

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-3, ISSUE-1, 2016
 198

VARIOUS FACTORS AFFECTING PERFORMANCE OF
CACHE MEMORY SUBSYSTEMS FOR MULTI-MICRO

PROCESSORS
N. Dhasarathan Alias Raja1, Avnish Kumar Shukla2

Department of Electronics and Communication Engineering,
Maharishi University of Information Technology (U.P)

ABSTRACT
This Paper presents analysis of various
parameters affecting the performance of
Multi-core Architectures like varying the
number of cores, changes L2 cache size,
further we have varied directory size from 64
to 2048 entries on a 4 node, 8 node 16 node and
64 node Chip multiprocessor which in turn
presents an open area of research on multi-
core processors with private/shared last level
cache as the future trend seems to be towards
tiled architecture executing multiple parallel
applications with optimized silicon area
utilization and excellent performance.
Advancements in multi-core have created
interest among many research groups in
finding out ways to harness the true power of
processor cores. Recent research suggests that
on-board component such as cache memory
plays a crucial role in deciding the
performance of multi-core systems. In this
paper, performance of cache memory is
evaluated through the parameters such as
cache access time, miss rate and miss penalty.
The influence of cache parameters over
execution time is also discussed. Results
obtained from simulated studies of multi-core
environments with different instruction set
architectures (ISA) like ALPHA and X86 are
produced. Advances in Integrated Circuit
processing allow for more microprocessor
design options. As Chip Multiprocessor
system (CMP) become the predominant
topology for leading microprocessors, critical
components of the system are now integrated
on a single chip. This enables sharing of
computation resources that was not
previously possible. In addition the

virtualization of these computation resources
exposes the system to a mix of diverse and
competing workloads. On chip Cache
memory is a resource of primary concern as it
can be dominant in controlling overall
throughput.
KEYWORDS: Chip Multiprocessor (CMP),
Multiple-Chip Multiprocessor (M-CMP),
access time, execution time, cache memory.

1. INTRODUCTION
Present sub-micron integrated circuit
technologies have fueled microprocessor
performance growth [3, 4]. Each new process
technology increases the integration density
allows for higher clock rates and offers new
opportunities for micro-architectural innovation.
Both of these are required to maintain
microprocessor performance growth. Micro-
architectural innovations employed by recent
microprocessors include multiple instruction
issue, dynamic scheduling, speculative
execution, instruction level parallelism [6] and
non-blocking caches. In the past, we have seen
the trend towards CPUs with wider instruction
issue and support for larger amounts of
speculative execution but due to fundamental
circuit limitations and limited amounts of
instruction level parallelism, the superscalar
execution model provides diminishing returns in
performance for increasing issue width. Faced
with this situation, building further a more
complex wide issue superscalar processor was
not at all the efficient use of silicon resources and
a better utilization of silicon area. So researchers
came up with a novel architecture which was
constructed from simpler processors then super-
scalar and multiple such processors are

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-3, ISSUE-1, 2016
 199

integrated on a single chip popularly known as
chip multiprocessor or multi-core processors. To
understand the performance trade-offs between
wide-issue processors and single chip
multiprocessors in a more quantitative way,
researchers had compared performance of a six-
issue dynamically scheduled superscalar
processor with a 4 two-issue multiprocessor.
Comparison has a number of unique features.
The results show that on applications that cannot
be parallelized, the superscalar micro-
architecture performs better than one processor
of the multiprocessor architecture. For
applications with fine grained thread-level
parallelism the multiprocessor micro-
architecture can exploit this parallelism so that
the super-scalar micro-architecture is at most
10% better. For applications with large grained
thread-level parallelism and multiprogramming
workloads the multiprocessor micro-architecture
performs 50–100% better than the wide super-
scalar micro-architecture. Today data centers
powering web and transaction services face new
requirements as they attempt to deliver higher
levels of content-rich and high-bandwidth
services to increasing numbers of users. These
workloads share certain common characteristics.
They exhibit high Thread-Level Parallelism
(TLP) with multiple and independent processes
running concurrently. Latest advancements in
cache memory subsystems for multicore include
increase in the number of levels of cache as well
as increase in cache size. Traditional uni-core
systems had a dedicated caching model whereas
the recent multicore systems have a shared cache
model. As a result of sharing and increase in the
number of levels of cache, the cache access time
increases and tends to consume a the effect of
instruction set architectures on cache
performance wherein different instruction set
architectures influence the cache memory access
time of programs.

