

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-3, ISSUE-11, 2016

88

MAPREDUCE SCHEDULER: A 360-DEGREE VIEW
Rajdeep Das1, Rohit Pratap Singh2, Ripon Patgiri3
Department of Computer Science & Engineering

National Institute of Technology Silchar, Assam, India
Email:radsria@gmail.com1, rohitkako@gmail.com2, ripon@cse.nits.ac.in3

Abstract
Undoubtedly, the MapReduce is the most
powerful programming paradigm in
distributed computing. The enhancement of
the MapReduce is essential and it can lead the
computing faster. Therefore, there are many
scheduling algorithms to discuss based on
their characteristics. Moreover, there are
many shortcoming to discover in this field. In
this article, we present the state-of-the-art
scheduling algorithm to enhance the
understanding of the algorithms. The
algorithms are presented systematically such
that there can be many future possibilities in
scheduling algorithm through this article.
In this paper, we provide in-depth insight on
the MapReduce scheduling algorithm. In
addition, we discuss various issues of
MapReduce scheduler developed for large-
scale computing as well as heterogenous
environment.
 Index Terms: Scheduler, MapReduce,
MapReduce Scheduler, Large-scale
computing, Data-intensive computing.

I. INTRODUCTION

Unquestionably, the MapReduce is the most
powerful and popular programming paradigm of
parallel and distributed processing engine. The
MapReduce meets very vast range of application
for large-scale processing. The MapReduce is
proven to be the best programming platform for
dataintensive computing. The Google File
System (GFS) was introduced in 2003 [31] and
the MapReduce was introduced by IT giant
Google Inc. in 2004 [32]. It was absolutely

proprietary [31] [32] and written in C++. The
Yahoo! company wanted the replica of the
MapReduce and Hadoop [2], has got huge
popularity. The MapReduce is very easy
programming framework to develop the
largescale distributed application within a few
lines of code. The MapReduce shows the
properties of simple yet powerful. However, the
gigantic scale of data processing is not a piece of
cake and it has become easier on the MapReduce
programming environment. However, the
MapReduce has certain limitation which is
highlighted later section.

The MapReduce is developed under the Apache
Hadoop framework [2] and it is proven to be the
best framework for application development in
large-scale distributed computing environment.
However, the large scale computing is split into
several small pieces of computing and distributed
the task in several computing nodes. The tasks
are scheduled in different suitable node.
Nevertheless, the detecting or finding the suitable
node for running a task is a very difficult job.
Further, the suitable node must enhance the job
performance and hence, this is the most relevant
algorithm to fine tune. There is always a scope to
enhance job performance by placing the tasks in
suitable node. The most common scheduler is
first-come first-serve (FCFS). However, the
Hadoop MapReduce has priority, capacity and
fair scheduler. Interestingly, these three
schedulers are not enough to enhance the
performance of jobs. There are many parameters
to be considered, for instance, data locality.

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-3, ISSUE-11, 2016

89

Fig 1: Taxonomy of MapReduce scheduler

II. SPECULATIVE SCHEDULING
ALGORITHMS

The most of task submits on time excepts one or
two. Albeit, the fast processing of all other tasks,
one task can lengthen the job completion time
and it is known as Achilles' Heel of MapReduce.
There are many reasons for a task to be a
straggler, namely, faulty hardware, wrong
configuration, network congestion, link failure,
low processing power, and heavy background
noise. The straggler task should be identified as
early as possible so that speculative execution of
the task can be started. A performance can also
be degraded when aggressive speculation of a
task in testing whether the task belongs to
straggler or not.

