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ABSTRACT  
The purpose of this work is to 
thermodynamic analysis of Newtonian and 
laminar flow along an inclined heated plate 
with effects of hydromagnetic and porous 
media in two regions. The upper surface of 
the liquid film is considered free and 
adiabatic. The effect of heat generation by 
viscous dissipation is included in the 
analysis. The influence of the viscous 
dissipation on velocity, temperature and 
entropy generation is examined.  
Index Terms: Inclined plate, 
Thermodynamic analysis, viscous 
dissipation 
I. INTRODUCTION 
The study of flow through porous medium is 
important, because of its interesting 
application in diverse field of science, 
engineering and technology. The practical 
application are in the percolation of water 
through soil, extraction and filtration of oil 
from wells, the drainage of water, irrigation 
and sanitary engineering and also in the inter 
disciplinary field, such as Biomedical 
engineering etc. The lung alveolar is an 
example that finds application in an animal 
body. The classical Darcy’s law Musakat 
(1937) states that the pressure gradient pushes 
the fluid against the body forces exer1ted by 
the medium which can be expressed as,  
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The law gives good results in the situations when 
the flow is unidirectional or the flow is at low 
speed. In general the specific discharge in the 
medium need not be always low. As the specific 
discharge increase, the convective force 
developed and the internal stress generates in the 
fluid due to viscous nature as fiber glass, papers 
of dandelion the flow occurs even in the absence 
of the pressure gradient. Modification for the 
classical Darcy’s law was considered by the 
Beverse & Jaseph (1967), Saffman (1971) and 
others. A generalized Darcy’s law proposed by 
Brinkman (1947) is given by
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where µ and K are coefficient of viscosity of the 
fluid and permeability of the porous medium.  
The generalized equation of momentum for the 
flow through the porous medium is 
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The classical Darcy’s law helps in studying flows 
through porous medium. In the case of highly 
porous medium such as papers of dandelion etc., 
the Darcy’s law fails to explain the flow near the 
surface in the absence of pressure gradient. The 
Non-Darcian approach is employed to study the 
problem of flow through highly porous medium 
by several investigators. Charyalu & 
Ramacharyulu (1978), Charyulu (1997) and 
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Singh (2002) etc. studied the flow employing 
Brinkman Law (1947) for the flow through 
highly porous medium.  
I1n the present problem, we are considering the 
effect of magnetic field on flow of a Newtonian 
fluid between parallel plates with porous lining. 
The flow becomes two layered flow one in the 
porous region and other in the clear region such 
type of a flows find application in the inter-
disciplinary fields such as Biomedical 
engineering etc. The flow of the blood is one such 
application. The blood may be represented as a 
Newtonian fluid and the flow of blood is two 
layered Lightfoot (1974) and Shukla et al. (1980). 
The effect of magnetic field and the coefficient of 
porous medium and the effect of the thickness of 
the porous lining on the physical quantities of the 
fluid flow are discussed. 

II. MATHEMATICAL FORMULATION 

The Newtonian in compressible fluid flow is 
considered between two infinite parallel plates 
y=±h. The two parallel plates having lining of 
porous medium of thickness δ. The length of the 
plates lies parallel to the x-axis and y-axis is 
perpendicular to the length of the plates. The 
velocity of the fluid is given as (Up, 0, 0) in the 
porous region and (Uc, 0, 0) in the non-porous 
1region. The equation of continuity is satisfied 
with the choice of the velocity. The equation of 
motion in the two regions is given by, 

    
Figure : 1 Modal of the problem 

     The Brinkman momentum equation: 
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Introducing the following dimensionless 
variables for the velocity and transverse distance;  
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Where M is the magnetic parameter, Pe is the 
Peclet number, k is the thermal conductivity and 
ρ be the fluid density. 
The dimensionless equation (4) becomes   
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The dimensionless equation (5) becomes   
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The Boundary conditions: 
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The velocity profiles are obtained by integrating 
equation (7) and (9) with using boundary 
conditions (11), we get the solutions; 
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where Up is the velocity for porous region and 
Uc is the velocity for non porous region. 
 

