

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-3, ISSUE-10, 2016

DOI: DOI: DOI:10.21276/ijcesr.2016.3.10.8
50

TOWARDS MOBILE OPPORTUNISTIC COMPUTING

SPECTRUM
Anwer Ali, EEDUNURI MURALIDHAR REDDY, HASTI SUBBAIAH

4.KALYAN KUMAR, 5.M.CHITTI BABU
Assistant Professor, Department of Computer Engineering, Ellenki college of Engineering and
Technonlogy, patelguda (vi), near BHEL ameenpur (m), Sangareddy Dist. Telangana 502319

.
ABSTRACT
With the advent of wearable computing and
the resulting growth in mobile application
market, we investigate mobile opportunistic
cloud computing where mobile devices
leverage nearby computational resources in
order to save execution time and consumed
energy. Our goal is to enable generic compu-
tation offloading to heterogeneous devices
that include Cloud, mobile devices, and
cloudlets. We propose a generic and flexible
architecture that maximizes the computation
gain with respect to various objective
functions such as, minimizing the response
time, reducing the overall energy
consumption, and increasing the network
lifetime. This novel architecture is designed
to automate computation offloading to
numerous compute resources over disrupted
network connections.
I. INTRODUCTION
Mobile devices, such as smartphones and
tablets, are in- creasingly capable devices with
processing and storage ca- pabilities that make
significant step improvements with ev- ery
generation. Yet, various application tasks, such
as face recognition, body language
interpretation, speech and object recognition,
and natural language processing, exceed the
lim- its of stand-alone mobile devices. Such
applications resort to exploiting data and
computational resources such as the Cloud [1],
[2]. In fact, by 2018, mobile cloud applications
will account for 90% of the total mobile data
traffic which represents an annual growth rate
of 64% [3].

Various solutions for computation offloading to
more pow- erful surrogate machines [4], known
as cyber-foraging [5] [6], have been proposed
such as CloneCloud [7] and MAUI [8]. In
addition, and due to the significant impact of
large RTT’s on energy consumed by mobile
devices while offloading to distant clouds,
researchers proposed bringing computational
resources, known as cloudlets [9] closer to
mobile devices. Others, such as Cirrus [10], and
Serendipity [11] take some steps towards
computation offloading to neighboring mo-
bile devices which we refer to as Mobile Device
Clouds (MDC) [12], [13], [14]. Mtibaa et al.
[14] discuss offloading algorithms to
neighboring mobile devices to ensure a fair
consumption of energy across a group of mobile
devices belonging to the same individual or
household. Also, with pro- cessing capacity of
mobile devices being mostly unused [15],
mobile devices, individually and in clusters,
form a potentially significant computational
resource that can be tapped at low cost and with
low latency.
In this paper, we rethink the perspective of
computation
offloading from default mobile to cloud
techniques tailored for certain applications, to a
more dynamic and adaptive peer-to-peer
offloading architecture. This novel architecture
conducts offloading decisions based on a set of
parameters that define the nature of the
offloading opportunities available and make the
best decision based on potentially conflicting
user objectives. We propose a generic
computation offloading architecture over
heterogeneous devices that include mobile

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-3, ISSUE-10, 2016

DOI: DOI:10.21276/ijcesr.2016.3.10.8
51

MDCs, cloudlets, and clouds. We address
specific challenges remaining in each of these
options, along with their integration into a
single offloading architecture. We also design
and im- plement an offloading manager proof-
of-concept prototype and present basic
performance analysis that outperform offloading
to only one computing candidate.
II. OPPORTUNISTIC COMPUTING
SPECTRUM
The spectrum of computation opportunities will
be governed by two dimensions: computation
and communication.
A. Computation Opportunities
With typical node mobility, we envision a
spectrum of computational contexts, some of
which are shown in Fig. 1. At one extreme, we
have the traditional cloud-computing context
where devices are intermittently connected to
distant cloud resources as shown in Fig. 1(a).
We also exploit cloudlets [9] on which we
dynamically instantiate the service software to
enable mobile device computation offloading as
shown in Fig. 1(b). The original cloudlet
concept implicitly constrains the offloading of
computation to a single cloudlet. In our pro-
posed work, we also consider the case when the
mobile device is intermittently connected to a
set of cloudlet-like resources which we call
mobile Cloudlets as shown in Fig. 1(c). At the
other extreme of the spectrum, is the domain
least explored in literature where mobile
devices directly contact other mobile devices
(i.e., MDC), as shown in Fig. 1(d).
We believe that the offloader’s (i.e., the task
initiator) envi- ronment for remote computation
will be, in the most general case, a hybrid of
such computational contexts and systems.
Therefore, mobile devices need to discover the
capabilities of their environment and adapt their
remote computation decisions accordingly.
B. Communication Opportunities
Computation opportunities listed above exhibit
different communication challenges that range
from stable wired com- munication with the
Cloud, to heterogeneous intermittent multi-hop
connectivity in the case of MDCs. Computation
tasks need to be potentially routed to specific
devices depend- ing on the application, with the
premise that results need to be returned back to
the initiator. Such requirement will impact