A. Approxiation-based Scheduler

The Longest Approximate Time to End
(LATE) is the milestone for MapReduce
scheduling algorithm which was introduced in
2008[1]. The focal point of this algorithm is
speculative execution of the straggler task to
increase MapReduce performance. LATE[1]
algorithm performs speculative execution of a
task in the heterogeneous environment. The key
point of LATE is prioritizing the task to speculate
on the different node. Interestingly, LATE selects
fastest node to launch the task speculatively and
caps the speculated task to prevent thrashing.
Whenever a node is requesting for a task and has
its slot free, Hadoop schedules the failed task
with high priority. If no such task present, then
LATE pick a non-running task from a job to
schedule in Hadoop. Hadoop uses a progress
score for each task which is 0 to 1 to select the
task to be run speculatively. In map phase, the

_ is the fraction of input data read

to the total data whereas the _ for
reduce phase is split into three phases, namely,
Copy phase, Sort phase and Reduce phase. The
key idea of LATE scheduler is that it always
speculatively execute the task which will finish
late in near future. So, it improves the
performance and shorten the response times.
LATE uses progress of the map and reduce task
to approximate the completion time of the task in
the future.
LATE estimates the progress rate of each task as

, where is the task

running time. And completion time for every task
can be calculated using the formula of

 =
.

However, Hadoop launches task based on data
locality whereas LATE doesn't consider locality
while launching the speculative map task.
Assumption used by LATE is that most of the
map task is data local, therefore, network
utilization is less. When it launches non local
task, data can be sent to the node using the
network. Moreover, It launches the backup task
for inappropriate tasks. LATE considers the slow
nodes using the progress rate, but it doesn't
consider whether a map task or a reduce task is
slow. In heterogeneous environment the value of
a node changes with the execution of map and
reduce task, with changes in input the

_ for the map and reduce task
differs in different nodes.
 In a heterogeneous environment, LATE suffers
because of the static nature. However, a Self-
Adaptive MapReduce scheduling (SAMR)
algorithm[5], which computes _
of tasks dynamically and reconciles to the
constantly diverse environment. It works well
compared to LATE in a same manner, like it uses
historical information stored in the node for
determining the slow task which needs to be
executed speculatively. Dynamic nature of
SAMR significantly improves the MapReduce
execution time and system resources as shown in
paper[5]. SAMR saves system resources by
classifying slow task further in slow map task and
slow reduce task. SAMR works on the key
insight that slow task prolongs the execution time
of the whole job and takes more time to finish a
job because of the differences in computational

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-3, ISSUE-11, 2016

90

power. SAMR[5] calculates more accurate
progress score compare to LATE because it
considers historical information stores in the
node. The historical information is saved on each
node in xml format to update the historical
information of a node. To start with, historical
information of the node is get by the
TaskTracker. Then, based on the historical
information the parameter for the task gets tuned.
SAMR finds the task from the queue of slow task
and schedule it over the fast TaskTrackers which
are freely available to achieve high performance
and response time.

However, SAMR has some drawbacks. It
suffers with different map and reduce stage
weights of different types of jobs. As well as for
the same type of jobs when the input data set
changes the stage weight changes. SAMR doesn't
consider the change in weight of the stage
dynamically. In 2012, an Enhanced Self-
Adaptive Map Reduce [ESAMR] [25] scheduling
algorithm is proposed to enhance the speculative
re-execution of straggler tasks in MapReduce.
Using a k-means clustering algorithm, it offers
historical stage weight information on each node
to identify slow task node with high veracity, and
divide them into k clusters. It arranges the task
into several clusters and job execution time on the
node is calculated based on the cluster’s weights.

III. LOCALITY-AWARE REDUCE TASK
SCHEDULER (LARTS)

LARTS[9] is the only scheduling algorithm for
Reduce task based on data locality. Native
Hadoop scheduler works on the phenomenon of
early shuffle of reducers near the partitions, it
helps in improving the performance, but it
simultaneously increases the network traffic.
Regardless, LARTS maintains the aid of
interleaving process with less network traffic.
Early shuffle mechanism in Hadoop improves
performance by scheduling a reduce task before
intermediate data present in each partition is
available. Generally, after the commitment of
certain percentage(5%) of mappers, scheduling
process of reduce task starts. The reason for early
shuffle is to provide mappers intermediate output
partition to a corresponding reducer early so that
it doesn't have to wait for getting processed by
reducers, and it helps to improve turnaround time
for MapReduce job. LARTS algorithm modifies
Hodoop to distinguish the network traffic into

