

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-3, ISSUE-1, 2016
89

DESCRIBING AND VERIFYING WEB SERVICES
COMPOSITION USING PI-CALCULUS

Saurabh Agrawal1, Sumit Tiwari2, Sumit Pathak3
1,2P. G. Scholar, CSE Dept., SRCEM Banmore,(M.P.) India

3Asst. Prof., Department of Computer Science,IPS-CTM Gwalior, India
Email: toc.saurabh@gmail.com1, sumitgwalior23@gmail.com2, sumitpathakcs@gmail.com3

ABSTRACT
This paper introduces a formal method for
describing and verifying web services
composition using Pi-Calculus. Web services
are the basic unit of service oriented
architecture (SOA). They are software
applications that are implemented and
published by web service providers and
invoked by web service requesters over a
network. The main purpose of web service
technologies is to allow applications on
different platforms to exchange business data.
One of the ad-vantages of service oriented
architecture is web services composition; we
can compose existing web services to create
new web services. In agent based web services
composition, agent accepts request from web
service consumers and searches Universal
description and discovery (UDDI) registry
against the requirements of the consumer to
find appropriate web services. By using in-
formation provided by UDDI, agent invokes
those web services. So this composition frees
the web service requester to search the UDDI
registry for required web services and then
manually invoke those services. Before
implementing a web services composition, it
should be verified for correctness to improve
the reliability. Formal methods are
mathematical based techniques used for
specification and verification of software
systems. Pi-Calculus is a kind of process
algebra which is used to model concurrent
systems with mobility. In this work, we have
formally described web services composition
using Pi-Calculus. For verification we have

used mobility workbench (MWB) tool.
Key Words: Web Services Composition,
Mobility Workbench, Universal description
and discovery (UDDI).

1. INTRODUCTION
Web services are the programs that can be
accessed over internet. Web services are
platform and language independent, they can
use any operating system and programming
language. The main components of web service
architecture are service provider, service
requester and service registry. Service provider
implements web services and publishes
information required to access those services.
Service registry (also called UDDI registry) is
used to store this information, any service
requester can find information to access a
particular web service from this registry.
Reusability is one of the advantages of web
services. We can compose two or more web
services which already exist; it reduces the
efforts of implementing new web services.
Sometimes it is necessary to compose two or
more web services because a single service is not
sufficient for some complex applications.
 Every web services composition algorithm
should be validated before implementation for its
correctness. We have used Pi-Calculus [4] for
describing and modeling web service
composition; for verification process we have
used MWB [6].

2. RELATED WORK
In recent years several methods have been used
to model web service composition. CCS [7] is
used to model concurrent systems, but it cannot

 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-3, ISSUE-1, 2016
90

be used for mobility. In [8], the method used is
based on partial-order planning problems and
uses first-order logic. In this method predicates
are used to define every process specification of
WSCDL, then these predicates are written in
Prolog tool for verification. In [9], a method
based on temporal logic of actions (TLA) is
proposed. Web services are modeled as automata
and described using TLA, then verified using
TCL (a model checker of TLA). In [10], FSM
(finite state automata) is used to describe the web
service composition and it is translated into
programs described by Promela and finally
verified using model checking tool SPIN. In
[11], Colored petri-nets(CPN) is used, it is
similar to Petri-nets with an extra advantage that
has programmable elements.
 We have used Pi-calculus, it is used to model
concurrent systems with mobility. In pi-calculus
communication links are transferred as names.

3. ONLINE MOVIE TICKET BOOKING
EXAMPLE
a. Description of web services composition
 We have taken an example of movie ticket
booking service to describe the web services
composition. The services used in this example
are Client service, web service composition
agent (WSCA), Registry service, Bank service
and Multiplex service. Web service composition
agent (WSCA) service accepts request from
client service and searches the services which are
required to fulfill the request in the Registry. If
the required services found in registry then
WSCA asks information from client, and with
this information it invokes the multiplex service,
otherwise it sends a refuse message to client. If
required seats are available then Multiplex
service invokes Bank service otherwise it sends
a message to WSCA indicating that seats are not
available, which is sent to client by WSCA. In
case seats are available, Bank service sends a
message to client for payment. When the amount
is paid by client, Bank confirms by sending a
message to multiplex service and Multiplex
service sends this confirmation to WSCA,
eventually which is sent to client.
The messages are described as follows:
Publish_Multiplex (Pub_M) : Multiplex service
publishes itself into Registry.
Publish_Bank (Pub_B) : Bank service publishes
itself into Request Registry.
(req) : Ticket booking request from Client.