Fig. 1. Opportunistic Computing Spectrum

decision making regarding which routes and
devices to choose when offloading a task. We
list three main challenges of our opportunistic
computing solutions:
1) Intermittent connectivity: First, since the
underlying connectivity is often variable and
unknown, it is difficult to map computations to
various nodes with a guarantee that the
necessary code and data can be delivered and
the results are received in a timely fashion. This
observation leads to a con- servative approach
for distributing computation geared towards
providing protection against future network
disruptions. Sec- ond, because the network
bandwidth is intermittent, it is more likely to be
a bottleneck for the successful completion of
the offloaded task execution. Such bottleneck
suggests avoiding data needed for the next
computation traversing the network while
scheduling sequential computations on the same
chosen node. Third, without reliable control
channels, the network cannot be relied upon to
provide reachability to all nodes, which would
be needed for coordination and control. This
suggests maintaining local control and
developing mechanisms for loose coordination.
2) Partitioning and remote execution:
Mobile applications’ execution across multiple
devices introduces challenges on partitioning
the task execution between the devices
efficiently, automatically, and optimally. We
aim at providing significantly more flexibility in
application partitioning. For instance, a given
partitioning strategy that can be optimal in one
scenario might perform poorly in another.
Connectivity characteristics as well as device
capabilities are generally unknown to appli-

Offloader Offloader

Internet Offloadee

Cloud

Internet

 a- Cloud b- StaticCloudlet

Offloader Offloader

Offloadee
Offloadee

Offloadee
Offloadee Offloadee

Offloadee

Offloadee Offloadee

d- MobileDeviceCloud(MDC)

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-3, ISSUE-10, 2016

DOI: DOI:10.21276/ijcesr.2016.3.10.8
52

cations’ programmers, or the possible
configurations render it too difficult to
customize.
3) A Common architecture for computation
offloading: Ad- dressing the application
partitioning challenge above requires a
framework that would enable adaptive and
potentially real time decisions of sub-task
allocation. Allocation decisions depend heavily
on the sub-tasks profiling in terms of
communication requirements, running time, and
power consumption.

III. OPPORTUNISTIC COMPUTING
ARCHITECTURE
Computational resources are heterogeneous and
should co- operate in an opportunistic mobile
computing environment where a mobile device
can choose between all computation offloading
opportunities based on given metrics. By
abstracting all compute resources, our proposed
architecture achieves such flexibility and
maximizes the computational gain with respect
to different metrics such as minimizing the
response time, reducing the overall energy
consumption, and increasing the network
lifetime.
Our system architecture, illustrated in Fig. 2, is
designed to (i) automate computation offloading
to various compute resources, and (ii)
accommodate computation offloading over
disrupted network connections due to the nature
of mobile devices. It consists of different
components that work together to answer two
main questions: for a given task T consisting of
D data input and C computation requirements,
(iii) which compute resource is more suitable to
run this task?, and if of- floading is required,
given available connectivity opportunities and
resources, when and how do a we offload the
task?
Our mobile opportunistic computing
architecture consists of a task profiler,
offloading manager, routing manager, task
scheduler, set of computing resources, and a set
of databases. The Task Profiler is responsible
for profiling each task and its allocated
resources. It receives a task T from a mobile
device application, and decomposes it (if
applicable) into k sub-tasks Ti,i = 1..k. Task
decomposition challenges, which are beyond