node local, rack local and off rack. When a
reducer is scheduled to the node having an
intermediate data partition to be consumed by the
same reducer is known as node local traffic, i.e.,
node local traffic is negligible because reducer is
scheduled to the same node containing the map
partition. Rack local traffic is obtained when the
partition generated by map task of the node is
shuffled to reducer which is scheduled to some
other node present in the same rack. Whereas in
the off rack traffic the partition is shuffled to the
reducers which is scheduled in off rack node.
Hadoop uses the resource monitor to estimate the
input size for reducers before it gets scheduled in
the TaskTracker. If the Hadoop job tracker finds
the TaskTracker which is requesting for reducers,
doesn't have enough space for reducer then job
tacker will not schedule the reducer to that
particular TaskTracker (TaskTracker is rejected).
Early shuffle is the feature provided by the native
Hadoop scheduler, reducers get scheduled with
the mappers running on the node. Mappers which
are busy generating the largest amount of
intermediate output need more resources, in such
scenario, TaskTrackers holding busy mappers
make a request for reducers is rejected by job
tracker. Subsequently, the intermediate output of
the busy mappers has to be scheduled to the
reducers present in some other node and it
increases the traffic in the network. Therefore,
job tracker schedules the reducers to the
TaskTracker holding busy scheduler in order to
reduce the network traffic of shuffling the
intermediate data of large partition.

LARTS is used to schedule reduce task to
the TaskTracker so as to reduce the network
traffic for large shuffled data. MapReduce
framework is well aware of the memory location
of the input data for scheduling the map task.
Whereas, location of the partition generated by
the map task is not known to the framework, i.e.,
scheduling reduce task is a challenge. Similar to
the map task, algorithm makes the MapReduce
aware of network location for scheduling, reduce
task based on data locality. Network location of
the intermediate dote will be fully known when
the all map tasks in the TaskTracker complete.
Early shuffle of reduce tasks helps in increasing
efficiency and decreasing the job turnaround
times. Early shuffle can be initiated after a
defined number of map task finishes their

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-3, ISSUE-11, 2016

91

execution. A sweet spot is defined in the program
where early shuffle can be initiated. In addition
to the network location of each partition, a
MapReduce framework should keep track of the
size of all partitions in order to schedule reduce
task based on data locality.
 Reducer has to be scheduled to the mapper
generates the partition and better data locality can
be accomplished by scheduling the reducer at the
TaskTracker hosting the partition. Maximum-
rack of reducer is defined by the number of the
rack that holds the maximum number of
partitions whose accumulated size is larger than
any other accumulated size of other racks holding
the partition for the same reducers. In the same
way, the algorithm defines maximum-node of
reducer as the node contains the biggest partition
for reducer at the maximum-rack. Maximum-
rack and maximum-node is calculated using the
network location and size of partition. In this
approach, some problem arises, namely,
scheduling delay, scheduling skew, lower
parallelism and poor throughput. A scheduling
delay occurs when the TaskTrackers request for
reducers simultaneously and gets rejected
because they fail in the criteria of maximum-rack
and maximum-node and this situation leads to
scheduling delays. Whereas, scheduling skew
occurs because of the variance in the
TaskTracker being preferred by the reducers.
Very poor parallelism and poor throughput
results after a skew in scheduling. LARTS deals
with the scheduling delay, scheduling skew,
system utilization and parallelism by
fragmenting the reduce task among the
TaskTrackers requesting for the job. Mechanism
to deal with the above mentioned shortcomings
is rejection counter, Rejection counter is present
for every TaskTracker, it increments whenever a
TaskTracker gets rejected by the job tracker.
Threshold is present for restricting the number of
times a TaskTracker gets rejected after that job
tracker assign reduce task to the requesting
TaskTracker.

