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ABSTRACT 
This Paper presents analysis of various 
parameters affecting the performance of 
Multi-core Architectures like varying the 
number of cores, changes L2 cache size, 
further we have varied directory size from 64 
to 2048 entries on a 4 node, 8 node 16 node and 
64 node Chip multiprocessor which in turn 
presents an open area of research on multi-
core processors with private/shared last level 
cache as the future trend seems to be towards 
tiled architecture executing multiple parallel 
applications with optimized silicon area 
utilization and excellent performance. 
Advancements in multi-core have created 
interest among many research groups in 
finding out ways to harness the true power of 
processor cores. Recent research suggests that 
on-board component such as cache memory 
plays a crucial role in deciding the 
performance of multi-core systems. In this 
paper, performance of cache memory is 
evaluated through the parameters such as 
cache access time, miss rate and miss penalty. 
The influence of cache parameters over 
execution time is also discussed. Results 
obtained from simulated studies of multi-core 
environments with different instruction set 
architectures (ISA) like ALPHA and X86 are 
produced. Advances in Integrated Circuit 
processing allow for more microprocessor 
design options. As Chip Multiprocessor 
system (CMP) become the predominant 
topology for leading microprocessors, critical 
components of the system are now integrated 
on a single chip. This enables sharing of 
computation resources that was not 
previously possible. In addition the 

virtualization of these computation resources 
exposes the system to a mix of diverse and 
competing workloads. On chip Cache 
memory is a resource of primary concern as it 
can be dominant in controlling overall 
throughput. 
KEYWORDS: Chip Multiprocessor (CMP), 
Multiple-Chip Multiprocessor (M-CMP), 
access time, execution time, cache memory. 
 

1. INTRODUCTION 
Present sub-micron integrated circuit 
technologies have fueled microprocessor 
performance growth [3, 4]. Each new process 
technology increases the integration density 
allows for higher clock rates and offers new 
opportunities for micro-architectural innovation. 
Both of these are required to maintain 
microprocessor performance growth. Micro-
architectural innovations employed by recent 
microprocessors include multiple instruction 
issue, dynamic scheduling, speculative 
execution, instruction level parallelism [6] and 
non-blocking caches. In the past, we have seen 
the trend towards CPUs with wider instruction 
issue and support for larger amounts of 
speculative execution but due to fundamental 
circuit limitations and limited amounts of 
instruction level parallelism, the superscalar 
execution model provides diminishing returns in 
performance for increasing issue width. Faced 
with this situation, building further a more 
complex wide issue superscalar processor was 
not at all the efficient use of silicon resources and 
a better utilization of silicon area. So researchers 
came up with a novel architecture which was 
constructed from simpler processors then super-
scalar and multiple such processors are 
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integrated on a single chip popularly known as 
chip multiprocessor or multi-core processors. To 
understand the performance trade-offs between 
wide-issue processors and single chip 
multiprocessors in a more quantitative way, 
researchers had compared performance of a six-
issue dynamically scheduled superscalar 
processor with a 4 two-issue multiprocessor. 
Comparison has a number of unique features. 
The results show that on applications that cannot 
be parallelized, the superscalar micro-
architecture performs better than one processor 
of the multiprocessor architecture. For 
applications with fine grained thread-level 
parallelism the multiprocessor micro-
architecture can exploit this parallelism so that 
the super-scalar micro-architecture is at most 
10% better. For applications with large grained 
thread-level parallelism and multiprogramming 
workloads the multiprocessor micro-architecture 
performs 50–100% better than the wide super-
scalar micro-architecture. Today data centers 
powering web and transaction services face new 
requirements as they attempt to deliver higher 
levels of content-rich and high-bandwidth 
services to increasing numbers of users. These 
workloads share certain common characteristics. 
They exhibit high Thread-Level Parallelism 
(TLP) with multiple and independent processes 
running concurrently. Latest advancements in 
cache memory subsystems for multicore include 
increase in the number of levels of cache as well 
as increase in cache size. Traditional uni-core 
systems had a dedicated caching model whereas 
the recent multicore systems have a shared cache 
model. As a result of sharing and increase in the 
number of levels of cache, the cache access time 
increases and tends to consume a the effect of 
instruction set architectures on cache 
performance wherein different instruction set 
architectures influence the cache memory access 
time of programs. 
 