our research scope, have been studied in [8],
[7].
Each sub-task is then profiled as a combination
of DTi a data input, and CTi computation
requirements, after which it will be forwarded
to the Offloading Manager.
The Offloading Manager is the heart of this
architecture. It implements a resource discovery
and estimation manager that
(i) discovers available resources, and (ii)
estimates resource availability in the near
future. It scans and detects all available
resources across all available interfaces and
models each as a virtual interface. Once the
virtual interface is discovered, the resource
discovery and estimation manager estimates the
computation resources of each virtual interface
(i.e., available energy, actual cpu and memory
utilization, interface utiliza- tion cost, and
available bandwidth). The offloading manager
implements a utility maximization algorithm
that compares user-customized gains for each of
the 4 main compute re- sources (if available)
and selects the best for each given task: (1)
Cloud: Offload to data centers characterized
by their “unlimited” power, storage, and
computational resources. These resources are
usually costly since they adopt the pay- as-you-
go paradigm. The connection to a distant cloud
is characterized by higher RTT, leading to high
energy con- sumption, and high disruption rates.
(2) Compute locally: Tasks run locally on the
mobile device. The device stores (in the Device
Capabilities and the Energy Profiling databases)
a history of previous task performances on the
device, and estimates the performance of a
given task based on similar tasks in the past. (3)
Cloudlet/Mobile Cloudlet [9] The device

App.

Task

ProfilerOffloadingManager

DeviceCapabilities

Incentives
Manager

Connectivity History

MDC Cloudlet Cloud Local

ResourceAllocationManger EnergyProfiling

Routing
&Replicatio

SocialProfiling

TaskSc
heduler

ComputingResour
ces

CommunicationInterfaces
3G/4G WiFi Bluetouth WiFiDirect

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-3, ISSUE-10, 2016

DOI: DOI:10.21276/ijcesr.2016.3.10.8
53

Fig. 2. Mobile opportunistic computing high
level architecture.

offloads the task to a nearby cloudlet. Cloudlets
are generally resources characterized by their
short RTT connections and high throughput.
The connection with such devices is subject to
high disruption. The architecture provides a
connection stability estimation algorithm that
predicts the disruption factor between the
device and cloudlets. (4) MDC: Offloading to
other mobile devices [12], [13], [14]. MDC’s
main goal is to leverage nearby computational
resources in order to reduce energy cost or
execution time by bringing task executors closer
to mobile task initiators. MDC is motivated by
the fact that processing capacity of mobile
devices being mostly unused and idle most of
the time [15].
The Offloading Manager decides whether or not
a given task needs be offloaded or locally
executed depending on the characteristics of
this task and the capabilities of the local peer.
First, it interacts with the privacy and security
engine in order to check if the task T is eligible
for offloading or not. It then runs a set of
objective functions that compare running the
task T locally or migrating it to other
neighboring resources with minimum resource
capabilities Rmin = Emin, Cmin, Smin within
δt, where Emin, Cmin, and Smin represent the
mini- mum expected energy, computation, and
storage capabilities respectively on the
neighboring compute resource peers. Once the
offloading decision is made, subtasks will be
forwarded to the Resource Allocation manager.
The resource manager requests, therefore, the
allocation of resources for guaranteed tasks
(i.e., high priority tasks) upon negotiating the
resources that will be used to execute a given
task. It also sends a request to free the resources
allocated for a particular task if the task is
completed or when it received an error signal
from the forwarding manager via its fault
tolerance engine.
The Routing & Replication Manager is
responsible for routing computation tasks to a
particular device, with the premise that results
need to be returned back to the initia- tor. Such
requirement will impact decision making
regarding which routes and devices to choose

when offloading a task. Contact unpredictability
adds two main challenges which are
(i) the unpredictable duration of a contact
makes the decision of whether such contact is
long enough or not to complete the

process of handing off the computation subtask,
waiting for it to complete on the remote device
and receiving the result, and (ii) the
unpredictable waiting time for an eventual
contact. The routing engine implements
different techniques that help the initiator
mobile device classify each contact and
estimate its duration and the waiting time to
meet the next computing entity. It also decides
whether or not a task can be replicated in order
to ensure successful delivery within a given
delay.
The Task Scheduler schedules the sub-tasks
belonging to each task to multiple compute
resources. It maintains the status of each task
and subtask and dispatches them to either local
compute resources or to the forwarding engine
to be executed remotely. It also implements a
failure recovery engine to re- assign a delayed
task to other compute resources based on their
initial rank given by the offload manager. The
manager also receives tasks from neighboring
mobile opportunistic computing peers for local
execution, it therefore forwards the task to the
local computing resources and forwards the
results back to the forwarding engine.
The Forwarding Manager is responsible for
exchanging tasks and resource history statistics
with neighboring compute resources. It updates
the databases with up-to-date connectivity stats
with new and existing neighbors. Upon
receiving an order to migrate the task to distant
devices, the forwarder selects the most suitable
devices to run the task T within the given time
and resource constraints. It uses stored
information about historical contact summaries
and social information to infer the expected
connection and inter-connection duration
between neighboring devices. The forwarder is
also receiving tasks from neighboring forwarder
engines. In this case, it forwards the task to the
task scheduler then to the local Computing
Resources.
Quality of Service (QoS) monitors error rates
and providing different levels of guarantees on
the completion time expected for particular

