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Abstract 
To ensure asset reliability the industries have 
been focused on the condition based 
maintenance (CBM). Fault detection and 
diagnosis are two of three condition based 
maintenance mainstays. Rolling Element is 
one of the major and essential components of 
rotating machinery. Thus researchers have 
been shown their interest in rolling element 
bearing fault detection and diagnosis for few 
decades. They used mostly the bearing 
vibration as fault characteristics for fault 
detection and used Artificial Neural 
Networks (ANNs) for bearing fault 
classification as well. The process of fault 
classification involves some Neural Network 
(NN) geometry and parameters, thus is not 
quits simple. There is no any predefined 
formula to select the optimal values for these 
network parameters. These parameters affect 
the reliability of fault diagnosis system. This 
paper investigates the effects of NN geometry 
and parameters on rolling element bearing 
fault diagnosis. The vibration signals are 
recorded for normal bearings, bearing with 
inner race fault, outer race fault and rolling 
ball fault from an appropriate experimental 
setup. The RMS vibration features are 
calculated then using Fast Fourier Transform 
(FFT). Rolling element bearing faults are 
classified as same using Back-Propagation 
Neural Network (BPNN) and the results are 
simulated.  
Keywords—Artificial Neural Network, 
back-propagation algorithm, Condition 

Based Maintenance (CBM), Fast Fourier 
Transform (FFT).  

I. INTRODUCTION 

 In a production system 60 to 75 % product cost 
accounts for maintenance and support activities 
which make the systems reliability a major issue. 
System’s reliability depends upon Condition 
Based Maintenance (CBM) strategy. For many 
production systems the old maintenance 
strategies like break-down and preventive hold 
not good any time. These days the predictive 
maintenance strategy has been arisen in the form 
of an effective mainstay of CBM. Predictive 
maintenance offers online as well as offline 
condition monitoring of the machine or part and 
insures the condition of machine prior to any 
incipient part failure or major break-down which 
causes the unplanned shutdown. It also provides 
sufficient time to repair in comparison with 
other. 
 Rolling element bearing is one of the essential 
components in the vast majority of rotating 
machines. Rolling element bearing failure may 
affects the quality of product line working and 
create wastes in many ways. Thus rolling 
element bearing failure results in decrease 
product quality and increase product cost to the 
customer. Rolling element bearing may get 
defect due to any misalignment, looseness, 
improper installation, assess of load, poor 
lubrication, contamination, electric passage, 
insertion of foreign matter and progressive wear 
as listed in [1]. Rolling element bearing defects 
are classified as firstly on the basis of fault 
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location and secondly on the basis of their fault 
type, It may be single point defect or it may be 
multi point defect as in [2]. Numbers of 
researchers are interested in finding the location 
of fault. 
 The main purpose of installing the rolling the 
rolling element bearing in machinery is to hold 
or support an element and transmit the moment 
of the load to the another element. When a 
machine rotates by drive, the shaft bearing 
response to the vibrations of the drive is main 
cause of vibration. All drives have nature to 
vibrate (Vibrations cannot be eliminate) and 
itself is not a fault. However excess of vibration 
can be a symptom of a developing fault and an 
early warning of machine failure. Many methods 
for rotating machinery fault diagnosis are 
presented in the literature on the basis of their 
different fault characteristics listed in [3]. In the 
present industrial scenario 70% bearing 
vibration, 20% wear particles are used as fault 
characteristics & remaining 10% covers all the 
other non-destructive testing including eddy 
current measurement as in [4]. By taking the 
vibration signals as characteristics fault features 
the fault detection and diagnosis of gear 
transmission system has been performed in [5]. 
When the signal is analyzed as a function of time 
then analysis is called time domain analysis. 
Time domain analysis has been performed to 
monitor the bearing health condition in [6]. This 
technique has been further subdivided as time 
waveform analysis and waveform indices as in 
[5]. How to set up, acquire and manipulate time 
waveform data is detailed in [7]. Time indices 
are listed as standard deviation, Root Mean 
Square (RMS) value, peak value, crest factor, 
shape factor, impulse factor, clearance factor, 
skewness and kurtosis etc. and calculated in [8]. 
In analyzing the signal in time domain one 
cannot find at what frequency an event occurred. 
Hence researchers have been focused on en 
effective technique (frequency domain analysis) 
for many decades. Frequency domain analysis 
employs Fast Fourier Transform (FFT) to 
transforms the time domain signal in frequency 
domain. FFT is used in this paper to extract 
features from row vibration signals. Rest of the 
paper is organized as follows: section 2 
discusses the data acquisition. Section 3 
describes the back-propagation algorithm. 
Section 4 discusses the Artificial Neural 
Network. Section 5 discusses NN geometry. 