IV. DATA LOCALITY SCHEDULING
A. A Data Distribution-Aware Scheduling

Algorithm
 A data distribution aware task scheduling
algorithm [4] is the foremost algorithm proposed
based on data locality. The key point is

scheduling a task where data is available locally.
So network communication and data
transmission rate can be reduced if job tracker
schedule the task to the TaskTracker having the
data. Since, moving computation is cheaper than
moving data. In data distribution aware
scheduling task is distributed on the slave nodes
based on data locality. Scheduling is done based
on the scheduling priority of each task and the
node requesting the task. Calculation of
scheduling priority is the Main module of Master
Node.
 The priority scheduler for a task is calculated
based on three factors, namely, Replica-num,
WorkerTasklist, and Task-waittime. First, the
Replica-Num determines the number of map
tasks those can be executed the local task, i.e.,
when a task will be assigned to TaskTracker, the
data for that task should be present locally to that
node. Data is replicated by HDFS [2] over the
different nodes present in the network. So while
considering the priority, it considers less priority
for the task which is having high Replica-Num.
After that, WorkerTasklist determines the length
of the localize task list for the nodes saving the
data to be executed by the map task. If the length
of localize task is more, then the scheduling
priority of that task is high. At last, Task-waittime
determines the time period of a task from the
starting to the current moment of time. So, task
whose waiting time is high has the highest
scheduling priority.
 Now, computing the scheduling priority for each
node requesting for the task. Slave node request
for task through a heartbeat signal and advertise
free slots. Scheduling priorities of workers are
calculated using three factors Worker's Local
Task list, Request-Num and HistoryInfo. So first
of all, Workers Local Task list is maintained for
each node. Task present in the list can be
executed by each worker locally. If node local
task list is not empty, then scheduling priority can
be set at maximum. And master schedules task in
this list of the worker first. Second, Request-Num
determines the number of requests since the node
gets the last task. It means a node request for task
whenever a node is free in every heartbeat signal.
Count of Request-Num shows that the worker has
less load and can manage more task. So, bigger
the Request-name has higher priority. At last,
history-Info gives the success rate for task

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-3, ISSUE-11, 2016

92

processing on the node. Scheduling priority of
worker is proportional to the History-Info. With
this intention, task getting scheduled over the
node corresponds to the workers, local task list,
if the worker local task list has some task then it
has the highest priority. Else the other two factors
will come into the picture.

B. Delay Scheduling Algorithm

Delay scheduling algorithm is a very
simple technique for accomplish locality and
fairness in MapReduce scheduling. Fairness can
be achieved by fair sharing of resources, but strict
establishment of fair sharing adjust locality,
because when a request generated by a node
might not have the data for the task to be
scheduled next. Hence delay scheduling [6]
relaxes fairness slightly, in which job waits for a
limited amount of time before getting scheduled
on a node that has data for it. Problems related
data locality while considering fairness is Head
of line scheduling and Sticky slots.

Head of line scheduling is the data
locality issue arises because of small jobs having
tiny input files leads to less number of input
blocks, so in fair sharing scheduling, tiny job
having a minimum number of tasks, next task is
scheduled on the free slot requesting for the task,
and it does not consider the node to launch the
task. However, in sticky slots problem occurs
even for large job if fair sharing is used. The
problem is that a slot can be repeatedly assign for
the same job. The problem arises when jobs are
sorted according to the increasing order of
running tasks, one task gets scheduled on one of
the slot and it finishes. Then the next task of the
same job will be scheduled back to same slot. In
consequence, it leads to the situation that jobs
never leave their original slots. The main idea
behind delay scheduling is that, even though a
slot is free and requesting for task irrespective of
the fact that it contains the data for that task, it
will be unlikely to assign task to that slot because
tasks finishes so quickly that some slot with the
data for it will free up in the next few seconds. So
delay scheduling along with fair sharing solves
the problem of data locality.
 Fair sharing with delay scheduling states that set
the job with a value , scheduling a non local task
in the job will be skipped times until it gets the
local task, and once it crosses the limit of times
then it let the job launch arbitrarily many non-