2. LITERATURE REVIEW
2.1. Super-Scalar Processors

A trend in the microprocessor industry has been
the design of CPUs with multiple instruction
issue and the ability to execute instructions out
of program order. This ability, called dynamic
scheduling uses hardware to track register
dependencies between instructions; an
instruction is executed, possibly out of program
order, as soon as all of its dependencies are
satisfied. The register dependency checking was

done with a hardware structure called the
scoreboard. IBM used register renaming to
improve the efficiency of dynamic scheduling
using hardware structures called reservation
stations [2]. It is possible to design a dynamically
scheduled superscalar microprocessor using
reservation stations, the most recent
implementations of dynamic superscalar
processors have used a structure similar to the
one shown in Figure 1, which shows three major
phases of instruction execution in a dynamic
superscalar machine they are fetch, issue and
execute.
The goal of the fetch phase is to present the rest
of the CPU with a large and accurate window of
decoded instructions. Three factors constrain
instruction fetch: miss predicted branches,
instruction misalignment, and cache misses. The
ability to predict branches correctly is crucial to
establishing a large, accurate window of
instructions. However, good branch prediction is
not enough. As previous work has pointed out, it
is also necessary to align a packet of instructions
for the decoder. Even with good branch
prediction and alignment a significant cache miss
rate will limit the ability of the fetcher to
maintain an adequate window of instructions.
Previous research have shown that over 60% of
the instruction cache miss latency can be hidden
on a database benchmark with a 64KB two way
set associative instruction cache. In the issue
phase, a packet of renamed instructions is
inserted into the instruction issue queue. An
instruction is issued for execution once all of its
operands are ready. The results have shown a
quadratic increase in the size of the instruction
issue queue and researchers believe that the
instruction issue queue will fundamentally limit
the performance of wide issue superscalar
machines. In the execution phase, operand values
are fetched from the register file or bypassed
from earlier instructions to execute on the
functional units. The wide superscalar execution
model will encounter performance limits in the
register file, in the bypass logic and in the
functional units. Wider instruction issue requires
a larger window of instructions, which implies
more register renaming. Not only must the
register file be larger to accommodate more
renamed registers, but the number of ports
required to satisfy the full instruction issue
bandwidth also grows with issue width. Again,
this causes a quadratic increase in the complexity
of the register file with increases in issue width.

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-3, ISSUE-1, 2016
 200

Figure1. Dynamic Super Scalar Microprocessor

The primary objective of this paper is the
evaluation of the impact; caches have on
different instructions set architectures. This is
achieved by taking one particular benchmark
from SPLASH2 and finding the access time on
ALPHA ISA using M5sim and comparing the
results with the results obtaining using CACTI
on X86 ISA. The other issue that is addressed in
this paper is the measure of execution time for
varying sizes of cache. Also the impact of cache
on execution time is demonstrated through
simulation results using SPLASH-2 benchmark
suite on M5sim. Here we have tried to find out
whether benchmarks running on different
instruction set architectures with a specific
underlying hardware configuration produce
results that are qualitatively similar.
The access time plays a key role in determining
the execution time of any process. In a multi-core
environment as the number of levels of cache
increases, the cache access time tends to
consume a major percentage of memory latency.
Since the state of art multi-core systems have
almost three levels of caches, it becomes
essential to understand the impact of hierarchical
cache design. This motivated us to study the
influence of cache on both access time and
execution time.