Search : message from WSCA to Registry for
searching the required services.
msg : message from registry to WSCA that the
services are found or not.
 Ask_Info (ask) : WSCA asks the requirement of
client.
 Provide_Info (pro) : Client provides the detailed
information such as name of Movie, date and
number of seats etc.
Invoke_Multiplex (Inv_M) : WSCA invokes
multiplex service with information provided by
client.
 Invoke_Bank (Inv_B) : Multiplex service
invokes Bank service.
 Inform_pay (Inf_pay) : Bank service sends a
message to client for paying the required
amount.
 Pay : Client pays the required amount.
 Pay_succsess (pay_succ) : Bank service informs
multiplex service that payment has received.
Confirmation_Multiplex (Conf_M) : Multiplex
service sends confirmation to WSCA.
 Confirmation_WSCA (Conf_WSCA) : WSCA
sends confirmation to Client.
Refuse (ref): WSCA sends this message to client
when the required services to fulfill the request
are not available in -registry.
 Not_Available (not_av): Multiplex service
sends this message to WSCA when required
seats are not available, which is sent to client.

Figure 1: Web services composition model for
online movie ticket booking system

 The description of different agents in pi-calculus
is Given as follows :
Bank(b,c)b pub_B.c (inv_B).b inf_pay.b(pay).
c pay_succ.Bank (b,c)
Multiplex(a,c)= a pub_M.a(msg).([msg=inv_M]
a not_av.Multiplex(a,c)+[msg=inv_M] c
inv_B.c(pay_succ). a conf_M.Multiplex(a,c))

 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-3, ISSUE-1, 2016
91

Registry(a,b,y)=a(pub_M).b(pub_B).y(search).
y msg. y a. y b.Registry(a,b,y)
Client(x,a)= x req.x(msg1).([msg1=ask]x(b). x

pro.x(msg2).([msg2=not_av]0+b(inf_pay).b
pay.x(conf_WSCA).Client(x,a)) + [msg1=ref]0)

WSCA(x,y,a)=x(req). y
search.y(msg1).([msg1=found]y(a).y(b). x ask.
x b.x(pro). a inv.a(msg2).([msg2=not_av] x
not_av.WSCA(x,y,a)+[msg2=conf_M] x
conf_WSCA.WSCA(x,y,z))+[msg1=not_found]
x ref.WSCA(x,y,a))

b. Verification of web services composition.
The MWB code for different agents is given as
follows:
agent
Bank(b,pub_B,c,inv_B,inf_pay,pay,pay_succ)=
’b<pub_B>.c
(nv_B).’b(inf_pay).b(pay).’c<pay_succ>.Bank<
b,pub_B,c,inv_B,inf_pay,pay,pay_succ>

Figure 2: Web services composition model for
online movie ticket booking system after transfer
of link ‘a’ and ‘b’.
agent
Multiplex(a,pub_M,msg,inv_M,not_av,c,inv_B,
conf_M,pay_succ)=’a<pub_M>.a(msg).([msg=i
nv_M]’a<not_av>.Multiplex<a,pub_M,msg,inv
_M,not_av,c,inv_B,conf_M,pay_succ>+[msg=i
nv_M]’c<inv_B>.c(pay_succ).’a<conf_M>.Mul
tiplex<a,pub_M,msg,inv_M,not_av,c,inv_B,con
f_M,pay_succ>)

agent
Registry(a,pub_M,b,pub_B,y,search,msg)=a(pu
b_M).b(pub_B)y(search).
’y<msg>.’y<a>.’y.Registry<a,pub_M,b,pub
_B,y,search,msg>

agent
Client(x,req,msg1,ask,b,pro,msg2,not_av,inf_pa

y,pay,conf_WSCA,ref)=’x<req>.x(msg1).([msg
1=ask]x(b).’x<pro>.x(msg2).([msg2=not_av]0+
b(inf_pay).’b<pay>.x(conf_WSCA).Client<x,re
q,msg1,ask,b,pro,msg2,not_av,inf_pay,pay,conf
_WSCA,ref>)+[msg1=ref]0)
agent
WSCA(req,y,search,msg1,found,ask,b,pro,a,inv
_M,msg2,not_av,
conf_WSCA,not_found,ref)=x(req).’y<search>.
y(msg1).([msg1=found]y(a).y(b).’x<ask>.’x.x(pro).’a<inv_M>.a(msg2).([msg2=not_av]’x
<not_av>.WSCA<req,y,search,msg1,found,ask,
b,pro,a,inv_M,msg2,not_av,conf_WSCA,not_fo
und,ref>+[msg2=conf_M]’x<conf_WSCA>.W
SCA<req,y,search,msg1,found,ask,b,pro,a,inv_
M,msg2,not_av,conf_WSCA,not_found,ref>)+[
msg1=not_found]’x<ref>.WSCA<req,y,search,
msg1,found,ask,b,pro,a,inv_M,msg2,not_av,con
f_WSCA,not_found,ref>)

In verification process, we have checked
deadlocks for different agents, it ensures the
correctness of web services composition
algorithm.

4. ONLINE BOOK PURCHASE SYSTEM
a. Description of web service composition
The services used by this system are client
service, Book shop service, Database service and
Delivery service (fig. 3). Here x and w are
communication links of Client service with Book
shop service and Delivery service, respectively.
Similarly, y and z are communication links of
Book shop service with Database service and
delivery service respectively.