local tasks without resetting the count of .
However, once it manages to launch a local task,
then the value will be set back to 0. Two levels of
delay scheduling are also proposed, it states that
first it delay the job by 1 seconds to find a node
local task, and then it waits till 2seconds to find
a rack local task. It achieves more level of data
locality rate compare to the single level of delay
scheduling because here it is considering the fact
that data can be accessed through rack locality.
Initially, it checks for node local task for jobs,
when it fails to find then it checks for rack local
task. When it fails to find the node local task as
well as rack local task, it launches arbitrarily non
local task. Considering the value of , it cannot be
set higher because then it will lead to resource
wastage for the non-local node requesting for the
task. It cannot be set low because then it will
work like general fair scheduling algorithm. It
should be set ideally, means not too high and not
too low.

Limitations of Delay scheduling is when
a large portion of the tasks is much larger than the
average job, then effectiveness will become less.
It delays the task by times, but since larger job
are assigned to the slots, within that times slots
might not become free and it will lead to lower
utilization.

C. Data-locality Aware Task Scheduling
Algorithm

Data locality is the concern of this [7] scheduling
algorithm. It takes decisions based on the waiting
time and transmission time of the task. In brief,
the idea of this scheduling algorithm is that
whenever a requesting node request for a task, the
method selects the task from task list whose data
is stored on the desired node. If no such task
encountered, then the method picks a task from
the list where data are near to the task. The basic
idea behind calculating the waiting time and
transmission time is that if the waiting time of
selected task is less than the transmission time of
the selected task, then the task will be reserved
for the node having the data stored in it, otherwise
it will schedule the task over the requesting node.
The waiting time of a task stands for the
remaining time needed to complete the executing
task on the node having the data stored. Multiple
task executes in a node simultaneously, hence the
waiting time for a task having data stored on the
node is represented by the time taken to finish the

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-3, ISSUE-11, 2016

93

shortest task among all, once the shortest task
will complete execution the requested task can be
scheduled. The transmission time for the task
stands for the time taken to copy the input data to
the node requesting for task, time rely on network
communication. Selection of task after getting
the request from the requesting node is done
based on the probability calculation when a node
local task is not present. It maintains the different
level of the task, when first level tasks do not
fulfill the condition, it checks in second level and
then followed by the third level. The probability
gets calculated so that they can be scheduled
according to their probability. Task with high
probability gets chance to be scheduled first on
the requesting node, whereas the task with low
probability get reserved for the node storing their
data.
D. MatchMaking

 The key idea of the matchmaking technique [8]
is to assign tasks to a TaskTracker, the local map
task is always preferred over other map task. To
avoid network transmission rate the local task a
preferred over non local task. Another technique
used by matchmaking is a locality marker.
MatchMaking marks the node and ensure that
each node gets the fair chance to grab it local
task. Scheduler grants the request based on the
heartbeat signal generated by the requesting slave
nodes, so data locality is randomly decided by the
heartbeat sequence of slave node. In such
scenario where large cluster is present with small
jobs then data locality rate could be quite low.

