

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-3, ISSUE-10, 2016

DOI: 10.21276/ijcesr.2016.3.10.12
74

OFFLOADING TO NEIGHBOURING NODES IN SMART

CAMERA NETWORK SECURITY
D Bikshapathi, SIRISHA MOTURI, PUJITHA MANDAPATI

4.THAMBI VINOD KUMAR, 5.SHRUTI
Assistant Professor, Department of Computer Engineering, Ellenki college of Engineering and
Technonlogy, patelguda (vi), near BHEL ameenpur (m), Sangareddy Dist. Telangana 502319

.
ABSTRACT
Abstract—Mobile Cloud Computing refers
to offloading com- putationally intensive
algorithms from a mobile device to a cloud in
order to save resources (time and energy) in
the mobile device. But when the connection
to the cloud is non-existent or limited, as in
battle-space scenarios, exploiting
neighbouring devices could be an alternative.
In this paper we have developed a
framework to offload computationally
intensive algorithms to neighbours in order
to minimise the algorithm completion time.
We propose resource allocation algorithms to
maximize the performance of these systems
in real-time computer vision applications
(drop less targets). Results show significant
performance improvement at the cost of
using some extra energy resource. Finally we
define a new performance metric which also
incorporates the energy consumed and is
used to compare the offloading algorithms.
Index Terms—Offloading, Mobile Cloud
Computing, Energy
I. INTRODUCTION
Off-the-shelf smartphones are becoming
ubiquitous and powerful, making them an
interesting prospect to form a smart networked
camera. However, they are not powerful enough
for many applications, especially if the results
are required in real-time. We have previously
considered their pros and cons for distributed
person re-identification [1]. If smartphones are
deployed to carry out computationally intensive
computer vision tasks, such as person tracking
and re-identification between multiple cameras,
they may not always be able to process

everything within a user specified time. As such
we can define performance of a system as the
ratio of number of jobs processed to the number
of jobs available.
Conventionally, computationally intensive
algorithms have been offloaded to the “cloud”
and it has been shown in some cases to save
time and energy [2] [3]. In this paper however,
we present a novel framework to offload these
tasks to neigh- bouring mobile nodes which can
significantly increase the performance without
substantially depleting battery resource
compared to the non-offloading case. We also
present a single metric called Efficiency Score
(ES) which also incorporates the energy
consumption along with the performance.
unreachable. Even if there is a connection, the
Network Bandwidth (BW) may be too low or
intermittent. Neighbouring devices lack the
computational power and energy of the cloud
but may be readily available with high BW
connections. However, we need to consider
their available energy resources before
offloading a job as when in the field, charging
may not be readily available. In this paper, we
discuss its feasibility in terms of time and
energy. Magurawalage et al. have considered
offloading to intermediate cloud like entity
called cloudlets [6] but to the best of our
knowledge, battery powered neighbours have
not been used by anyone as an offloading
candidate.
Computing platform types
If there is no network connectivity, the only
option is to do on-board processing. However,
if there is some connectivity, we have the
option to offload. We use the term “onloader”

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-3, ISSUE-10, 2016

DOI: 10.21276/ijcesr.2016.3.10.12
75

for the system which the “offloader” offloads its
workload to. Some on-board processing can
reduce the amount of data to be communicated
while freeing up the onloader’s resources. For
example, a background subtraction algorithm
can limit the sensor from sending images with
little or no activity. This saves communication
cost for the sensor and the onloader has fewer
jobs to perform. However, when the algorithms
areonloader. Then, X can offload (P N) targets
to the cloud and as Kumar et. al explains, it can
save time and energy [2]. If the cloud is not
available, conventional system would simply
drop the targets. However, device Y has no
target in its FOV at this moment. We show that
neighbour devices like Y can be good
alternative and may be used for offloading.
We now describe the simulator we developed to
study smartphones with cellular and Wi-Fi
communication capabili- ties. Then in section
III, we describe how we use the simulator for a
person re-identification system. Then we
describe exper- iments in section IV and show
results. Finally in section V, we present
conclusions to the paper.
II. MODELLING NETWORK OF
SMART CAMERAS
The simulator allows us to use a simplified
model of the algorithm flow for the target
platform and update components easily as
required. Wu et al. used queuing model theory
to simulate workload on distributed nodes [3].
However, theirassumption that when there is no
workload the nodes do not consume any energy
is not valid in real life. The major elements of
our simulator relate to the algorithmic tasks, the
sensor architecture, communication links and
the targets. We go through each one in detail
below.
A. Algorithmic tasks
The simulator’s model for the algorithmic task
is characterised by its number of Operations
(OP), input and outputdata size. For example, a
person detection algorithm takes an image of
size M N as the input, requires approximately
C OP per image and outputs the number of
persons in theimage. Assuming one OP per
clock cycle, we can estimate the execution time
on the device using the clock frequency