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-3, ISSUE-10, 2016

DOI: DOI:10.21276/ijcesr.2016.3.10.8
54

tasks. These tasks or applications have gen-
erally different priority levels. Therefore, our
scheme aims at managing tasks so that top
priority applications will not be compromised.
It manages the use of resources using a priority
scheme that classifies tasks (high, moderate, and
low priority) and replicates the most critical
tasks to multiple offloadee nodes in order to
reduce the error rate and reduce the latency. The
fault tolerance module implements a proactive
and a reactive technique to deal with task
execution errors. The proactive approach
involves predicting connectivity failure with a
set of offloadee devices and replicates some
tasks in order to avoid unnecessary waiting
delays. The reactive approach, however,
involves initiating a fast recovery upon
detecting (or predicting) a task execution
failure.
The Computing Resources represent a basic
abstraction of the processing capabilities that
exist on an opportunistic computing peer
device. If the task is scheduled for local
execution, it will be assigned to the computing
resources for immediate execution. In case of
remote execution, the task will be forwarded to
a selected remote device then to its task
scheduler and to its computing resources for
remote execution on the remote device. Once
the task is executed, results will

be sent back to the task scheduler and then to
the offloader’s task manager and finally onto the
application.
IV. IMPLEMENTATION PROTOTYPE &
RESULTS
As a first step towards testing our peer-to-peer
architecture, we design and implement the
following modules described earlier: the
offloading manager and the task scheduler.
A. Proof-Of-Concept Prototype
We implement our prototype as an android
application running on all devices regardless of
their nature (i.e., offloader or offloadee). Our
application allows users to (de)activate the
collaboration mode at any time (i.e., users’
willingness to offer their computational
resources for others). Collaborating users
specify the wireless technologies that can be
used by the application. The task scheduler then
determines which technology (from those
specified) can be used to maximize the utility

function (e.g., minimizing the total execution
time). We create dummy tasks at the offloader
device. Theses tasks can either be executed
locally or offloaded to one or multiple remote
devices (offloadee). Each task consists of
computation requirements (measured in FLOPs)
as well as input and output data (measured in
Bytes). Fig. 3-(a) shows a snapshot of our
prototype user interface where the offloadee
node specifies the maximum number of threads
allowed to run on its device and the offloader
node runs a set of tasks with specific parameters
and arrival times as stated in a scenario file.
B. Experiment & Preliminary Results
In our experiment, we consider a network of
three mobile devices: a Galaxy S5 (GS5)
running Android 4.4.4, a Nexus 7 (N7), and a
Nexus 10 (N10) running Android 5.0.2. GS5
has 3 tasks t1, t2, t3. We first measure the
required time to run these tasks locally without
offloading to any other device. As shown in Fig.
3-(b), the GS5 requires more than 90s to
execute these tasks sequentially with an average
of 30s for each task. However, GS5 achieves a
3 speedup while offloading 2 of these tasks to
computationally more powerful nearby devices
such as the N7 and the N10. It therefore
executes all tasks in only 31.24s using our
prototype. Our prototype application distributes
the tasks as follow: t1 is offloaded to N10
taking only 8.7s to run, t2 is offloaded to N7
which executes it in 14.1s, and the GS5 locally
executes t3 in 31.2s. In this experiment, our
prototype uses WiFi Direct and a round robin
algorithm that assigns tasks to each encountered
device.