2.2. Single Chip Multiprocessor
In today’s information era, commercial servers
constitute the backbone of the global information
and communication system infrastructure. Such
servers run useful commercial applications that

are essential to many aspects of everyday life
such as banking, airline reservations, web
searching and web browsing. As more people
depend on these multi-threaded throughput-
oriented applications, demand for more
throughputs is likely to increase for the
foreseeable future. Commercial servers must
therefore improve their performance by
providing more throughputs to keep up with the
application demand.
Since commercial applications have abundant
thread-level parallelism, commercial servers
were designed as multiprocessor systems—or
clusters of multiprocessors—to provide
sufficient throughput. While traditional
symmetric multiprocessors (SMPs) can exploit
thread-level parallelism, they also suffer from a
performance penalty caused by memory stalls
due to cache misses and cache-to-cache
transfers, both of which require waiting for long
off-chip delays. Several researchers have shown
that the performance of commercial applications
and database applications in particular, is often
dominated by sharing misses that require cache-
to-cache transfers. To avoid these overheads,
architects proposed several schemes to integrate
more resources on a single chip. Researchers
have shown that chip-level integration of caches,
memory controllers, cache coherence hardware
and routers can improve performance of online
transaction processing workloads by a factor of
1.5.

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-3, ISSUE-1, 2016
 201

Figure2. Single Chip Multiprocessor (CMP)

2.3. Multiple-Chip Microprocessor (M-CMP)
The increasing number of transistors per chip
now enables Chip Multiprocessors (CMPs),
which implement multiple processor cores on a
chip. CMP-based designs provide high-
performance, cost-effective computing for
workloads with abundant thread-level
parallelism, such as commercial server

workloads. Smaller-scale Single-CMP (S-CMP)
systems, such as Stanford Hydra and Sun
UltraSparc T1 [1], use a single CMP along with
DRAM and support chips. Larger-scale
Multiple-CMP (M-CMP) systems, such as
Piranha [7] and IBM Power4, combine multiple
CMPs to further increase performance.

Figure3. Multiple-CMP

3. SIMULATION METHODOLOGY AND
APPLICATION
For evaluating the performance of the novel
CMP or M-CMP micro-architectures requires a
way of simulating the environment in which we
would expect these architectures to be used in
real systems. We have used GEM5 [8] full
system functional simulator extended with
Multi-facet GEMS which is popularly used in the
research community. The heart of GEM5 is the
Ruby memory simulator.

1. Execution time: The Ruby Cycle
is our basic metric of simulated time
used in the Ruby module of the
GEMS simulator. The Ruby module
is the basic module for the memory
system configuration and
interconnection network design The
Ruby cycles are the recommended
performance metric in GEMS.

2. L1 cache misses: As the name
says it represents the misses of L1
cache. It's calculated by dividing
request missed by number of
requests (Instruction + Data). It's an
important metric for cache
hierarchy.
3. L2 miss/miss rate: This
represents the total misses and miss
rate of the L2 cache. It is calculated
from the number of requests issued
to the L2 and the misses of all banks
of L2.
4. L2/Dir replacement: Number of
replacements of L2/Directory
entries. It's caused by capacity
misses and conflict misses.
5. Miss latency average: Average of
the L1 miss latency in Ruby cycles.
It is measured from the moment a

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-3, ISSUE-1, 2016
 202

memory request is issued to the
moment when the date is retrieved.
6. Memory requests: Number of reads

and writes issued to main memory.
7. Applications: The benchmark
used is a multithreaded
implementation of a simulation of
3D Lattice-Boltzmann magneto-
hydrodynamics (in other words,
plasma turbulence). Pthreads are
used to implement threading.

4. TOOLS USED
M5SIM
M5 [9] is an emulation tool that is capable
of performing event driven simulation. It
enables users to simulate a multi-core
environment with error modularity close to
hardware. The represented model of
system can be viewed as a collection of

objects like CPU cores, caches, input and
output devices. M5sim uses Object, Event,
Mode driven architecture. Fig. 4 shows the
basic block diagram of M5sim.
Objects are components such as CPU,
memory, caches which can be accessed
through interfaces. Events involve clock
ticks that serve as interrupts for performing
specific functionality. There are two basic
modes of operation namely: full system
mode and system call emulation mode. The
major difference between the two modes of
operation is that, the later executes system
calls on a host machine whereas the former
emulates a virtual hardware whose
execution is close to the real system. In this
paper, all the experiments are conducted
using full system mode for alpha
instruction set architecture. For further
details regarding M5sim refer [10].