Texec ∝ Clock Frequency (1)

We are aware that in different processors some
OP take more than one cycle and multiple OP
can be possible in one cycle, however this
approximation (Eqn. (1)) gives an estimate of
time required without detailed execution
information. If desired, algorithms could be
executed on the Device Under Test (DUT) to
measure the execution time more precisely.

The number of OP required for an algorithm
can change. For instance, in the Mixture of
Gradients (MOG) algorithm for background
subtraction, it depends on how quickly a
matching Gaussian distribution is detected for
the particular pixel [7]. To make calculations
easier for the simulation, we take the worst case
scenario where the matching Gaussian is not
found.

B. Component Based Sensors

In order to realistically emulate its behaviour, a
sensor is divided into its components such as
the Central Processing Unit (CPU) and cellular
radio. We do not consider the energy
consumption by the display as it can be turned
off by theapplication. We use the utilisation
based model by Jung et al. to calculate the
energy consumption [8] and our parameters are
based on a Google Nexus I phone which was
one of theirDUTs. However if desired, the
simulator can be calibrated for a different DUT
in a straightforward manner.

TABLE I. CPU PARAMETERS
Frequency 245.0 384.0 460.8 499.2 576.0 614.4 652.8 691.2 768.0 806.4 844.8 998.4
βcpu

freq
βcpu

idle

201.0 257.2 286.0 303.7 332.7 356.3 378.4 400.3 443.4 470.7 493.1 559.5
35.1 39.5 35.2 36.5 39.5 38.5 36.7 39.6 40.2 38.4 43.5 45.6

1) Image Sensor: The image sensor
consumes significant energy in a mobile device
when used continuously. According to
Likamwa et al., the energy consumption per
frame of the image sensor can be modelled as
follows [9].

Ecamera = Pidle × (Tframe − Tactive) +
Pactive × Tactive (2)

where Tactive = Number of Pixels . Based
on Eqn. 2 , we can either reduce the image
resolution, thereby reducing Tactive or reduce
the acquisition rate to save the energy
consumption.

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-3, ISSUE-10, 2016

DOI: 10.21276/ijcesr.2016.3.10.12
76

2) Application Processor (AP): The CPU
power is made up of two parts, idle power and
the running power, as follows:

pcpu = βcpu × u + βcpu, (3)

where u is the utilisation and βcpu are the
CPUparameters listed in Table I. We calculate
the utilisation as the ratio of the CPU time used
vs the time available per frame. However, the
CPU is also used by the Operating System (OS)
and other running applications. Dargie used
normal and exponential distributions to simulate
workload in [10]. We also used a random
variable (r) sampled from a Gaussian
distribution to simulate these other activities.
By adjusting the mean of r we can a simulate
busy sensor and idle sensor. The total utilisation
is calculated as shown below.

u= i=1 i+r (4)

TFrame

whereNisthenumberofalgorithmstobeprocessed
Texeci

is the execution time for ith algorithm (see Table II
forexecution times for all algorithms) and TFrame =
1 is the time available for each frame. In the
situation where Texeci > TFrame which is very
likely in the case of algorithms for person re-
identification; we only run the CPU to 100% load
and run the remainder of the algorithm in the next
frame and so on.