The matchmaking scheduling main idea
is to assign tasks based on locality. It makes sure
that each slave node should get a fair chance to
grab the task for which data is stored in the node
before any task gets assigned to it. When a local
map task is not found in the first job, then the
scheduler will continue searching in the
succeeding jobs. Whenever it finds a local map
task, it schedule the map task over the node
requesting for the task.
 Slave nodes should get fair chance to grab the
node local task, when a node fails to find a node
local task, it doesn't launch the non-local task,
else it waits for some time and request again for
node local task. The main idea behind is, tasks
finish very fast so when a node wait for one
heartbeat signal, the other nodes also finish their
execution and node local task gets available. To

avoid wasting of resource by keeping the node
ideal, the non-local task will be assigned to in the
next heartbeat. Matchmaking scheduling allows
a slave node to take at most one nonlocal task in
every heartbeat. Matchmaking scheduling
achieves high data locality and high cluster
utilization. Matchmaking scheduling uses a
Locality marker assigned to every slave node, it
keeps track whether a local task is launched in the
slave node within that heartbeat signal, if not then
in next heartbeat signal a non-local task will be
assigned to the node.

E. Context-Aware Scheduler in Hadoop (CASH)

 In MapReduce framework, Job scheduler is the
key component as it decides and controls when
and where a job task get executed. Context aware
scheduler in Hadoop [10] design principles is
that, firstly a large percentage of MapReduce
jobs are periodic in nature. It means the largest
number of jobs, having roughly the same
characteristics and execute at the same time.
Secondly, Hodoop cluster contains
heterogeneous nodes that means the computation
and disk capabilities of the nodes present in the
cluster are not same. It happens because more
nodes are added in cluster with time and old
nodes are replaced, so the Hadoop cluster
becomes heterogeneous in nature. The context of
the node should be known before we schedule the
job. Context aware scheduling knows the context
of the job, job characteristics (CPU or I/O bound)
and the resource characteristics computation or
I/O strength of the node in the cluster.
 CASH implementation in Hadoop can be done
in few steps. Initially, Classify the jobs as CPU
bound or I/O bound, CPU bound jobs are more
computation and processing oriented where as
I/O bound jobs are Input output oriented. Job
classification is done using the summary logs,
whenever a new job runs for the first time and
finish execution a log is maintained. From logs it
can be obtained that whether Map Reduce I/O
rates are less than the Disk I/O rate, then it can be
classified as CPU bound job, otherwise, it can be
classified as an I/O bound job. Secondly, Classify
the nodes as computational or I/O good.
Classification of node can be done by running the
CPU and I/O benchmark on each node
respectively. If the CPU benchmark is more
compared to the I/O benchmark for a node than
that node is classified as computational good or

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-3, ISSUE-11, 2016

94

else classified as I/O good. Lastly, scheduling the
task of the job with different demands to the node
which can meet the demands, CPU bound job to
the computational oriented node where as I/O
bound job to the I/O oriented node.

The CASH scheduler schedules task of
jobs based on the both data-locality and
requirement match. While classifying the node,
some node appears to be average in CPU and
Disk then it schedule jobs randomly based on
FIFO order. Initially job is executed in FIFO
order to get the job summary logs, to classify the
jobs as CPU bound or I/O bound. In the preferred
algorithm, the scheduler searches for the Map
task which fulfills both locality and the
requirement of the node. If both criteria fulfill
then schedule the map task to that node. Else if
no data local task found, then scheduler search
for the non-local task with the match
requirement. Whereas for reduce task scheduling
it does not consider the data locality, and searches
for the task fulfilling the node requirements.
Sometimes requirement does not match, then it
schedules task based on data locality. If nothing
matches, then it schedule task based on FIFO
order.

V. RESOURCE-CONTENTION
SCHEDULING

A. Towards a Resource Aware Scheduling
 In the Hadoop cluster (2009) [3], many users
submit the job simultaneously because the
Hadoop cluster is distributed in nature. This
algorithm deals with the improving resource
utilization when different kinds of user submit
jobs on the cluster. Generally, Hadoop scheduler
is not aware of the nature of the job submitted and
Hadoop scheduler prefers to run a map task of the
job present on the top of the job queue. Job
tracker assigns tasks to the TaskTrackers when
TaskTracker has a free slot and request for a task.
So, in simple Hadoop job tracker assigning tasks
to the TaskTracker has some limitations. Firstly,
the allocation of the task to the node having data
is done by the job tracker without considering the
workload of the node and the availability of the
node. Secondly, when the task is assigned to
TaskTracker, and job running on TaskTracker
becomes slow, then job tracker cannot keep track
of such task.