(a) Prototype (b) Experimental
results

Fig. 3. Proof-of-concept implementation and
results

V. CONCLUSION AND FUTURE WORK

t1
t2
t3

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-3, ISSUE-10, 2016

DOI: DOI:10.21276/ijcesr.2016.3.10.8
55

This paper discusses a novel peer-to-peer
architecture for mobile opportunistic offloading.
It presents a detailed archi- tecture consisting of
multiple modules responsible for routing,
scheduling, discovering, securing, and
incentivizing remote computation offloading.
We have also implemented a proof-of- concept
prototype running on android devices. Our
preliminary prototype achieves 3 speedup in
execution time using only
3 mobile devices. We plan to develop, test,
and evaluate the proposed architecture. We will
propose a multitude of algorithms to investigate
different routing strategies, objective functions,
incentive systems, and QoS and guarantee
models.
ACKNOWLEDGEMENT
This work was supported in part by NSF grants
NETS 1409589, NETS 1161879, and NPRP
grant # 5-648-2-264 from the Qatar National
Research Fund.
REFERENCES
[1] R. Kemp, N. Palmer, T. Kielmann, and
H. Bal, “Cuckoo: a computation offloading
framework for smartphones,” in Mobile
Computing, Applica- tions, and Services.
Springer, 2012, pp. 59–79.
[2] M. Satyanarayanan, “A brief history of
cloud offload: A personal journey from odyssey
through cyber foraging to cloudlets,”
SIGMOBILE Mob. Comput. Commun. Rev.,
vol. 18, no. 4, pp. 19–23, Jan. 2015. [Online].
Available:
http://doi.acm.org/10.1145/2721914.2721921
[3] T. Cisco, “Cisco visual networking
index: Global mobile data traffic forecast
update, 2012–2017,” Cisco Public Information,
2013.
[4] J. Flinn, “Cyber foraging: Bridging
mobile and cloud computing,” Synthesis
Lectures on Mobile and Pervasive Computing,
vol. 7, no. 2, pp. 1–103, 2012.
[5] R. Balan, J. Flinn, M. Satyanarayanan,
S. Sinnamohideen, and H.-
I. Yang, “The case for cyber foraging,” in
Proceedings of the 10th workshop on ACM
SIGOPS European workshop, 2002.
[6] R. K. Balan, D. Gergle, M.
Satyanarayanan, and J. Herbsleb, “Simpli- fying
cyber foraging for mobile devices,” in ACM
MobiSys, 2007.

[7] B.-G. Chun, S. Ihm, P. Maniatis, M.
Naik, and A. Patti, “Clonecloud: elastic
execution between mobile device and cloud,” in
Proceedings of the sixth conference on
Computer systems, ser. EuroSys ’11. New
York, NY, USA: ACM, 2011, pp. 301–314.
[Online]. Available:
http://doi.acm.org/10.1145/1966445.1966473
[8] E. Cuervo, A. Balasubramanian, D. ki
Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “Maui: making
smartphones last longer with code offload,” in
MobiSys’10, 2010, pp. 49–62.
[9] M. Satyanarayanan, P. Bahl, R. Caceres,
and N. Davies, “The case for vm-based
cloudlets in mobile computing,” Pervasive
Computing, IEEE, vol. 8, no. 4, pp. 14–23,
2009.
[10] C. Shi, M. H. Ammar, E. W. Zegura,
and M. Naik, “Computing in cirrus clouds: the
challenge of intermittent connectivity,” in
Proceedings of the first edition of the MCC
workshop on Mobile cloud computing, ser.
MCC ’12. New York, NY, USA: ACM, 2012,
pp. 23–28.[11] C. Shi, V. Lakafosis, M. H.
Ammar, and E. W. Zegura, “Serendipity:
enabling remote computing among
intermittently connected mobile devices,” in
MobiHoc, 2012, pp. 145–154.[12] A. Mtibaa,
K. A. Harras, and A. Fahim, “Towards
computational offloading in mobile device
clouds,” in Cloud Computing Technology and
Science (CloudCom), 2013 IEEE 5th
International Conference on, vol. 1. IEEE,
2013, pp. 331–338.
[13] A. Fahim, A. Mtibaa, and K. A. Harras,
“Making the case for compu- tational offloading
in mobile device clouds,” in Proceedings of the
19th annual international conference on Mobile
computing & networking. ACM, 2013, pp. 203–
205.[14] A. Mtibaa, A. Fahim, K. Harras,
and M. Ammar, “Towards resource sharing in
mobile device clouds: Power balancing across
mobile de- vices,” in Proceedings of the MCC
workshop on Mobile cloud comput- ing, ser.
MCC’13. New York, NY, USA: ACM, 2013.
(a) Prototype
(b) Experimental results[15] L. A.
Barroso and U. Ho¨lzle, “The case for
energy-proportional com-puting,” IEEE
computer, vol. 40, no. 12, pp. 33–37, 2007.