3) Cellular (3G): Cellular radio is modelled as
a three state system: IDLE, Forward Access Channel
(FACH) and Dedicated Channel (DCH). The IDLE
mode is the non com- municating mode and has the
lowest power consumption. In this mode, the User
Equipment (UE) is turned on but has not established
Radio Resource Control (RRC) connection with the
Radio Network Controller (RNC). In DCH state the
UE has a dedicated transport channel for data
transmission in both directions, but this is 50 to
100% more expensive than FACH, where FACH is
the intermediate state with reduced power
consumption and low data rate. There is no
dedicated channel allocated in this mode and it can
only transmit user data through shared low speed
channel that is typically less than 15kbps [11]. As
we can see from Eqn. (5), power is only dependent
on state but not on utilisation. Fig. 2 shows the state
diagram with the inactivity timers which along with

data buffer size controls the state promotions and
demotions.


βIDLE ifRRCstateisIDLE

βFACH if RRC state is FACH

βDCH if RRC state is DCH (5)

where RRC is the current state of UE and
βIDLE, βFACH and

βDCH are based on [8].

Fig. 2. Cellular radio states, α1 and α2 are
inactivity timers whereas δ1 and
δ2 are delay to get to DCH

Fig. 3. Person Re-identification work-flow.

4) Wi-Fi: The Wi-Fi model calculates the time
and energy of the Wi-Fi component in the
connected mode. There are two modes
depending upon the packet rate.
pwifi = βLT × p + βLT base if p ≤ Threshold
βHT × p + βHT base if p > Threshold

where p is the packet rate, βLT, βHT, βLT base
and βHT base are the parameters of the DUT
based on [8]. If the number of packets per
second exceeds the threshold of 20 then Wi-Fi
is in the high power state, else in the low power
state. Unlike the cellular system, the power
consumption is directly proportional to the data
rate. Although Wi-Fi consumes energy in
scanning mode, we ignore it as we assume a
connection between the sensors as the basis of
this research.
III. SYSTEM DESIGN
In this section, we show how offloading may be
used toincrease the performance of a system.
We consider a pedestrian re-identification
system outlined in Fig. 3. It starts with
imageacquisition from the image sensor. A
background subtraction and a person detection
algorithm is applied on the image to detect the

Image Backgroundsubtraction PersonDetection

DCH

α1
1

2

IDLE α2
FACH

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-3, ISSUE-10, 2016

DOI: 10.21276/ijcesr.2016.3.10.12
77

number of people in the view. When there a
pedestrian is detected, we apply a person re-
identification algorithm to each detection such
as [12]. Our goal is to identify as many
detections as possible.
A. Application Partitioning
The algorithmic complexity of the person re-
identification algorithm outweighs that of other
algorithms in the chain (see Table II). So, the
overall complexity of the system can be
estimated as (N) where N is the number of
people detected. To be realistic, we limit the
number of people in an image (800 × 600) in
the simulator to be fewer than 10.
B. Energy Saving Methods
We replicate following energy saving
techniques to make the simulation realistic as
much as possible.

1) Dynamic Frame per Second: We can
save energy by decreasing the number
of FPS of the system (see Eqn. (4)).
However, very low FPS may mean
some of the detections may be missed.
We implemented an algorithm to vary
the FPS of each individual sensor
between 1 and 16 in the following way

{
FPS(old)×2 ift<τ

FPS (new) =

FPS (old) ÷ 2 if t > τ (7)
where t is the time between target activities
and τ is 5 seconds.
TABLE II. EXECUTION TIMES FOR
CPU RUNNING @ 998.4 MHZ

Algorithm ExecutionTime
BackgroundSubtraction
PersonDetector
PersonRe-identification

0.1
0.2
5.1

TotalTime 5.3

2) Dynamic Voltage and Frequency Scaling
(DVFS): A simple algorithm controls the
clock frequency of the sensor. When the
CPU utilisation is below 0.4, the clock
frequency is lowered according to Table I
and it is scaled to maximumfrequency as
soon as the utilisation is above 0.9.
C. Offloading
We classify only the re-identification
algorithm as offload- able as for others, the
communication costs and the time delay
outweighs the benefits of offloading.
Offloading an algorithmentails sending
input data, waiting for the onloader to
execute, and receiving output data. Before

transmitting however, the data has to be
formatted in packets and some overhead
will beadded to the processor. These
operations can be a few hundred per packet
which needs to be added to the CPU
workload.

