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ABSTRACT 
With the advent of wearable computing and 
the resulting growth in mobile application 
market, we investigate mobile opportunistic 
cloud computing where mobile devices 
leverage nearby computational resources in 
order to save execution time and consumed 
energy. Our goal is to enable generic compu- 
tation offloading to heterogeneous devices 
that include Cloud, mobile devices, and 
cloudlets. We propose a generic and flexible 
architecture that maximizes the computation 
gain with respect to various objective 
functions such as, minimizing the response 
time, reducing the overall energy 
consumption, and increasing the network 
lifetime. This novel architecture is designed 
to automate computation offloading to 
numerous compute resources over disrupted 
network connections. 
I. INTRODUCTION 
Mobile devices, such as smartphones and 
tablets, are in- creasingly capable devices with 
processing and storage ca- pabilities that make 
significant step improvements with ev- ery 
generation. Yet, various application tasks, such 
as face recognition, body language 
interpretation, speech and object recognition, 
and natural language processing, exceed the 
lim- its of stand-alone mobile devices. Such 
applications resort to exploiting data and 
computational resources such as the Cloud [1], 
[2]. In fact, by 2018, mobile cloud applications 
will account for 90% of the total mobile data 
traffic which represents an annual growth rate 
of 64% [3]. 

Various solutions for computation offloading to 
more pow- erful surrogate machines [4], known 
as cyber-foraging [5] [6], have been proposed 
such as CloneCloud [7] and MAUI [8]. In 
addition, and due to the significant impact of 
large RTT’s on energy consumed by mobile 
devices while offloading to distant clouds, 
researchers proposed bringing computational 
resources, known as cloudlets [9] closer to 
mobile devices. Others, such as Cirrus [10], and 
Serendipity [11] take some steps towards 
computation offloading  to  neighboring  mo- 
bile devices which we refer to as Mobile Device 
Clouds (MDC) [12], [13], [14]. Mtibaa et al. 
[14] discuss offloading algorithms to 
neighboring mobile devices to ensure a fair 
consumption of energy across a group of mobile 
devices belonging to the same individual or 
household. Also, with pro- cessing capacity of 
mobile devices being mostly unused [15], 
mobile devices, individually and in clusters, 
form a potentially significant computational 
resource that can be tapped at low cost and with 
low latency. 
In this paper, we rethink the perspective of 
computation 
offloading from default mobile to cloud 
techniques tailored for certain applications, to a 
more dynamic and adaptive peer-to-peer 
offloading architecture. This novel architecture 
conducts offloading decisions based on a set of 
parameters that define the nature of the 
offloading opportunities available and make the 
best decision based on potentially conflicting 
user objectives. We propose a generic 
computation offloading architecture over 
heterogeneous devices that include mobile 
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MDCs, cloudlets, and clouds. We address 
specific challenges remaining in each of these 
options, along with their integration into a 
single offloading architecture. We also design 
and im- plement an offloading manager proof-
of-concept prototype and present basic 
performance analysis that outperform offloading 
to only one computing candidate. 
II. OPPORTUNISTIC    COMPUTING    
SPECTRUM 
The spectrum of computation opportunities will 
be governed by two dimensions: computation 
and communication. 
A. Computation Opportunities 
With typical node mobility, we envision a 
spectrum of computational contexts, some of 
which are shown in Fig. 1. At one extreme, we 
have the traditional cloud-computing context 
where devices are intermittently connected to 
distant cloud resources as shown in Fig. 1(a). 
We also exploit cloudlets [9] on which we 
dynamically instantiate the service software to 
enable mobile device computation offloading as  
shown  in Fig. 1(b). The original cloudlet 
concept implicitly constrains the offloading of 
computation to a single cloudlet. In our pro- 
posed work, we also consider the case when the 
mobile device is intermittently connected to a 
set of cloudlet-like resources which we call 
mobile Cloudlets as shown in Fig. 1(c). At the 
other extreme of the spectrum, is the domain 
least explored in literature where mobile 
devices directly contact other mobile devices 
(i.e., MDC), as shown in Fig. 1(d). 
We believe that the offloader’s (i.e., the task 
initiator) envi- ronment for remote computation 
will be, in the most general case, a hybrid of 
such computational contexts and systems. 
Therefore, mobile devices need to discover the 
capabilities of their environment and adapt their 
remote computation decisions accordingly. 
B. Communication Opportunities 
Computation opportunities listed above exhibit 
different communication challenges that range 
from stable wired com- munication with the 
Cloud, to heterogeneous intermittent multi-hop 
connectivity in the case of MDCs. Computation 
tasks need to be potentially routed to specific 
devices depend- ing on the application, with the 
premise that results need to be returned back to 
the initiator. Such requirement will impact 