First, Client service sends a request to Book
Shop service for purchasing a book by specifying
required information such as name of book and
authors name. Book shop service then sends a
lookup message to database service whether the
requested book is available or not. Database
service sends a message to Book Shop service
based on avail-ability of that book.

Now Book Shop service replies to Client service

 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-3, ISSUE-1, 2016
92

about the requested book by sending accept or
refuse message. If book is available then it sends
accept message otherwise sends refuse message.
Now Client service confirms its request by
sending a request de-livery message. This
message contains information about client i.e.
address and phone number etc. After receiving
this message, Book Shop service invokes
delivery service with appropriate information.
Delivery service then delivers the book to client
and client sends a confirmation message to Book
Shop service. For simplicity, we assumed that
amount for book is paid at the time of delivery
i.e. in person.

The various messages used in this system are
described as follows :
req : Client service requests for a book.
Lu : Book Shop service sends this
message to Database service to
check the avail-ability of that book.
msg : Database service sends availability
information to Book Shop service.
acc : Book Shop service sends this
message to client service if book is
available.
ref : Book Shop service sends this
message to client service if book is
not available.
req del : Client confirms its request
by sending its information such as
address and phone number etc.
inv : Book Shop Service invokes delivery
service.
del : Delivery service delivers the required book
to client.
conf : Client service sends confirmation to Book
Shop Service.
The description of different agents in pi-calculus
is given as follows:

Client service : CS(x,w) = xreq.x(msg).
([msg=acc] xdel
book. w(del).x conf.CS(x,w) +
[msg=ref]0)BSS(x,y,z) +
[msg=not found]zref.BSS(x,y,z))

Delivery service : DS(z,w) =
z(inv):wdel.DS(z,w)
Database service : DBS(y) =
y(lu):ymsg.DBS(y)
Composite Web service =
(CSjBSSjDSjDBS)

b.Verification of web service composition
The MWB code for different agents is given as

follows :
agent CS(x; req; msg; acc; del book; del;
conf; ref) =0 x < req > :x(msg):([msg = acc]0
x < del book > :w(del):x < conf > :CS < x;
req; msg; acc; Del book; del; conf; ref>
+[msg = ref]0) agent BSS(x; req; y; lu; msg;
found; acc; req del; z; inv; conf; not found;
ref) = x(req):0 y < lu > :y(msg):([msg =
found]x < acc > :x(reqdel):0 z < inv >
:x(conf):BSS < x; req; y; lu; msg; found; acc;
req del; z; inv; conf; not found; ref > +[msg =
not found]0 x < ref > :BSS < x; req; y; lu; msg;
found; acc; req del; z; inv; conf; not found;
ref >)agent DS(z; inv; w; del) = z(inv):0 w <
del > :DS < z; inv; w; del > agent DBS(y; lu;
msg) = y(lu):0 y < msg > :DBS < y; lu; msg
>

In verification process, we have checked
deadlocks for different agents through MWB,
it ensures the correctness of web services
composition algorithm.

5. CONCLUSION
Formal description and verification is necessary
before implementing a web service composition
algorithm because it ensures the correct working
of composition i.e. there is no deadlock. Online
movie ticket booking example is used to show
the modeling process. The Pi calculus is useful
to describe formally this system and the
concurrent actions of the processes. This paper
describes the model using formal approach Pi
calculus and checks correctness of model with
the help of MWB.
REFERENCES
[1] Pat. P.W. Chan, Michael R. Lyu, Dynamic

Web service composition : A new approach
in building reliable web services, 22nd
international conference on Advance
information networking and applications,
2008.

[2] Snehit Prabhu, Towards distributed dynamic
web service composition, eighth
international symposium on autonomous
decentralized systems(ISADS’07), 2007.

[3] R. Miler, The polyadic pi-calculus : a
tutorial, research report ECS-LFCS-91-180.
University of Edinburgh, October 1991.

[4] J. Parrow, An introduction to the pi-calculus,
Dep. Teleinformaties, Royal institute of
technology, Stockholm.

[5] R. Milner, J. Parrow and D. Walker, A
calculus of mobile process(part 1 and 2),

 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-3, ISSUE-1, 2016
93

Journal of information and computing,
100:1-77, September 1992.

[6] Bjorn Victor and Faron Moller, The
Mobility Workbench : A tool for the pi-
calculus, Uppsala University and University
of Edinburgh, February 1994.

[7] Li Bao, Weishi Zhang, Xiuguo Zhang ,
Describing and verifying web services using
CCS, proceedings of the seventh
international conference on parallel and
distributed computing, applications and
technologies, 2006.

[8] Zahra Madani, Naser Nematbakhsh, A
logical formal model for verification of web
service choreography, Twelfth international
conference on computer and information
technology, December, 2009.

[9] Hongbing Wang, Chen Wang, Yan Liu, A
logic based approach to web service
composition and verification, Second world
conference on services, 2009.

[10] Zhao Wei, Rongsheng Dong, Xiangyu
Luo, Fang Liu, Model checking Airline
tickets reservation system based on BPEL,
third international conference on genetic and
evolutionary computing, 2009.