Time Cost: The communication times are
proportional to the data size to be
communicated and inversely proportional to the
network BW. We assumed the BW to be static.
Waiting times can be estimated using Eqn. (1)
for the onloader’s clock frequency. But, it does
not take into account the CPU load. If our
onloader’s AP is already busy, our estimation
can be very far from reality. So we re-write the
time calculation using onloader’s average CPU
utilisation.

Twait = Texec
1 − E[u](8)

where E[u] is the average of u from Eqn. (4).
The total time cost which is also known as
makespan, is shown below [13].
Ttotal = Tpacket + Tsend + Twait + Treceive
 (9) where Tpacket is the time to format
the data in a packet.
Energy Cost: There are two energy costs
involved. The first is for the offloader (Eoff)
and includes data packeting and the radio
communication cost.
Eoff = (Tsend + Treceive) × Pradio + Pcpu ×
Tpacket (10)
where radio 3G, WiFi . Second is for the
onloader which includes radio cost, execution
cost and the packeting costs. So far, in
literature, cost for the onloader is ignored as
energy is not of major concern for the cloud.
But while offloading to the neighbours, we need
to consider it.
Eon = (Treceive +Tsend)×Pradio +Pcpu
×(Texecute +Tpacket) (11)
D. Multi-Objective Optimisation
The time and energy costs from Eqn. (9, 10 and
11) can be inferred as variables of a multi-
objective optimisation problem.
Cost = wtime × Ttotal + woff × Eoff + won ×
Eon (12)
where wtime, woff and won are the weights for
each objective. The cost function involves
adding time and energy variables(i.e. different
units), which requires careful selection of the
weights. We avoid this situation by limiting one
of the objec- tives to a threshold (ε) and

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-3, ISSUE-10, 2016

DOI: 10.21276/ijcesr.2016.3.10.12
78

optimising rest of the objectives [14].
Regarding the real-time nature of our problem,
we limit the time and optimise the energy
variables. We set ε = 25 seconds and leave out
the nodes that do not satisfy this constraint
(denoted by the light dots in Fig. 4). It is still a
multi-objective problem but only with two
variables of the same unit (Joules). We now
study three methods to optimize offloading
performance.
1) Minimize Energy Cost (MEC): In this
method, we choose the node that satisfies the
time constraint described above and incurs the
minimum offloader and the onloader energy
cost. The solution is pareto-optimal and denoted
by nodes on the line in Fig. 4 [14].
CostMEC = woff × Eoff + won × Eon
 (13)
2) Minimize Battery Impact (MBI): In a
battery-powered device, using the least energy
cost per job alone may not in- crease device
lifetime. For example, say an algorithm requires
10 and 8 Joules on devices X and Y
respectively. But X and Y have 500 and 50
Joules left in their battery respectively.
Considering energy cost alone, Y is the best
choice but when we consider the amount of
energy left in the device clearly X is a better
choice. We re-write Eqn. (13) as follows.
3) Offload Only if Busy (OOB): The
previous methods try to find the global solution,
but offloading has overhead costs. So, this
method tries to offload only if on-board
processing is estimated to be infeasible. To do
so, we add all the operations in the execution
queue and use Eqn. (1) to estimate the
minimum remaining processing time. If this
time is greater than the threshold (ε), offload the
algorithm minimising the time and energy
objectives defined in Eqn. (12).
IV. SIMULATION AND RESULTS
We simulated a number of sensors connected to
each other by Wi-Fi and to the server (when
available) by cellular link. For simplicity, we
assume that resource information about all the
nodes (remaining energy, current CPU load
etc.) is avail- able and all the sensors have same
computational capability but the server is 10
times more powerful. Also there is no
energyand using the best representation for
identification purposes.