 
Fig. 1.   Opportunistic Computing Spectrum 
 
decision making regarding which routes and 
devices to choose when offloading a task. We 
list three main challenges of our opportunistic 
computing solutions: 
1) Intermittent connectivity: First, since the 
underlying connectivity is often variable and 
unknown, it is difficult to map computations to 
various nodes with a guarantee that the 
necessary code and data can be delivered and 
the results are received in a timely fashion. This 
observation leads to a con- servative approach 
for distributing computation geared towards 
providing protection against future network 
disruptions. Sec- ond, because the network 
bandwidth is intermittent, it is more likely to be 
a bottleneck for the successful completion of 
the offloaded task execution. Such bottleneck 
suggests avoiding data needed for the next 
computation traversing the network while 
scheduling sequential computations on the same 
chosen node. Third, without reliable control 
channels, the network cannot be relied upon to 
provide reachability to all nodes, which would 
be needed for coordination and control. This 
suggests maintaining local control and 
developing mechanisms for loose coordination. 
2) Partitioning and remote execution: 
Mobile applications’ execution across multiple 
devices introduces challenges on partitioning 
the task execution between the devices 
efficiently, automatically, and optimally. We 
aim at providing significantly more flexibility in 
application partitioning. For instance, a given 
partitioning strategy that can be optimal in one 
scenario might perform poorly in another. 
Connectivity characteristics as well as device 
capabilities are generally unknown to appli- 
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cations’ programmers, or the possible 
configurations render it too difficult to 
customize. 
3) A Common architecture for computation 
offloading: Ad- dressing the application 
partitioning challenge above requires a 
framework that would enable adaptive and 
potentially real time decisions of sub-task 
allocation. Allocation decisions depend heavily 
on the sub-tasks profiling in terms of 
communication requirements, running time, and 
power consumption. 
 
III. OPPORTUNISTIC    COMPUTING    
ARCHITECTURE 
Computational resources are heterogeneous and 
should co- operate in an opportunistic mobile 
computing environment where a mobile device 
can choose between all computation offloading 
opportunities based on given metrics. By 
abstracting all compute resources, our proposed 
architecture achieves such flexibility and 
maximizes the computational gain with respect 
to different metrics such as minimizing the 
response time, reducing the overall energy 
consumption, and increasing the network 
lifetime. 
Our system architecture, illustrated in Fig. 2, is 
designed to (i) automate computation offloading 
to various compute resources, and (ii) 
accommodate computation offloading over 
disrupted network connections due to the nature 
of mobile devices. It consists of different 
components that work together to answer two 
main questions: for a given task T consisting of 
D data input and C computation requirements, 
(iii) which compute resource is more suitable to 
run this task?, and if of- floading is required, 
given available connectivity opportunities and 
resources, when and how do a we offload the 
task? 
Our mobile opportunistic computing 
architecture consists of a task profiler, 
offloading manager, routing manager, task 
scheduler, set of computing resources, and a set 
of databases. The Task Profiler is  responsible  
for  profiling  each  task and its allocated 
resources. It receives a task T from a mobile 
device application, and decomposes it (if 
applicable) into k sub-tasks Ti,i = 1..k. Task 
decomposition challenges, which are beyond 

our research scope, have been studied in [8], 
[7]. 
Each sub-task is then profiled as a combination 
of DTi a data input, and CTi computation 
requirements, after which it will be forwarded 
to the Offloading Manager. 
The Offloading Manager is the heart of this 
architecture. It implements a resource discovery 
and estimation manager that 
(i) discovers available resources, and (ii) 
estimates resource availability in the near 
future. It scans and detects all available 
resources across all available interfaces and 
models each as a virtual interface. Once the 
virtual  interface is  discovered, the resource 
discovery and estimation manager estimates the 
computation resources of each virtual interface 
(i.e., available energy, actual cpu and memory 
utilization, interface utiliza- tion cost, and 
available bandwidth). The offloading manager 
implements a utility maximization algorithm 
that compares user-customized gains for each of 
the 4 main compute re- sources (if available) 
and selects the  best  for  each  given task: (1) 
Cloud: Offload to data  centers  characterized  
by their “unlimited” power, storage, and 
computational resources. These resources are 
usually costly since they adopt the pay- as-you-
go paradigm. The connection to a distant cloud 
is characterized by higher RTT, leading to high 
energy con- sumption, and high disruption rates. 
(2) Compute locally: Tasks run locally on the 
mobile device. The device stores (in the Device 
Capabilities and the Energy Profiling databases) 
a history of previous task performances on the 
device, and estimates the performance of a 
given task based on similar tasks in the past. (3) 
Cloudlet/Mobile Cloudlet [9] The device 
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Fig. 2.   Mobile opportunistic computing high 
level architecture. 
 