2. LITERATURE REVIEW 
2.1. Super-Scalar Processors 

A trend in the microprocessor industry has been 
the design of CPUs with multiple instruction 
issue and the ability to execute instructions out 
of program order. This ability, called dynamic 
scheduling uses hardware to track register 
dependencies between instructions; an 
instruction is executed, possibly out of program 
order, as soon as all of its dependencies are 
satisfied. The register dependency checking was 

done with a hardware structure called the 
scoreboard. IBM used register renaming to 
improve the efficiency of dynamic scheduling 
using hardware structures called reservation 
stations [2]. It is possible to design a dynamically 
scheduled superscalar microprocessor using 
reservation stations, the most recent 
implementations of dynamic superscalar 
processors have used a structure similar to the 
one shown in Figure 1, which shows three major 
phases of instruction execution in a dynamic 
superscalar machine they are fetch, issue and 
execute. 
The goal of the fetch phase is to present the rest 
of the CPU with a large and accurate window of 
decoded instructions. Three factors constrain 
instruction fetch: miss predicted branches, 
instruction misalignment, and cache misses. The 
ability to predict branches correctly is crucial to 
establishing a large, accurate window of 
instructions. However, good branch prediction is 
not enough. As previous work has pointed out, it 
is also necessary to align a packet of instructions 
for the decoder. Even with good branch 
prediction and alignment a significant cache miss 
rate will limit the ability of the fetcher to 
maintain an adequate window of instructions. 
Previous research have shown that over 60% of 
the instruction cache miss latency can be hidden 
on a database benchmark with a 64KB two way 
set associative instruction cache. In the issue 
phase, a packet of renamed instructions is 
inserted into the instruction issue queue. An 
instruction is issued for execution once all of its 
operands are ready. The results have shown a 
quadratic increase in the size of the instruction 
issue queue and researchers believe that the 
instruction issue queue will fundamentally limit 
the performance of wide issue superscalar 
machines. In the execution phase, operand values 
are fetched from the register file or bypassed 
from earlier instructions to execute on the 
functional units. The wide superscalar execution 
model will encounter performance limits in the 
register file, in the bypass logic and in the 
functional units. Wider instruction issue requires 
a larger window of instructions, which implies 
more register renaming. Not only must the 
register file be larger to accommodate more 
renamed registers, but the number of ports 
required to satisfy the full instruction issue 
bandwidth also grows with issue width. Again, 
this causes a quadratic increase in the complexity 
of the register file with increases in issue width. 
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Figure1. Dynamic Super Scalar Microprocessor 
 

The primary objective of this paper is the 
evaluation of the impact; caches have on 
different instructions set architectures. This is 
achieved by taking one particular benchmark 
from SPLASH2 and finding the access time on 
ALPHA ISA using M5sim and comparing the 
results with the results obtaining using CACTI 
on X86 ISA. The other issue that is addressed in 
this paper is the measure of execution time for 
varying sizes of cache. Also the impact of cache 
on execution time is demonstrated through 
simulation results using SPLASH-2 benchmark 
suite on M5sim. Here we have tried to find out 
whether benchmarks running on different 
instruction set architectures with a specific 
underlying hardware configuration produce 
results that are qualitatively similar. 
The access time plays a key role in determining 
the execution time of any process. In a multi-core 
environment as the number of levels of cache 
increases, the cache access time tends to 
consume a major percentage of memory latency. 
Since the state of art multi-core systems have 
almost three levels of caches, it becomes 
essential to understand the impact of hierarchical 
cache design. This motivated us to study the 
influence of cache on both access time and 
execution time. 

2.2. Single Chip Multiprocessor 
In today’s information era, commercial servers 
constitute the backbone of the global information 
and communication system infrastructure. Such 
servers run useful commercial applications that 

are essential to many aspects of everyday life 
such as banking, airline reservations, web 
searching and web browsing. As more people 
depend on these multi-threaded throughput-
oriented applications, demand for more 
throughputs is likely to increase for the 
foreseeable future. Commercial servers must 
therefore improve their performance by 
providing more throughputs to keep up with the 
application demand. 
Since commercial applications have abundant 
thread-level parallelism, commercial servers 
were designed as multiprocessor systems—or 
clusters of multiprocessors—to provide 
sufficient throughput. While traditional 
symmetric multiprocessors (SMPs) can exploit 
thread-level parallelism, they also suffer from a 
performance penalty caused by memory stalls 
due to cache misses and cache-to-cache 
transfers, both of which require waiting for long 
off-chip delays. Several researchers have shown 
that the performance of commercial applications 
and database applications in particular, is often 
dominated by sharing misses that require cache-
to-cache transfers. To avoid these overheads, 
architects proposed several schemes to integrate 
more resources on a single chip. Researchers 
have shown that chip-level integration of caches, 
memory controllers, cache coherence hardware 
and routers can improve performance of online 
transaction processing workloads by a factor of 
1.5. 
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Figure2. Single Chip Multiprocessor (CMP) 