Figure 4.Block diagram of M5sim

SPLASH-2 benchmark
SPLASH-2 is a benchmark suite
comprising of a set of applications making
use of light weight threads and Argonne
National Laboratories parmacs macro.
With the help of this macro, SPLASH-2
invokes appropriate system calls instead of
the standard fork system call. SPLASH-2
benchmark suite comes with benchmarks
specific to applications and specific to
kernel. In this paper, we produce the results
obtained from the following three
benchmarks namely radix sort, Fast Fourier
Transformation (FFT) and Fast Multiple
pole Method (FMM). The two former
benchmarks come under kernel category
and the later comes under application
category. The benchmarks stated above are
selected based on their relevance to multi-
core processors and caches [11].

 Radix –
This is an iterative algorithm, making use
of all the processors. In a given iteration, a

processor generates a key and passes over
the key to the next processor. Once the key
passes on, the processor generates a local
histogram. The local histograms are
combined to obtain a global histogram.
Here, the steps involved in each iteration
for generating the key requires all to all
communication between processors.

 FFT –
The input to this benchmark consists of n
data points and n complex data points. The
data points are modeled as n x n matrix.
Each processor transposes a matrix of n/p x
n/p, where p is the number of processors.
This benchmark suite takes into
consideration caching and blocks cache
reuse for transpose of matrix.

 FMM –
This simulates a system of bodies over a
time-stamp. This benchmark uses
unstructured communication among the
system of bodies also referred to as cells. It

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-3, ISSUE-1, 2016
 203

computes the interactions among the cells
and passes the effects.

5. RESULTS
In order to analyze the impact of various
parameters on the performance of Multi-
core Architectures, we have varied the
number of cores, which in turn changes L2
cache size further we have varied directory
size from 64 to 2048 entries on a four node,
8 node 16 node and 64 node Chip
multiprocessor. All simulations in this
section are configured with same cache
size: 32KB L1I + 32KB L1D and 512KB
L2 cache per core. The L1 data cache miss
rate was calculated as dividing number of
L1D misses by data requests. It was
observed that L1 miss was greatly affected

by directory size. It again influences L2
requests and on-chip traffics. Therefore, it's
an important factor that determines CMP
performance. The number of L2 misses
increases as no of cores within the system
increases, nevertheless the miss rate
decrease to 40%-80% because of the larger
total L2 cache on chip. It was observed that
L2 miss rate decreases with increase in
director size. According to LRU policy, a
block will be chosen and replaced by a new
one. If this block is clean just ignore it and
process allocation without pause.
Otherwise the data block needed to be
written back to main memory. It was
observed that the replacements are
influence by directory and L2 size and on
the applications.

Figure 6. Average Network Latency

Figure 7. Cache size vs Execution time for Radix sort, FFT and fast multiple pole

method.

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-3, ISSUE-1, 2016
 204

With Hierarchical network model, we can
measure the average network latency in
detail. It goes from 14, 22 to 36 in there
configurations. For all structure, the
latency looks almost the same, which
depends on network topology and on-chip
link latency.