We tested the algorithms with various
parameters using 100 Monte-Carlo runs each
representing a 10 minute period. The results are
listed in Table III. When the cloud is not
available, Successful Identifications (SI) (which
is targets detected minus targets dropped)
improved from 10.4 in the Non Offloading
(NO) case to 12.7 for the MEC case and 13 for
OOB case but degraded to 8.87 for MBI. MEC
and OOB boosted the performance by more
than 20% while only incurring around extra
10% energy consumption. MBI did not perform
well because of the communication overhead.
However, if the runs were longer, may be we
would see some improvement in the device
lifetime. All the algorithms did better than the
NO case when the cloud was available,
dropping almost no targets but the energy
consumption was significantly higher. This
shows that offloading to cloud blindly may
increase the performance.
V. CONCLUSION
This paper presented a simulation model for
offloading computationally intensive algorithms
to neighbouring devices when the cloud is not
available. The results show that among the
three, OOB consistently achieved the best trade-
off be- tween power and performance. It
improved the performance by approx. 25%
while costing about 10 20% more energy. The
ES metrics suggests that energy is used more
productively
REFERENCES
[1] S. Sthapit, J. Thompson, J. Hopgood,
and N. Robertson, “Distributed implementation
for person re-identification,” in Sensor Signal
Process- ing for Defence, 2015, pp. 1–5, Sept
2015.
[2] K. Kumar and Y.-H. Lu, “Cloud
Computing for Mobile Users: Can Of- floading
Computation Save Energy?,” Computer (Long.
Beach. Calif)., vol. 43, no. 4, pp. 51–56, 2010.
[3] H. Wu, W. Knottenbelt, and K. Wolter,
“Analysis of the Energy- Response Time
Tradeoff for Delayed Mobile Cloud
Offloading,” in Teletraffic Congr. (ITC 27),
2015 27th Int., pp. 134–142, 2015.
[4] N. Fernando, S. W. Loke, and W.
Rahayu, “Mobile cloud computing: A survey,”
Futur. Gener. Comput. Syst., vol. 29, pp. 84–
106, jan 2013.

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-3, ISSUE-10, 2016

DOI: 10.21276/ijcesr.2016.3.10.12
79

[5] P. Natarajan, P. K. Atrey, and M.
Kankanhalli, “Multi-Camera Coordi- nation and
Control in Surveillance Systems : A Survey,”
ACM Trans. Multimed. Comput. Commun.
Appl., vol. 11, no. 4, 2015.
[6] C. M. Sarathchandra Magurawalage, K.
Yang, L. Hu, and J. Zhang, “Energy-efficient
and network-aware offloading algorithm for
mobile cloud computing,” Comput. Networks,
vol. 74, pp. 22–33, 2014.
[7] Z. Zivkovic, “Improved adaptive
Gaussian mixture model for back- ground
subtraction,” Proc. 17th Int. Conf. Pattern
Recognition, 2004. ICPR 2004., no. 2, pp. 28–
31 Vol.2, 2004.
[8] W. Jung, C. Kang, C. Yoon, D. D. Kim,
and H. Cha, “DevScope: A Nonintrusive and
Online Power Analysis Tool for Smartphone
Hardware Components,” Proc. Eighth
IEEE/ACM/IFIP Int. Conf. Hard-
ware/Software Codesign Syst. Synth., pp. 353–
362, 2012.
[11] C. W. Johnson, Radio Access Networks
for UMTS: Principles and Practice. John Wiley
and Sons, 2011.
[12] M. Farenzena, L. Bazzani, A. Perina, V.
Murino, and M. Cristani, “Person re-
identification by symmetry-driven accumulation
of local fea- tures,” Proc. IEEE Comput. Soc.
Conf. Comput. Vis. Pattern Recognit., pp.
2360–2367, 2010.
[13] Y. Jiang and S. Member, “A Survey of
Task Allocation and Load Balancing in
Distributed Systems,” IEEE Trans. Parallel
Distrib. Syst., vol. 27, no. 2, pp. 585–599, 2016.
[14] M. Caramia and P. DellOlmo, “Multi-
objective Optimization,” in Multi- objective
Manag. Freight Logist. Increasing Capacit.
Serv. Lev. Saf. with Optim. Algorithms, pp. 11–
37, Springer London, 2008.
[15] F. Bai and A. Helmy, “A Survey of
Mobility Models in Wireless Adhoc Networks,”
Wirel. Ad Hoc Sens. Networks, pp. 1–30, 2004.