III. THE STEADY-STATE 
THERMAL ENERGY EQUATION 
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 Constant heat flux at the lower wall: 
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Adiabatic wall:    
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Where T is the absolute temperature and T0 is 
the temperature at the inlet. 
Using the following dimensionless variables for 

temperature 
qh
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equation can be written in the following 
becomes dimensionless form 
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To get a solution of (18), applying the method of 
separation of variables and we get the solutions 
as  
Case (i):  The dimensionless temperature (θp) 
for Porous region: 
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Case (ii): The dimensionless temperature (θc) 
for Non Porous region: 
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IV. ENTROPY GENERATION RATE 
According to Mahmud and Fraser [6], the entropy 
generation rate is define as 
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The dimensionless entropy generation number 
may be defined by the following relationship:

 
2

0
2

2 3                                      s G

k
N E

q
T

In terms of the dimensionless velocity  and 
temperature, the entropy generation number 
becomes 
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Where the dimensionless parameters Br = 
(ρ2g2sin2θh3)/qµ is the Brinkman number, Ω= 
(qh/kT0) the dimensionless temperature 
difference.  The viscous dissipation parameter (B 
= Br Ω-1) is defined as the product of the 
Brinkman number and the inverse of 
dimensionless temperature difference .The 
viscous dissipation parameter is an important 
dimensionless number for the irreversibility 
analysis. It determines the relative importance of 
the viscous effects for the entropy generation. Nx 
and Ny are the entropy generation by heat transfer 
due to both axial and transverse heat conduction 
respectively and Nf  is the entropy generation due 
to fluid friction. 
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Case (i): Entropy generation rate (NSp) for 
Porous region: 
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Where Ns p is the entropy generation rate per unit 
volume for porous region, NXp is the   entropy 
generated due to heat transfer in the axial 
direction for porous region, NY p is the entropy 
generated due to heat transfer in the transfer 
direction for porous region and NF p is the entropy 
generated due to the fluid friction for porous 
region. 

Case (ii): Entropy generation rate (NSnp) for 
Non Porous region: 
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Where Nsnp is the entropy generation rate per unit 
volume for non porous region, NXnp is the entropy 
generated due to heat transfer in the axial 
direction for non porous region and NYnp is the 
entropy generated due to heat transfer in the 
transfer direction for non porous region, NF np is 
the entropy generated due to the fluid friction for 
non porous region. 

V. RESULT AND DISCUSSIONS 

It is clear from the Figure 2 that velocity of 
porous region (Up) decrease in convergent 
manner on increasing magnetic parameter (M).if 
permeability parameter is taken constant (K=1). 
In Figure 3 that velocity of porous region (Up) 
increase in convergent manner on increasing 
permeability parameter (K), for constant 
magnetic parameter (M=1). 
 The velocity of non porous region (UC) profile 
for different values of magnetic parameter (M) is 
examine in Figure 4 and for different values of 
permeability parameter (K) it is clear that in 
Figure 4 if the values of magnetic parameter (M) 
is increase then velocity of non porous region 
decrease, for constant permeability parameter 
(K=1) and in Figure 5, the velocity of non porous 