Section 6 discusses NN parameters. Section 7 
discusses results and analysis. Section 8 contains 
general discussion.  Section 9 concludes the 
paper. 

II. DATA ACQUISITION 

The experimental setup consists of a Machine 
Fault Simulator (MFS) having an induction 
motor coupled with a rotating shaft supported 
with Rolling Element Bearings (REBs), CSI 
accelerometer, CSI 2400 dynamic signal 
analyzer with cable and PC interface, vibscanner 
to measure shaft speed in RPM and MATLAB 
R2009a software. The details of specimen (Self 
alignment rolling element bearing) are as 
follows: 
Inner race dia (d) =25 mm 
Outer race dia (D) =52 mm 
Contact angle (β) =Zero degree 
Number of balls (Nb) =13 per row 
Ball diameter (db) =7.5 mm 
Pitch diameter (dp) =38.5 mm 
 The defects are produced artificially as 
follows: 

TABLE I 
Bearing defect geometry parameters 

S. 
No.

Defect 
type

Location and 
number of defects 

Defect 
size

1 Ball 
Defect 

2 balls in one row, 
one by one 

1*1mm, 
0.1 mm 
deep 

2 Inner 
Race 
Defect 

3 defects at each 
row at pitch a pitch 
of 3 mm, both rows 
with defects 

1*1mm, 
0.2 mm 
deep 

3 Outer 
Race 
Defect 

3 defects at each 
row at pitch a pitch 
of 3 mm, both rows 
with defects 

1*1mm, 
0.2 mm 
deep 

These listed faults cause their certain fault 
frequency to appear in the bearing vibrations 
hence there is one characteristic fault frequency 
associated with each of the four parts of the 
bearing. The fault frequencies are calculated, 
using the equations as in [9] 

[ {1 ( cos( )) / }] / 2i b r b cF N F d d                           (1) 

[ {1 ( cos( ))/ }]/ 2o b r b cF N F d d                             (2) 
2( / ) {1 ( cos( ) / ) }b c b r b cF d d F d d                         (3) 

where di is inner diameter, dc is pitch circle 
diameter, db is diameter of ball, Nb is number of 
balls, β is contact angle of ball, and Fr is the rotor 
frequency in Hz and Fi=Inner race fault 
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frequency, Fo=Outer race fault frequency and 
Fb=Ball fault frequency. 
 Using the formulae (1), (2), and (3) and 
bearing geometry parameters listed in TABLE I, 
characteristics fault frequencies corresponding 
to each fault type are calculated. Time domain 
vibration signals (figure 1) are acquired at a 
sampling rate of 7680 Hz from the experimental 
setup for normal bearings, bearing with inner 
race fault, outer race fault and rolling ball fault 
by replacing one by one. 

 
Figure 1. Vibration signals of healthy bearing (a), 
inner race defect (b), outer race defect (c), rolling ball 
defect (d). 

