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ABSTRACT 
Abstract—Mobile Cloud Computing refers 
to offloading com- putationally intensive 
algorithms from a mobile device to a cloud in 
order to save resources (time and energy) in 
the mobile device. But when the connection 
to the cloud is non-existent or limited, as in 
battle-space scenarios, exploiting 
neighbouring devices could be an alternative. 
In this paper we have developed a 
framework to offload computationally 
intensive algorithms to neighbours in order 
to minimise the algorithm completion time. 
We propose resource allocation algorithms to 
maximize the performance of these systems 
in real-time computer vision applications 
(drop less targets). Results show significant 
performance improvement at the cost of 
using some extra energy resource. Finally we 
define a new performance metric which also 
incorporates the energy consumed and is 
used to compare the offloading algorithms. 
Index Terms—Offloading, Mobile Cloud 
Computing, Energy 
I. INTRODUCTION 
Off-the-shelf smartphones are becoming 
ubiquitous and powerful, making them an 
interesting prospect to form a smart networked 
camera. However, they are not powerful enough 
for many applications, especially if the results 
are required in real-time. We have previously 
considered their pros and cons for distributed 
person re-identification [1]. If smartphones are 
deployed to carry out computationally intensive 
computer vision tasks, such as person tracking 
and re-identification between multiple cameras, 
they may not always be able to process 

everything within a user specified time. As such 
we can define performance of a system as the 
ratio of number of jobs processed to the number 
of jobs available. 
Conventionally, computationally intensive 
algorithms have been offloaded to the “cloud” 
and it has been shown in some cases to save 
time and energy [2] [3]. In this paper however, 
we present a novel framework to offload these 
tasks to neigh- bouring mobile nodes which can 
significantly increase the performance without 
substantially depleting battery resource 
compared to the non-offloading case. We also 
present a single metric called Efficiency Score 
(ES) which also incorporates the energy 
consumption along with the performance. 
unreachable. Even if there is a connection, the 
Network Bandwidth (BW) may be too low or 
intermittent. Neighbouring devices lack the 
computational power and energy of the cloud 
but may be readily available with high BW 
connections. However, we need to consider 
their available energy resources before 
offloading a job as when in the field, charging 
may not be readily available. In this paper, we 
discuss its feasibility in terms of time and 
energy. Magurawalage et al. have considered 
offloading to intermediate cloud like entity 
called cloudlets [6] but to the best of our 
knowledge, battery powered neighbours have 
not been used by anyone as an offloading 
candidate. 
Computing platform types 
If there is no network connectivity, the only 
option is to do on-board processing. However, 
if there is some connectivity, we have the 
option to offload. We use the term “onloader” 
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for the system which the “offloader” offloads its 
workload to. Some on-board processing can 
reduce the amount of data to be communicated 
while freeing up the onloader’s resources. For 
example, a background subtraction algorithm 
can limit the sensor from sending images with 
little or no activity. This saves communication 
cost for the sensor and the onloader has fewer 
jobs to perform. However, when the algorithms 
areonloader. Then, X can offload (P   N ) targets 
to the cloud and as Kumar et. al explains, it can 
save time and energy [2]. If the cloud is not 
available, conventional system would simply 
drop the targets. However, device Y has no 
target in its FOV at this moment. We show that 
neighbour devices like Y can be good 
alternative and may be used for offloading. 
We now describe the simulator we developed to 
study smartphones with cellular and Wi-Fi 
communication capabili- ties. Then in section 
III, we describe how we use the simulator for a 
person re-identification system. Then we 
describe exper- iments in section IV and show 
results. Finally in section V, we present 
conclusions to the paper. 
II. MODELLING NETWORK OF 
SMART CAMERAS 
The simulator allows us to use a simplified 
model of the algorithm flow for the target 
platform and update components easily as 
required. Wu et al. used queuing model theory 
to simulate workload on distributed nodes [3]. 
However, theirassumption that when there is no 
workload the nodes do not consume any energy 
is not valid in real life. The major elements of 
our simulator relate to the algorithmic tasks, the 
sensor architecture, communication links and 
the targets. We go through each one in detail 
below. 
A. Algorithmic tasks 
The simulator’s model for the algorithmic task 
is characterised by its number of Operations 
(OP), input and outputdata size. For example, a 
person detection algorithm takes an image of 
size M    N  as the input, requires approximately 
C OP per image and outputs the number of 
persons in theimage. Assuming one OP per 
clock cycle, we can estimate the execution time 
on the device using the clock frequency 

Texec ∝ Clock Frequency (1) 

We are aware that in different processors some 
OP take more than one cycle and multiple OP 
can be possible in one cycle, however this 
approximation (Eqn. (1)) gives an estimate of 
time required without detailed execution 
information. If desired, algorithms could be 
executed on the Device Under Test (DUT) to 
measure the execution time more precisely. 

