Agilla is the first system to bring the mobile 
agent programming model into a real wireless 
sensor network. By integrating the mobile agent 
and tuple space programming models, Agilla 
enables applications to be locally and 
autonomously self-adaptive. The Agilla 
programming model and middleware 
architecture meet the challenges unique to 
wireless sensor networks, for example, severe 
resource constraints and unreliable wireless 
connectivity. The novel specialization of the 
mobile agent and tuple space programming 
models combined with a careful engineering 
effort resulted in the working of Agilla. 

 

3. MOBILE AGENTS 

 
Mobile agents autonomously sense the 
environment and respond  accordingly. Thus 
agents are very suitable to be deployed in the 
sensor network environment where many 
methodologies were proposed to solve the 
recognized problems in sensor networks by 
using agents. Mobile agents used in WSNs are 
classical software agents, which are specifically 
written to run separately in adaptive sensor 
environments. In a WSN, different mobile 
agents may be constructed for individual tasks, 
which work cooperatively to achieve the main 
objective of the network application 
 
   When the agent chooses to migrate to another 
node in the WSN, it logically transports its state 
and code to the destination. The mobile agent 
middleware framework embedded within a 
sensor network is the fundamental agent-based 
programming platform of the network. This 
framework mainly provides the software 
migration between the sensors. Agilla [8] is the 
most popular agent-based middleware 
framework for WSNs. 
 
 

4. AGILLA 

                           
    Agilla is a middleware which supports mobile 
agents on WSN. Mobile agents are dynamic, 
localized, intelligent programs that can move or 
clone themselves across the nodes to perform a 
specific task. They are used when it is 
advantageous to move software all over the 
place so that the sensor nodes may perform 
different tasks without the need to reload new 
programs on them. After being injected into the 
network, the mobile agent performs 
autonomously and executes its instructions upon 
reaching a sensor node. Mobile agents can also 
interact with other agents and through their use, 
network flexibility is considerably increased.  
 
Agilla is initially developed for Mica2 motes 
where each mote in the network is considered to 
be a node. Agilla middleware is then loaded on 
the nodes and mobile agents are injected to work 
on this middleware. There is a neighbor list and 
a tuple space on 
each node which are maintained by Agilla. 
Neighbor list consists of the addresses of one 
hop neighbors and the tuple space stores data to 
be shared by the local and remote agents (agents 
which reside on other nodes). Multiple agents 
may also reside on different nodes 
simultaneously and they can migrate among the 
nodes. Migrating agents can carry their codes 
and execution states, but they cannot carry tuple 
space of the node. Mica2 motes use TinyOS 
operating system which is specifically 
designed for sensor nodes [17]. 
 
    Portable agents running on Agilla have 
numerous points of interest, for example, 
adjustment to ecological changes and remote 
reconstructing which are the two essential 
difficulties for WSN. To delineate this 
circumstance, expect that a WSN is basically 
sent for interruption recognition in a building. 
Common guard powers may need to reinvent the 
system to identify fire or gas spill in a crisis 
circumstance. Introducing every one of these 
applications immediately is not adaptable, 
reasonable or versatile. Portable agents 
middleware address this issue. It gives element 
reconstructing of WSN by permitting new 
agents to be infused and permits old agents to 
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pass on. Subsequently, portable agents 
middleware bolster flexibility and versatility. 
 
Since multiple agents can exist on a node 
simultaneously, mobile agent middleware 
support coexistence of multiple applications on 
a node. 

 

 

Fig 1: Agilla Model 
 
   Fig 1 shows the Agilla architecture. There are 
three layers: TinyOS, Agilla middleware, and 
mobile agents. TinyOS is the lower layer of the 
architecture which Geographic routing, network 
stack and sensor components are managed by 
that. Middle layer of the architecture is the core 
component of the Agilla middleware. Five 
managers together with the Agilla engine 
compose the middleware. Each of these is 
implemented as a TinyOS component and a 
separate process. These managers are tuple 
space manager, reaction manager, agent 
manager, context manager and code manager. 
Mobile agents constitute the top layer of the 
architecture. A mobile agent is composed of a 
stack, heap, various registers and code.     
                       