region increase on increasing permeability 
parameter (K).for constant magnetic parameter 
(M=1). 
 Figure 6 shows the divergent variation of 
temperature of porous region opposed to Y axis 
for different values of group parameter (r).it clear 
that in figure if the value of group parameter (r) 
is increase then the temperature of porous region 
is decreases with constant value of  X=1. In figure 
7 the temperature of porous region rises along 
with the increment in the different values of X for 
constant value of group parameter (r = 0.2). More 
over lines are showing variation of temperature 
along with X is almost parallel to each other. 
In Figure 8 the temperature of non porous region 
rises along with the increment in the different 
values of X for constant value of group parameter 
(r = 0.2) and δ/h = 0.2. More over lines are 
showing variation of temperature along with X is 
almost parallel to each other. In Figure 9, rise of 
the temperature of nonporous region is noticed if 
value of group parameter (r) increases for 
constant value of X=0.2 and the height of non 
porous region to the height of medium bears a 
thickness of porous region (δ/h = 1). In Figure 10 
the temperature of non porous region increases if 
the value of δ/h is increases for constant values of 
X = 0.2 and r = 0.2.  
In Figure 11, the entropy generation rate of 
porous region (Nsp) increases on increasing group 
parameter (BrΩ-1=B) in a very narrow region. 
Also initial variation of entropy generation rate of 
porous region (Nsp) is almost coinciding with 
each other. For constant value of Pe =100 X = 0.2, 
r = 0.2. In Figure 12, the entropy generation rate 
of porous region (Nsp) increases on increases 
group parameter (r) with the constant values of 
Pe=100 and group parameter (BrΩ-1= 0.2). As 
well as initial variations are closer and latter 
variations are wider.In Figure 13, the entropy 
generation rate of non porous region (Nsnp) 
increases on increasing the value of group 
parameter (BrΩ-1=B). 
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Also initial variation of entropy generation rate 
of non porous region (Nsnp) is coinciding with 
each other. For constant value of Pe=100, δ/h=1, 
r =1. The spartial distribution of the entropy 
generation rate of non porous region (Nsnp) for 
different values of group parameter (r) is plotted 
in Figure 14. It is interesting to note that entropy 
generation rate decreases in transverse direction 
and decreases with an increase in group 
parameter (r).it is clear in figure that the entropy 
generation rate of non porous region (Nsnp) 
almost same at both the terminal points of the 
channel. It shows that the negligible effects of 
magnetic field and porous permeability at 
terminal points of the channel. Figure 15 shows 
the spartial distribution of entropy generation 
rate of non porous region (Nsnp) for different 
values of the thickness of porous region (δ/h).for 
all the values of δ/h the entropy generation rate 
decreases in the transverse direction and increase 
with an increase in the values of δ/h . Figure 
shows the entropy generation rate of non porous 
region (Nsnp) almost same at both the terminal 
points of the channel. It is clear that the 
negligible effects of different values of δ/h at 
terminal points of the channel. 

VI. CONCLUSION: 

This paper presents the application of the second 
law of thermodynamics analysis of Newtonian 
flow along an inclined heated plate with effects 
of hydromagnetic and porous media in two 
regions. The velocity and temperature profiles 
are obtained and used to evaluate the entropy 
generation numbers for porous and non porous 
region. For different values of the group 
parameters, the entropy generation rate is 
function of Brinkman number as shown by the 
graph which gradually increases symmetrically 
about the centerline in the transverse direction 
from the lower wall towards the upper wall. This 
clearly implies that viscous dissipation has 
negligible effect on both regions i.e. Porous and 
Non porous region the entropy generation rate at 
the initial part of a channel. 

  
Figure 2: Velocity profile of Porous region for 

different values of magnetic field (M). 

 

 Figure 3: Velocity profile of Porous region for 
different values of permeable parameter (K).  

 
Figure 4: Velocity profile of Non Porous region for 

different values of magnetic field (M). 

 

Figure 5: Velocity profile of Non Porous region for 
different values of permeable parameter (K). 
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Figure 6: Temperature profile of Porous region for 
different values of viscosity index (r). 

 

Figure: 7: Temperature profile of Porous region for 
different values of axial distance (X). 

 

Figure: 8: Temperature profile of Non Porous region 
for different values of axial distance (X). 

 

Figure: 9: Temperature profile of Non Porous region 
for different values of viscosity index r. 

 

Figure: 10: Temperature profile of Non Porous region 
for different values of porous region thickness δ/h. 

 

Figure: 11: Entropy generation rate profile of Porous 
region for different values of group parameter B. 

 

Figure: 12: Entropy generation rate profile of Porous 
region for different values of viscosityindex r. 

 

Figure: 13: Entropy generation rate profile of Non 
Porous region for different values of group parameter 
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Figure: 14: Entropy generation rate profile of Non 
Porous region for different of viscosity index r. 

 

Figure: 15: Entropy generation rate profile of Non Porous 
region for different values of porous region thickness δ/h. 
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