 
2.3. Multiple-Chip Microprocessor (M-CMP) 
The increasing number of transistors per chip 
now enables Chip Multiprocessors (CMPs), 
which implement multiple processor cores on a 
chip. CMP-based designs provide high-
performance, cost-effective computing for 
workloads with abundant thread-level 
parallelism, such as commercial server 

workloads. Smaller-scale Single-CMP (S-CMP) 
systems, such as Stanford Hydra and Sun 
UltraSparc T1 [1], use a single CMP along with 
DRAM and support chips. Larger-scale 
Multiple-CMP (M-CMP) systems, such as 
Piranha [7] and IBM Power4, combine multiple 
CMPs to further increase performance. 

 
 
 

 
 
 
 
 
 
 

Figure3. Multiple-CMP 
 

3. SIMULATION METHODOLOGY AND 
APPLICATION 
For evaluating the performance of the novel 
CMP or M-CMP micro-architectures requires a 
way of simulating the environment in which we 
would expect these architectures to be used in 
real systems. We have used GEM5 [8] full 
system functional simulator extended with 
Multi-facet GEMS which is popularly used in the 
research community. The heart of GEM5 is the 
Ruby memory simulator. 

1. Execution time: The Ruby Cycle 
is our basic metric of simulated time 
used in the Ruby module of the 
GEMS simulator. The Ruby module 
is the basic module for the memory 
system configuration and 
interconnection network design The 
Ruby cycles are the recommended 
performance metric in GEMS. 

2. L1 cache misses: As the name 
says it represents the misses of L1 
cache. It's calculated by dividing 
request missed by number of 
requests (Instruction + Data). It's an 
important metric for cache 
hierarchy. 
3. L2 miss/miss rate: This 
represents the total misses and miss 
rate of the L2 cache. It is calculated 
from the number of requests issued 
to the L2 and the misses of all banks 
of L2. 
4. L2/Dir replacement: Number of 
replacements of L2/Directory 
entries. It's caused by capacity 
misses and conflict misses. 
5. Miss latency average: Average of 
the L1 miss latency in Ruby cycles. 
It is measured from the moment a 
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memory request is issued to the 
moment when the date is retrieved. 
6. Memory requests: Number of reads  

and writes issued to main memory. 
7. Applications: The benchmark 
used is a multithreaded 
implementation of a simulation of 
3D Lattice-Boltzmann magneto-
hydrodynamics (in other words, 
plasma turbulence). Pthreads are 
used to implement threading. 

 
4. TOOLS USED  
M5SIM 
M5 [9] is an emulation tool that is capable 
of performing event driven simulation. It 
enables users to simulate a multi-core 
environment with error modularity close to 
hardware. The represented model of 
system can be viewed as a collection of 

objects like CPU cores, caches, input and 
output devices. M5sim uses Object, Event, 
Mode driven architecture. Fig. 4 shows the 
basic block diagram of M5sim. 
Objects are components such as CPU, 
memory, caches which can be accessed 
through interfaces. Events involve clock 
ticks that serve as interrupts for performing 
specific functionality. There are two basic 
modes of operation namely: full system 
mode and system call emulation mode. The 
major difference between the two modes of 
operation is that, the later executes system 
calls on a host machine whereas the former 
emulates a virtual hardware whose 
execution is close to the real system. In this 
paper, all the experiments are conducted 
using full system mode for alpha 
instruction set architecture. For further 
details regarding M5sim refer [10]. 

 
 

 
 

 
 
 
 
 
Figure 4.Block diagram of M5sim 

 
SPLASH-2 benchmark 
SPLASH-2 is a benchmark suite 
comprising of a set of applications making 
use of light weight threads and Argonne 
National Laboratories parmacs macro. 
With the help of this macro, SPLASH-2 
invokes appropriate system calls instead of 
the standard fork system call. SPLASH-2 
benchmark suite comes with benchmarks 
specific to applications and specific to 
kernel. In this paper, we produce the results 
obtained from the following three 
benchmarks namely radix sort, Fast Fourier 
Transformation (FFT) and Fast Multiple 
pole Method (FMM). The two former 
benchmarks come under kernel category 
and the later comes under application 
category. The benchmarks stated above are 
selected based on their relevance to multi-
core processors and caches [11]. 