5. SIMULATION METHOD 

 
TOSSIM is used to simulate a WSN with 

agents loaded on each mote. The motes have 
TinyOS running on them. We have also used 
TinyViz, a visualization tool for TOSSIM 
simulator.  

 
To setup the simulation environment, some 

software must be installed. These are: Sun’s Java 
Development Kit (JDK) version 1.4.x, Sun’s 
javax.comm package. Later, TinyOS, Agilla, 
TinyViz and AgentInjector can be installed. 
mobile agent middleware such as Agilla has not 
been transferred to the simulation environment, 

Thus Agent Injector can be used to inject agents 
into a network.  

 
First goal in conducting the simulations was to 

measure performance of important Agilla 
instructions. The simulations are performed on a 
25-node network arranged in a 5*5 grid. The 
term “migration” consists of moving and cloning 
of an agent. Moving of an agent is the 
transferring of the agent from one node to 
another node, whereas cloning is copying an 
agent from one node to another node. Special 
instructions are used to move or clone one agent 
from one node to another.  

 
Cloning instructions are sclone and wclone. 
Moving instructions are smove and wmove. In 
order to benchmark strong and weak migrations, 
we used test agents. We measured consumed 
time during the smove (strong move), wmove 
(weak move), sclone (strong clone) and wclone 
(weak clone) operations.  
 
   The first letter indicates whether the operation 
is weak or strong. A weak migration transfers 
only the code, all execution state is reset and the 
agent resumes running from the beginning when 
it arrives at the destination. A strong migration 
transfers everything, meaning an agent resumes 
execution where it left off. Our experience with 
the fire tracking application shows that the 
choice between strong vs. weak migration 
significantly affects the application overhead, 
performance, and reliability. 

 
 

6. SIMULATION 

We used two different scenarios to benchmark 
move (smove and wmove) and clone (sclone and 
wclone) instructions. The difference between the 
scenarios is the heap operations; 10 variables are 
recorded to the heap in the first scenario while 
heap operations were not used in the second 
scenario. The heap is a random-access storage 
area that can store up to 12 variables. First, we 
test smove and wmove instructions for each 
scenario (with and without heap operations). 
Then, sclone and wclone instructions are 
simulated for same scenarios.  
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6.1. SMOVE VS. WMOVE (WITH HEAP 

OPERATIONS)  

The agent used to simulate smove instruction 
with heap operations is shown in Fig 2. This 
agent saves 10 values to its heap and moves to a 
random neighbor carrying its code, program 
counter, stack and heap. Simulation of these 
agents are done on a virtual wireless sensor 
network with 25 nodes. The simulations is 
repeated 50 times for each agent (smove and 
wmove) and the average elapsed times for 
smove and wmove operations were computed. 
 

 
 

Fig 2 : Latency of smove and wmove 
instructions with heap operations. 

 
According to Fig 2, average migration time of an 
agent from one node to another is 298 
milliseconds with the smove instruction; while 
wmove takes 153 milliseconds. This result is 
expected, because smove instruction transfers 
agent’s heap together with the agent’s code, 
while wmove instruction transfers only the 
agent’s code. Each variable in the heap is 40 bits; 
therefore, 10 variables use 400 bits. This extra-
load increases the migration time of smove 
agent.  
 

6.2. SMOVE VS. WMOVE (WITHOUT HEAP 

OPERATIONS)  
 
In these agents, heap operations are removed to 
test the amount of the time taken for smove and 
wmove. The simulations is repeated for 50 times 
for each agent (smove or wmove) and  the 
average latency is computed for smove and 
wmove operations. 
 