offloads the task to a nearby cloudlet. Cloudlets 
are generally resources characterized by their 
short RTT connections and high throughput. 
The connection with such devices is subject to 
high disruption. The architecture provides a 
connection stability estimation algorithm that 
predicts the disruption factor between the 
device and cloudlets. (4) MDC: Offloading to 
other mobile devices [12], [13], [14]. MDC’s 
main goal is to leverage nearby computational 
resources in order to reduce energy cost or 
execution time by bringing task executors closer 
to mobile task initiators. MDC is motivated by 
the fact that processing capacity of mobile 
devices being mostly unused and idle most of 
the time [15]. 
The Offloading Manager decides whether or not 
a given task needs be offloaded or locally 
executed depending on the characteristics of 
this task and the capabilities of the local peer. 
First, it interacts with the privacy and security 
engine in order to check if the task T is eligible 
for offloading or not. It then runs a set of 
objective functions that compare running the 
task T locally or migrating it to other 
neighboring resources with minimum resource 
capabilities Rmin = Emin, Cmin, Smin within 
δt, where Emin, Cmin, and Smin represent the 
mini- mum expected energy, computation, and 
storage capabilities respectively on the 
neighboring compute resource peers. Once the 
offloading decision is made, subtasks will be 
forwarded to the Resource Allocation manager. 
The resource manager requests, therefore, the 
allocation of resources for guaranteed tasks 
(i.e., high priority tasks) upon negotiating the 
resources that will be used to execute a given 
task. It also sends a request to free the resources 
allocated for a particular task if the task is 
completed or when it received an error signal 
from the forwarding manager via its fault 
tolerance engine. 
The Routing & Replication Manager is 
responsible for routing computation tasks to a 
particular device, with the premise that results 
need to be returned back to the initia- tor. Such 
requirement will impact decision making 
regarding which routes and devices to choose 

when offloading a task. Contact unpredictability 
adds two main challenges which are 
(i) the unpredictable duration of a contact 
makes the decision of whether such contact is 
long enough or not to complete the 
 
process of handing off the computation subtask, 
waiting for it to complete on the remote device 
and receiving the result, and (ii) the 
unpredictable waiting time for an eventual 
contact. The routing engine implements 
different techniques that help the initiator 
mobile device classify each contact and 
estimate its duration and the waiting time to 
meet the next computing entity. It also decides 
whether or not a task can be replicated in order 
to ensure successful delivery within a given 
delay. 
The Task Scheduler schedules the sub-tasks 
belonging to each task to multiple compute 
resources. It maintains the status of each task 
and subtask and dispatches them to either local 
compute resources or to the forwarding engine 
to be executed remotely. It also implements a 
failure recovery engine to re- assign a delayed 
task to other compute resources based on their 
initial rank given by the offload manager. The 
manager also receives tasks from neighboring 
mobile opportunistic computing peers for local 
execution, it therefore forwards the task to the 
local computing resources and forwards the 
results back to the forwarding engine. 
The Forwarding Manager is responsible for 
exchanging tasks and resource history statistics 
with neighboring compute resources. It updates 
the databases with up-to-date connectivity stats 
with new and existing neighbors. Upon 
receiving an order to migrate the task to distant 
devices, the forwarder selects the most suitable 
devices to run the task T within the given time 
and resource constraints. It uses stored 
information about historical contact summaries 
and social information to infer the expected 
connection and inter-connection duration 
between neighboring devices. The forwarder is 
also receiving tasks from neighboring forwarder 
engines. In this case, it forwards the task to the 
task scheduler then to the local Computing 
Resources. 
Quality of Service (QoS) monitors error rates 
and providing different levels of guarantees on 
the completion time expected for particular 
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tasks. These tasks or applications have gen- 
erally different priority levels. Therefore, our 
scheme aims at managing tasks so that top 
priority applications will not be compromised. 
It manages the use of resources using a priority 
scheme that classifies tasks (high, moderate, and 
low priority) and replicates the most critical 
tasks to multiple offloadee nodes in order to 
reduce the error rate and reduce the latency. The 
fault tolerance module implements a proactive 
and a reactive technique to deal with task 
execution errors. The proactive approach 
involves predicting connectivity failure with a 
set  of  offloadee  devices  and  replicates  some  
tasks in order to avoid unnecessary waiting 
delays. The reactive approach, however, 
involves initiating a fast recovery upon 
detecting (or predicting) a task execution 
failure. 
The  Computing  Resources represent a basic 
abstraction of the processing capabilities that 
exist on an opportunistic computing peer 
device. If the task is scheduled for local 
execution, it will be assigned to the computing 
resources for immediate execution. In case of 
remote execution, the task will be forwarded to 
a selected remote device then to its task 
scheduler and to its computing resources for 
remote execution on the remote device. Once 
the task is executed, results will 
 