 Radix –  
This is an iterative algorithm, making use 
of all the processors. In a given iteration, a 

processor generates a key and passes over 
the key to the next processor. Once the key 
passes on, the processor generates a local 
histogram. The local histograms are 
combined to obtain a global histogram. 
Here, the steps involved in each iteration 
for generating the key requires all to all 
communication between processors. 

 FFT –  
The input to this benchmark consists of n 
data points and n complex data points. The 
data points are modeled as n x n matrix. 
Each processor transposes a matrix of n/p x 
n/p, where p is the number of processors. 
This benchmark suite takes into 
consideration caching and blocks cache 
reuse for transpose of matrix. 

 FMM –  
This simulates a system of bodies over a 
time-stamp. This benchmark uses 
unstructured communication among the 
system of bodies also referred to as cells. It 
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computes the interactions among the cells 
and passes the effects. 
 

5. RESULTS 
In order to analyze the impact of various 
parameters on the performance of Multi-
core Architectures, we have varied the 
number of cores, which in turn changes L2 
cache size further we have varied directory 
size from 64 to 2048 entries on a four node, 
8 node 16 node and 64 node Chip 
multiprocessor. All simulations in this 
section are configured with same cache 
size: 32KB L1I + 32KB L1D and 512KB 
L2 cache per core. The L1 data cache miss 
rate was calculated as dividing number of 
L1D misses by data requests. It was 
observed that L1 miss was greatly affected 

by directory size. It again influences L2 
requests and on-chip traffics. Therefore, it's 
an important factor that determines CMP 
performance. The number of L2 misses 
increases as no of cores within the system 
increases, nevertheless the miss rate 
decrease to 40%-80% because of the larger 
total L2 cache on chip. It was observed that 
L2 miss rate decreases with increase in 
director size. According to LRU policy, a 
block will be chosen and replaced by a new 
one. If this block is clean just ignore it and 
process allocation without pause. 
Otherwise the data block needed to be 
written back to main memory. It was 
observed that the replacements are 
influence by directory and L2 size and on 
the applications. 

 
 
 
 
 

 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

 
Figure 6. Average Network Latency 

 
 
 
 
 
 
 
 
 

 
 
Figure 7. Cache size vs Execution time for Radix sort, FFT and fast multiple pole 

method. 
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With Hierarchical network model, we can 
measure the average network latency in 
detail. It goes from 14, 22 to 36 in there 
configurations. For all structure, the 
latency looks almost the same, which 
depends on network topology and on-chip 
link latency. 
 

6. CONCLUSIONS 
The current advanced submicron integrated 
circuit technologies require us to look for new 
ways for designing novel microprocessors 
architectures to utilize large numbers of gates 
and mitigate the effects of high interconnect 
delays. In this paper we have discussed the 
details of implementing both a wide, 
dynamically scheduled superscalar processor 
and a single chip multiprocessor. The alternative 
S-CMP is composed of simpler processors and 
can be implemented in approximately the same 
area. We believe that the S-CMP will be easier to 
implement and will reach a higher clock rate. 
Results show that on applications that cannot be 
parallelized the superscalar processor performs 
marginally better than one processor of the 
multiprocessor architecture. On applications 
with large grained thread-level parallelism and 
multiprogramming workloads the single chip 
multiprocessor performs 50–100% better than 
the wide superscalar processor. Novel 
architectures like M-CMP that exploits large 
bandwidth instead of extremely high frequency 
to achieve the target throughput performance by 
executing multiple threads concurrently in a 
shallow with simple pipeline effectively hides 
instruction and memory latency while utilizing 
resources. Results shows that the performance of 
these S-CMP and M-CMP depends on L2 cache 
size, no of directory entry and no of processors 
integrated on the single chip. Therefore, paper 
presents an open area of research on CMP to 
achieving high performance while maintaining 
existing power and thermal envelopes 
requirements and the designs must focus not only 
on performance but rather on the aggregate 
performance per watt, optimized interconnect 
topology, novel intra and inter CMP cache 
coherence protocol. Further performance gap 
between processors and memory require 
adaptive novel techniques to manage on chip 
cache memory judiciously. In this paper, the 
impact of cache memory subsystems on the 
execution time for different instruction set 

architectures has been discussed. In short, a 
study of cache performance on multicore 
architectures has been carried out using 
simulators such as M5sim and CACTI with 
ALPHA and X86 Instruction sets. The 
simulation results are encouraging and provide 
scope for further research in this area. 
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