 

Fig 3: Latency of smove and wmove 
instructions without heap operations 

Average migration time of an agent from one 
node to another is 139 milliseconds with the 
smove instruction; while wmove takes 153 
milliseconds. This result is expected, because in 
a weak migration, agent resumes execution from 
the beginning. 
 

6.3. SCLONE VS. WCLONE (WITH HEAP 

OPERATIONS)  

The simulations was reapeated for 50 times on a 
simulated wireless sensor network with 25 nodes 
as in the previous simulations. Fig 4 displays the 
results of the simulations for sclone and wclone 
agents with heap operations.  
 
 

 
 

Fig 4. Latency of sclone and wclone 
instructions with heap operations 

  
According to Fig 3, average migration time of an 
agent from one node to another is 256 
milliseconds with sclone instruction; while 
wclone takes 193 milliseconds. This result is 
expected, because transferring agent’s code 
together with the agent’s heap increases latency.  
 
6.4. SCLONE VS. WCLONE (WITHOUT HEAP 

OPERATIONS)  
 
According to Fig 5, average migration time of an 
agent from one node to another is 170 
milliseconds with the smove instruction; while 
wmove takes 193 milliseconds. This result is 
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expected, because in a weak migration, agent 
resumes execution from the beginning. 
 

 
 

Fig 5: Latency of sclone and wclone 
instructions without heap operations 

7. SPREADING OF AGENT 

BENCHMARK  

 
   To measure the spreading performance of the 
agents, a scenario is created according to which 
an agent is injected to a node of the WSN to 
sense the temperature of the node and send the 
recorded value to the base station, and the agent 
clones itself to its neighbors for spreading into 
the network. Neighbor nodes are chosen 
randomly by randnbr instruction. This 
instruction looks at the neighbor list of the agent 
and chooses a random location from the list. The 
goal of the agent is to visit all the nodes of the 
WSN and send temperature readings to the base 
station. Clone operations were preferred to 
provide faster spreading. Since wclone 
instruction is more efficient than sclone as 
mentioned before, it was chosen for migration. 
This agent has been tested on simulated wireless 
sensor networks which included various number 
of nodes. The agent was tested 10 times on each 
WSN. Average values of the tests are taken as 
the final result. Simulation results are shown in 
Fig 6. The graph shows that the agent can spread 
into a 5-node Wsn in 0.4 seconds while it can 
spread into a 15-node WSN in 1.3 seconds. As 
expected, larger WSN increases spreading time. 
On the other hand, latency per node is decreased 
as the network size increases. For example, 115 
ms is consumed per node for a 5-node WSN, 
while 80 ms is consumed per node for a 150-
node WSN. 
 
As mentioned before, the agent clones itself to 
its neighbors randomly. Accordingly, the agent 
is cloned to some nodes more than once while 

other nodes aren’t visited by the agent. 
Reliability of this agent is computed according 
to the equation:  
 
 

 
 
Fig 6: The Agent’s Spreading Time into WSN 

 
Reliability = total number of nodes – number of 
unvisited node 
                                        Total number of nodes 
 
  Result of the reliability analysis is shown in Fig 
7. Reliability of the agent changes between 76% 
and 85% inconsistently because of the random 
nature of the migration operation.  
 
 

 
 

Fig 7: Reliability of the agent in Fig 6.  

8.  CONCLUSIONS  

 
Simulation was performed on mobile agent 
middlewares in TinyOS and presented a 
simulation environment for mobile agents 
running on Agilla using TOSSIM. Different 
Agilla commands were tested and the execution 
time of each agent were measured using 
simulation. By utilizing TinyViz to visually 
observe the simulation process and 
AgentInjector to transfer Agilla to the simulation 
environment, different Agilla commands were 
tested and execution time of each agent was 
measured using simulation and the results were 
analyzed for simulation validation process. 
These experiments will be carried out using 
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different network topologies and different 
agents in the future. Actual network will be setup 
and experiments will be compared with 
simulations as future work.   
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