be sent back to the task scheduler and then to 
the offloader’s task manager and finally onto the 
application. 
IV. IMPLEMENTATION PROTOTYPE & 
RESULTS 
As a first step towards testing our peer-to-peer 
architecture, we design and implement the 
following modules described earlier: the 
offloading manager and the task scheduler. 
A. Proof-Of-Concept Prototype 
We implement our prototype as an android 
application running on all devices regardless of 
their nature (i.e., offloader or offloadee). Our 
application allows users to (de)activate the 
collaboration mode at any time (i.e., users’ 
willingness  to offer their computational 
resources for others). Collaborating users 
specify the wireless technologies that can be 
used by the application. The task scheduler then 
determines which technology (from those 
specified) can be used to maximize the utility 

function (e.g., minimizing the total execution 
time). We create dummy tasks at the offloader 
device. Theses tasks can either be executed 
locally or offloaded to one or multiple remote 
devices (offloadee). Each task consists of 
computation requirements (measured in FLOPs) 
as well as input and output data (measured in 
Bytes). Fig. 3-(a) shows a snapshot of our 
prototype user interface where the offloadee 
node specifies the maximum number of threads 
allowed to run on its device and the offloader 
node runs a set of tasks with specific parameters 
and arrival times as stated in a scenario file. 
B. Experiment & Preliminary Results 
In our experiment, we consider a network of 
three mobile devices: a Galaxy S5 (GS5) 
running Android 4.4.4, a Nexus 7 (N7), and a 
Nexus 10 (N10) running Android 5.0.2. GS5 
has 3 tasks t1, t2, t3. We first measure the 
required time to run these tasks locally without 
offloading to any other device. As shown in Fig. 
3-(b), the GS5 requires more than 90s to 
execute these tasks sequentially with an average 
of 30s for each task. However, GS5 achieves a 
3 speedup while offloading 2 of these tasks to 
computationally more powerful nearby devices 
such as the N7 and the N10. It therefore 
executes all tasks in only 31.24s using our 
prototype. Our prototype application distributes 
the tasks as follow: t1 is offloaded to N10 
taking only 8.7s to  run,  t2  is  offloaded  to  N7  
which  executes  it in 14.1s, and the GS5 locally 
executes t3 in 31.2s. In this experiment, our 
prototype uses WiFi Direct and a round robin 
algorithm that assigns tasks to each encountered 
device. 
 
 
 
 
 
 
 
 
 
(a) Prototype                (b) Experimental 
results 
 
Fig. 3.   Proof-of-concept implementation and 
results 
 
V. CONCLUSION AND FUTURE WORK 
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This paper discusses a novel peer-to-peer 
architecture for mobile opportunistic offloading. 
It presents a detailed archi- tecture consisting of 
multiple modules responsible for routing, 
scheduling, discovering, securing, and 
incentivizing remote computation offloading. 
We have also implemented a proof-of- concept 
prototype running on android devices. Our 
preliminary prototype achieves 3    speedup in 
execution time using only 
3 mobile devices. We  plan  to  develop,  test,  
and  evaluate the proposed architecture. We will 
propose a multitude of algorithms to investigate 
different routing strategies, objective functions, 
incentive systems, and QoS and guarantee 
models. 
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