III. BACK PROPAGATION ALGORITHM 

The back-propagation algorithm is used to 
train the neural network in this paper follows the 
steps as in page 53 [10] 

STEP 1: Normalize the input and output with 
respect to their maximum values. Neural 
network perform better if input and output lie 
between .1 and .9 
STEP 2: Assume the number of neurons in the 
hidden neurons in the hidden layer to lie between 
1<m<21 
STEP 3: [V] represents the weights of synapses 
connecting input neurons and hidden neurons 
and [W] represents weights of synapses 
connecting hidden and output neurons. Initialize 
the weight to small random values usually 
between -1 to 1 for our problem λ is taken as 1 
and the threshold value θ is taken as zero. 
[V]0 =[random weights] 
[W]0 =[random weights] 
[V]0 =[W]0 =[0] 
STEP 4: For the training data, present one set of 
inputs and outputs. Present the pattern to the 
layer {I}I as input to the input layer. By using 
linear activation function, the output of the input 
layer may be evaluated as 
{ } { }I IO I  

 1 x 1       1 x 1 
STEP 5: Compute the inputs to the hidden layer 
by multiplying corresponding weights of 
synapsed as 
{ } [ ] { }T

H II V O  

m x 1     m x 1   1 x 1 
STEP 6: Let the hidden layer units evaluate the 
output using the sigmoidal function as  

.

{ } 1/ (1 exp( ))

.
H HiO I

 
    
  

 

                                 m x 1 
STEP 7: Computes the inputs to the output layer 
by multiplying corresponding weight of 
synapses as 
{ } [ ] { }T

o HI W O  

n x 1       n x m  m x 1 
STEP 8: Let the output layer units evaluate the 
output using sigmoidal function as 

.

{ } 1/ (1 exp( ))

.
o ojO I

 
    
  

 

The above is the network output. 
STEP 9: Calculate the error and the difference 
between the network output and desired output 
as for the ith training set as 

2{ ( ) } /P
j ojE T O n    
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STEP 10: Fond { }d  as 

.

{ } ( ) (1 )

.
k ok ok okd T O O O

 
    
  

 

                                 n x 1 
STEP 11: Find [ ]Y  matrix as 

[ ] { }HY O d  

m x n   m x 1 1 x n 
STEP 12: Find 1[ ] [ ] [ ]t tW W Y       
                          m x n                m x n        m x n 
{ } [ ]e W d  

m x 1  m x n n x 1 
.

{ } ( )(1 )

.
i Hi Hid e O O

 
   
  

 

                   m x 1       m x1 
STEP 13: Find [X] matrix as 

[ ] { } { }I IX O d OI d    

1 x m     1 x 1  1 x m      1 x 1  1 x m 
STEP 14: Find 1[ ] [ ] [ ]t tV V X      
                         1 x m       1 x m    1 x m 
STEP 15: Fin  1 1[ ] [ ] [ ]t t tV V V     

1 1[ ] [ ] [ ]t t tW W W     
STEP 16: Find error rate as 
Error rate / ( )PE nset   

STEP 17: Repeat step 4-16 until the convergence 
in the error rate is less than the tolerance value 
Once the process converges the final weights 
should be stored in a file. 

IV. ARTIFICIAL NEURAL NETWORK  

In a biological brain billions of neurons are 
responsible for the taken decision from the 
information provided by sense organs. Means 
the neurons are the main unit of a biological 
brain and convert input into output by forming a 
complex network between themselves and 
updating the weights. This idea of forming 
artificial neurons and updating the weights are 
implemented by the researchers in the field of 
technology to make decisions. Thus, the 
Artificial Neural Network (ANN) is the 
prototype of biological brain. Neural networks 
are formed by an input layer of neurons, an 
output layer of neurons and definite number of 
hidden layers of hidden neurons as shown in 
figure 2. ANNs have learning and generalization 

abilities. Numerous variations of ANNs have 
been proposed by the researchers in the literature 
on the basis of their learning algorithms, ANN 
structure, Transfer Function (TF) and training 
parameters etc. To classify the bearing faults on 
the basis of their location Back-Propagation 
Neural Network (BPNN) with single hidden 
layer is used in this present work.  