6. CONCLUSIONS
The current advanced submicron integrated
circuit technologies require us to look for new
ways for designing novel microprocessors
architectures to utilize large numbers of gates
and mitigate the effects of high interconnect
delays. In this paper we have discussed the
details of implementing both a wide,
dynamically scheduled superscalar processor
and a single chip multiprocessor. The alternative
S-CMP is composed of simpler processors and
can be implemented in approximately the same
area. We believe that the S-CMP will be easier to
implement and will reach a higher clock rate.
Results show that on applications that cannot be
parallelized the superscalar processor performs
marginally better than one processor of the
multiprocessor architecture. On applications
with large grained thread-level parallelism and
multiprogramming workloads the single chip
multiprocessor performs 50–100% better than
the wide superscalar processor. Novel
architectures like M-CMP that exploits large
bandwidth instead of extremely high frequency
to achieve the target throughput performance by
executing multiple threads concurrently in a
shallow with simple pipeline effectively hides
instruction and memory latency while utilizing
resources. Results shows that the performance of
these S-CMP and M-CMP depends on L2 cache
size, no of directory entry and no of processors
integrated on the single chip. Therefore, paper
presents an open area of research on CMP to
achieving high performance while maintaining
existing power and thermal envelopes
requirements and the designs must focus not only
on performance but rather on the aggregate
performance per watt, optimized interconnect
topology, novel intra and inter CMP cache
coherence protocol. Further performance gap
between processors and memory require
adaptive novel techniques to manage on chip
cache memory judiciously. In this paper, the
impact of cache memory subsystems on the
execution time for different instruction set

architectures has been discussed. In short, a
study of cache performance on multicore
architectures has been carried out using
simulators such as M5sim and CACTI with
ALPHA and X86 Instruction sets. The
simulation results are encouraging and provide
scope for further research in this area.

REFERENCES
[1] A. S. Leon et al., “The UltraSPARC T1
processor: CMT reliability,” in Proc. IEEE
Custom Integrated Circuits Conf., Sep.
2006, pp. 555–562.
[2] D. W. Anderson, F. J. Sparacio, and R.
M. Tomasulo, “The IBM System/360
model 91: Machine philosophy and
instruction-handling,” IBM Journal of
Research and Development, vol. 11, pp. 8–
24, 1967.
[3] T. C. Chen, “Where CMOS is going:
trendy hype vs. real technology,” presented
at the IEEE Int. Solid-State Circuits Conf.
(ISSCC), Sanrancisco, CA, Feb. 2006,
Plenary Session 1.1.
[4] M. Horowitz and W. Dally, “How
scaling will change processor
architecture,” in IEEE ISSCC Dig. Tech.
Papers, Feb. 2004, pp. 132–133.
[5] K. Farkas, N. Jouppi, and P. Chow,
“Register file considerations in
dynamically scheduled processors,”
Proceedings of the 2nd Int. Symp. on High-
Performance Computer Architecture, pp.
40–51, San Jose, CA, Feb 96.
[6] D. W. Wall, “Limits of Instruction-
Level Parallelism,” Digital Western
Research Laboratory, WRL Research
Report 93/6, November 1993.
[7] L. A. Barroso, K. Gharachorloo, R.
McNamara, A. Nowatzyk, S. Qadeer, B.
Sano, S. Smith,R. Stets, and B. Verghese.
Piranha: A Scalable Architecture Based on
Single-Chip Multiprocessing.In
Proceedings of the 27th Annual
International Symposium on
ComputerArchitecture, pages 282–293,
June 2000.
[8] Milo M.K. Martin, Daniel J. Sorin,
Bradford M. Beckmann, Michael R.
Marty, Min Xu, Alaa R. Alameldeen,
Kevin E. Moore, Mark D. Hill, and David
A. Wood, “Multifacet's General
Execution-driven Multiprocessor

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-3, ISSUE-1, 2016
 205

Simulator (GEMS) Toolset” Computer
Architecture News (CAN), pages 92-99,
November 2005.
[9] S.K. Reinahardt, N. Binkert, A. Saidii
and R.D.K. Lim, (2005), “Understandint
the M5 simulator”, ICSA tutorials and
workshop.
[10] M5 simulator, http://www.m5sim .org
[11] Steven Cameron Woo, Moriyoshi
Ohara, Evan Torrie, Jaswinder Pal Singh
and Anoop Gupta, (1995), “The SPLASH-
2 programs: Characterization and
methodological considerations”,
proceedings of 22nd Annual International
Symposium on Computer Architecture, pp.
24-36.