The number of OP required for an algorithm 
can change. For instance, in the Mixture of 
Gradients (MOG) algorithm for background 
subtraction, it depends on how quickly a 
matching Gaussian distribution is detected for 
the particular pixel [7]. To make calculations 
easier for the simulation, we take the worst case 
scenario where the matching Gaussian is not 
found. 

B. Component Based Sensors 

In order to realistically emulate its behaviour, a 
sensor is divided into its components such as 
the Central Processing Unit (CPU) and cellular 
radio. We do not consider the energy 
consumption by the display as it can be turned 
off by theapplication. We use the utilisation 
based model by Jung et al. to calculate the 
energy consumption [8] and our parameters are 
based on a Google Nexus I phone which was 
one of theirDUTs. However if desired, the 
simulator can be calibrated for a different DUT 
in a straightforward manner. 

TABLE I. CPU   PARAMETERS 
Frequency 245.0 384.0 460.8 499.2 576.0 614.4 652.8 691.2 768.0 806.4 844.8 998.4 
βcpu 

freq 
βcpu 

idle 

201.0 257.2 286.0 303.7 332.7 356.3 378.4 400.3 443.4 470.7 493.1 559.5 
35.1 39.5 35.2 36.5 39.5 38.5 36.7 39.6 40.2 38.4 43.5 45.6 

1) Image Sensor: The image sensor 
consumes significant energy in a mobile device 
when used continuously. According to 
Likamwa et al., the energy consumption per 
frame of the image sensor can be modelled as 
follows [9]. 

Ecamera  = Pidle × (Tframe − Tactive) + 
Pactive × Tactive (2) 

where Tactive =    Number of Pixels    . Based 
on Eqn. 2 , we can either reduce the image 
resolution, thereby reducing Tactive or reduce 
the acquisition rate to save the energy 
consumption. 



 
INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR) 

 
ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-3, ISSUE-10, 2016 

DOI: 10.21276/ijcesr.2016.3.10.12 
76 

2) Application Processor (AP): The CPU 
power is made up of two parts, idle power and 
the running power, as follows: 

pcpu = βcpu × u + βcpu, (3) 

where u is the utilisation and βcpu are the 
CPUparameters listed in Table I. We calculate 
the utilisation as the ratio of the CPU time used 
vs the time available per frame. However, the 
CPU is also used by the Operating System (OS) 
and other running applications. Dargie used 
normal and exponential distributions to simulate 
workload in [10]. We also used a random 
variable (r) sampled from a Gaussian 
distribution to simulate these other activities. 
By adjusting the mean of r we can a simulate 
busy sensor and idle sensor. The total utilisation 
is calculated as shown below. 

u= i=1 i+r (4) 

TFrame 

whereNisthenumberofalgorithmstobeprocessed 
Texeci 

 

is the execution time for ith algorithm (see Table II 
forexecution times for all algorithms) and TFrame = 
1 is the time available for each frame. In the 
situation where Texeci > TFrame which is very 
likely in the case of algorithms for person re- 
identification; we only run the CPU to 100% load 
and run the remainder of the algorithm in the next 
frame and so on. 

3) Cellular (3G): Cellular radio is modelled as 
a three state system: IDLE, Forward Access Channel 
(FACH) and Dedicated Channel (DCH). The IDLE 
mode is the non com- municating mode and has the 
lowest power consumption. In this mode, the User 
Equipment (UE) is turned on but has not established 
Radio Resource Control (RRC) connection with the 
Radio Network Controller (RNC). In DCH state the 
UE has a dedicated transport channel for data 
transmission in both directions, but this is 50 to 
100% more expensive than FACH, where FACH is 
the intermediate state with reduced power 
consumption and low data rate. There is no 
dedicated channel allocated in this mode and it can 
only transmit user data through shared low speed 
channel that is typically less than 15kbps [11]. As 
we can see from Eqn. (5), power is only dependent 
on state but not on utilisation. Fig. 2 shows the state 
diagram with the inactivity timers which along with 

data buffer size controls the state promotions and 
demotions. 