 
Figure 2 ANN structure 

V. NEURAL NETWORK GEOMETRY 

Neural networks (NN) have been used 
universally in function approximation.  Hidden 
layer completes the neural network structure 
(Shown in figure 2) and constitutes the numbers 
of hidden neurons. There is no any criterion to 
select the optimal number of hidden neurons. 
Thus optimizing the number of hidden neurons 
for greater accuracy is one of the major & 
challenging tasks, hence a problem in hand.  
Usages of excessive hidden neurons may cause 
over fitting. Means the neural networks 
over-estimate the complexity of the given 
problem, which decreases the generalization 
capability, hence leads to significant changes in 
the prediction performance.  

VI. NEURAL NETWORK PARAMETERS 

A. Learning coefficient 

Learning coefficient determines the size of the 
weight adjustment and influence the 
convergence rate. Negative value of learning 
coefficient causes the change of weight vector 
from the ideal weight vector. It cannot be zero; if 
learning coefficient is zero then no any learning 
takes place. If its value is greater than 1, the 
weight vector will oscillate about its ideal 
position. The choice of smaller learning 
coefficient may increase convergence time and 
choice of smaller value may slow the 
convergence process as in page 51 [10]. Hence 
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we must keep learning coefficient constant 
through all the iterations.  

B. Momentum coefficient 

Momentum term is also used to reduce the 
training time and enhance the training process. 
The effects of momentum coefficient on weight 
change are given by the equation page 52 [10] 

1[ ] ( / ) [ ]t tW E W W                                            
(4) 
Where 1[ ]tW   is new weight,   [ ]tW  is the 
previous weight,  /E W   is change in error 
with change in weight,   is learning coefficient 
and   is momentum coefficient 

The momentum coefficient produces damping 
effect on searching procedure and may be 
considered as approximation to second order 
method. Thus the momentum term generally 
improves convergence of the back-propagation 
algorithm by using information from the 
previous iteration. 

VII. RESULTS AND ANALYSIS 

76 RMS features (19 for healthy bearing and 
19 for each type of faulty bearing) are extracted 
by employing FFT and then using an IIR band 
pass filter to extract frequencies of interest at 
three nodes as (725-745), (381-387), (773-793). 
Trained the Back-Propagation Neural Network 
(BPNN) for different values of number of 
neurons in hidden layer, learning coefficient and 
momentum coefficient then results are simulated 
and plotted as error rate versus number of  
hidden neurons (Figure 3), error rate versus 
learning rate (Figure 4), error rate versus 
momentum rate (Figure 5). Bearing conditions 
are simulated as Healthy bearing, bearings with 
inner race fault, outer race fault and rolling ball 
fault (Figure 6).  

 

 

 
Figure 3 Error verses hidden neurons (a), error 
verses learning coefficient (b), error verses 
momentum coefficient (c) 

 
Figure 4 Bar graph showing bearing fault 

classification 

VIII. DISCUSSION 

Figure 3(a) shows very poor performance for 
two hidden neurons and abrupt improvement 
sequentially for 3, 4, 5, and 6 neurons. Whereas 
the best performance shown for 10 neurons. 
Figure 3(b) shows the small increments and 
decrements in the performance for the value of 
learning coefficient from 0 to 0.45 and large ups 
and downs thereafter up to 1. The best 
performance has shown for 0.55. Figure 3(c) 
shows yielding poor performance for the value 
of momentum coefficient at 0.2. Two 
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performance increasing gradients for 0.36-0.65 
and 0.70-1.00 also have been shown. The best 
performance has met for 1.00. Figure 4 shows 
the bearing fault classification at optimal values 
of hidden neuron, learning coefficient and 
momentum coefficient as healthy bearing, inner 
race fault, outer race fault, and rolling ball fault. 

IX. CONCLUSIONS 

Time domain vibration signals are recorded 
from experimental setup, transformed to 
frequency domain using FFT and RMS features 
are extracted using an elliptic IIR band pass 
filter. This paper generally concludes as follows: 
1) Features are trained using BPNN and results 

are simulated.  
2) Bearing faults are successfully classified as 

Inner Race Fault (IRF), Outer Race Fault 
(ORF), and Rolling Ball Fault (RBF). 

3) Investigated the effects of (NN) geometry 
and parameters on bearing fault diagnosis.  
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