βIDLE ifRRCstateisIDLE 

 

βFACH if RRC state is FACH 

βDCH if RRC state is DCH  (5) 

where RRC is the current state of UE and 
βIDLE, βFACH and 

βDCH are based on [8]. 

 

 
Fig. 2. Cellular radio states, α1 and α2 are 
inactivity timers whereas δ1 and 
δ2 are delay to get to DCH 
 

 
 
Fig. 3. Person Re-identification work-flow. 
 
 
4) Wi-Fi: The Wi-Fi model calculates the time 
and energy of the Wi-Fi component in the 
connected mode. There are two modes 
depending upon the packet rate. 
pwifi = βLT × p + βLT base if p ≤ Threshold 
βHT × p + βHT base if p > Threshold 
 
where p is the packet rate, βLT, βHT, βLT base 
and βHT base are the parameters of the DUT 
based on [8]. If the number of packets per 
second exceeds the threshold of 20 then Wi-Fi 
is in the high power state, else in the low power 
state. Unlike the cellular system, the power 
consumption is directly proportional to the data 
rate. Although Wi-Fi consumes energy in 
scanning mode, we ignore it as we assume a 
connection between the sensors as the basis of 
this research. 
III. SYSTEM DESIGN 
In this section, we show how offloading may be 
used toincrease the performance of a system. 
We consider a pedestrian re-identification 
system outlined in Fig. 3. It starts with 
imageacquisition from the image sensor. A 
background subtraction and a person detection 
algorithm is applied on the image to detect the 

Image Backgroundsubtraction PersonDetection 
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number of people in the view. When there a 
pedestrian is detected, we apply a person re-
identification algorithm to each detection such 
as [12]. Our goal is to identify as many 
detections as possible. 
A. Application Partitioning 
The algorithmic complexity of the person re-
identification algorithm outweighs that of other 
algorithms in the chain (see Table II). So, the 
overall complexity of the system can be 
estimated as   (N ) where N is the number of 
people detected. To be realistic, we limit the 
number of people in an image (800 × 600) in 
the simulator to be fewer than 10. 
B. Energy Saving Methods 
We replicate following energy saving 
techniques to make the simulation realistic as 
much as possible. 

1) Dynamic Frame per Second: We can 
save energy by decreasing the number 
of FPS of the system (see Eqn. (4)). 
However, very low FPS may mean 
some of the detections may be missed. 
We implemented an algorithm to vary 
the FPS of each individual sensor 
between 1 and 16 in the following way 

{
FPS(old)×2  ift<τ 

FPS (new) = 
 
FPS (old) ÷ 2    if t > τ (7) 
where t is the time between target activities 
and τ is 5 seconds. 
TABLE II. EXECUTION TIMES  FOR  
CPU RUNNING  @ 998.4 MHZ 

Algorithm ExecutionTime 
BackgroundSubtraction 
PersonDetector 
PersonRe-identification 

0.1 
0.2 
5.1 

TotalTime 5.3 

2) Dynamic Voltage and Frequency Scaling 
(DVFS): A simple algorithm controls the 
clock frequency of the sensor. When the 
CPU utilisation is below 0.4, the clock 
frequency is lowered according to Table I 
and it is scaled to maximumfrequency as 
soon as the utilisation is above 0.9. 
C. Offloading 
We classify only the re-identification 
algorithm as offload- able as for others, the 
communication costs and the time delay 
outweighs the benefits of offloading. 
Offloading an algorithmentails sending 
input data, waiting for the onloader to 
execute, and receiving output data. Before 

transmitting however, the data has to be 
formatted in packets and some overhead 
will beadded to the processor. These 
operations can be a few hundred per packet 
which needs to be added to the CPU 
workload. 

Time Cost: The communication times are 
proportional to the data size to be 
communicated and inversely proportional to the 
network BW. We assumed the BW to be static. 
Waiting times can be estimated using Eqn. (1) 
for the onloader’s clock frequency. But, it does 
not take into account the CPU load. If our 
onloader’s AP is already busy, our estimation 
can be very far from reality. So we re-write the 
time calculation using onloader’s average CPU 
utilisation. 

Twait =    Texec  
1 − E[u](8) 

where E[u] is the average of u from Eqn. (4). 
The total time cost which is also known as 
makespan, is shown below [13]. 
Ttotal = Tpacket + Tsend + Twait + Treceive
 (9) where Tpacket is the time to format 
the data in a packet. 
Energy Cost: There are two energy costs 
involved. The first is for the offloader (Eoff) 
and includes data packeting and the radio 
communication cost. 
Eoff = (Tsend + Treceive) × Pradio + Pcpu × 
Tpacket (10) 
where radio 3G, WiFi . Second is for the 
onloader which includes radio cost, execution 
cost and the packeting costs. So far, in 
literature, cost for the onloader is ignored as 
energy is not of major concern for the cloud. 
But while offloading to the neighbours, we need 
to consider it. 
Eon = (Treceive +Tsend)×Pradio +Pcpu 
×(Texecute +Tpacket)  (11) 
D. Multi-Objective Optimisation 
The time and energy costs from Eqn. (9, 10 and 
11) can be inferred as variables of a multi-
objective optimisation problem. 
Cost = wtime × Ttotal + woff × Eoff + won × 
Eon (12) 
where wtime, woff and won are the weights for 
each objective. The cost function involves 
adding time and energy variables(i.e. different 
units), which requires careful selection of the 
weights. We avoid this situation by limiting one 
of the objec- tives to a threshold (ε) and 
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optimising rest of the objectives [14]. 
Regarding the real-time nature of our problem, 
we limit the time and optimise the energy 
variables. We set ε = 25 seconds and leave out 
the nodes that do not satisfy this constraint 
(denoted by the light dots in Fig. 4). It is still a 
multi-objective problem but only with two 
variables of the same unit (Joules). We now 
study three methods to optimize offloading 
performance. 
1) Minimize Energy Cost (MEC): In this 
method, we choose the node that satisfies the 
time constraint described above and incurs the 
minimum offloader and the onloader energy 
cost. The solution is pareto-optimal and denoted 
by nodes on the line in Fig. 4 [14]. 
CostMEC = woff × Eoff + won × Eon
 (13) 
2) Minimize Battery Impact (MBI): In a 
battery-powered device, using the least energy 
cost per job alone may not in- crease device 
lifetime. For example, say an algorithm requires 
10 and 8 Joules on devices X and Y 
respectively. But X and Y have 500 and 50 
Joules left in their battery respectively. 
Considering energy cost alone, Y is the best 
choice but when we consider the amount of 
energy left in the device clearly X is a better 
choice. We re-write Eqn. (13) as follows. 
3) Offload Only if Busy (OOB): The 
previous methods try to find the global solution, 
but offloading has overhead costs. So, this 
method tries to offload only if on-board 
processing is estimated to be infeasible. To do 
so, we add all the operations in the execution 
queue and use Eqn. (1) to estimate the 
minimum remaining processing time. If this 
time is greater than the threshold (ε), offload the 
algorithm minimising the time and energy 
objectives defined in Eqn. (12). 
IV. SIMULATION AND RESULTS 
We simulated a number of sensors connected to 
each other by Wi-Fi and to the server (when 
available) by cellular link. For simplicity, we 
assume that resource information about all the 
nodes (remaining energy, current CPU load 
etc.) is avail- able and all the sensors have same 
computational capability but the server is 10 
times more powerful. Also there is no 
energyand using the best representation for 
identification purposes. 

We tested the algorithms with various 
parameters using 100 Monte-Carlo runs each 
representing a 10 minute period. The results are 
listed in Table III. When the cloud is not 
available, Successful Identifications (SI) (which 
is targets detected minus targets dropped) 
improved from 10.4 in the Non Offloading 
(NO) case to 12.7 for the MEC case and 13 for 
OOB case but degraded to 8.87 for MBI. MEC 
and OOB boosted the performance by more 
than 20% while only incurring around extra 
10% energy consumption. MBI did not perform 
well because of the communication overhead. 
However, if the runs were longer, may be we 
would see some improvement in the device 
lifetime. All the algorithms did better than the 
NO case when the cloud was available, 
dropping almost no targets but the energy 
consumption was significantly higher. This 
shows that offloading to cloud blindly may 
increase the performance. 
V. CONCLUSION 
This paper presented a simulation model for 
offloading computationally intensive algorithms 
to neighbouring devices when the cloud is not 
available. The results show that among the 
three, OOB consistently achieved the best trade-
off be- tween power and performance. It 
improved the performance by approx. 25% 
while costing about 10    20% more energy. The 
ES metrics suggests that energy is used more 
productively 
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