 TaskTracker tracks the resources in Hadoop has
some weakness. Firstly, it fails to monitor the
capacity and load level of individual resources
present in TaskTracker nodes. Secondly, it fails
to utilize the available resource matrices guide to
take decision for scheduling task. An improved
scheduler [3] is proposed to overcome the above
mentioned drawbacks. It monitors the resource
available in every node and takes the decision
based on the resource matrices. TaskTracker
resource monitoring is used to monitor the
resources in the TaskTracker level, Each
TaskTracker monitors resource in the node such
as CPU utilization, disk channel, I/O and number
of page faults per unit time for the memory
system.
 In job tracker it uses resource matrices to
schedule task into the node requesting for tasks.
Firstly, Dynamic free slot advertisement, it
means the TaskTracker node contains a fixed
number of available task slots, but using resource
matrices it computes the free slots dynamically.
Secondly, free slot priorities, in this mechanism
the fixed number of computational slots present
in every node is retained and instead the order in
which TaskTracker node will advertise its free
slots will be decided based on their resource
availability. Lastly, Energy efficient scheduling,
the energy consumption in the scheduler is less
than the consumption of energy in the Hadoop
basic scheduler.

B. Natjam

 Natjam system [15], provides random job
priorities, hard real-time scheduling and efficient
preemption for MapReduce those are resource
constrained. In the MapReduce framework jobs
comes with difficult priority, high priority job
(short completion time) and low priority jobs
(long completion time) the traditional way to
solve the problem of priority is setting different
clusters, which later lead to the inefficient
resource utilization and long job finish time.
 The algorithm aims, 1. To run all the types of
job, regardless of priority, completion time in the
same MapReduce cluster. 2. Attain a lowest
completion time for higher priority jobs. 3.
Optimizing completion times of lower priority
jobs. The mentioned goals are attained using
Natjam algorithm.

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-3, ISSUE-11, 2016

95

C. CooMR

 The available slots in the processor are
represented as free map and reduce slots, and
assign them to different tasks. The cross-task
coordination CooMR is designed for efficient
data handling in MapReduce programs. The
CooMR [19] leads to increase task coordination,
enhance system resources throughput and
significantly enhance the process time of
MapReduce jobs. MapReduce programs face two
key performance issues, namely, task
interference and excessive I/O. Task interference
can cause prolonged execution time for map
tasks. Whereas excessive I/O can degrade the
disk I/O bandwidth.

D. A Load-aware Scheduler

Dynamic loading [26] of job always been
an issue in the Hadoop scheduler, so a new
scheduler load aware scheduler is proposed. It
comprises of two modules, namely, data
collection module and the task assignment
module. Data collection module gathers the
system level information periodically from the
TaskTracker. Whereas task assignment module
makes the scheduling decision according to the
TaskTrackers info collected by the data
collection module.

E. MOMTH

 The multiobjective considered in this algorithm
[20] is related to the user, resources and with
restraints like deadline and budget.
Transformation of sequential task is needed to
lessen the execution time & to diminish the
resource requirement. The main difference
between the single objective and multiobjective
approach is the requirement condition and the
alteration of an objective in the fields. The
MOMTH algorithm has two main objectives.
First, having an optimal work assignment in the
cluster and avoiding resource contention.
Second, to complete tasks within budget and
meet deadlines.

F. CSRA

Data skewness is the one of the major reason of
straggler emergence and makes data assignment
to reducer imbalance. The main objective of
CSRA [27] is to reduce execution time and
coefficient of variation by changing the order of
task list and dividing the big clusters. CSRA has

less overheads and increase the execution time of
applications. CSRA (cluster splitting based on
resource allocation algorithm) mainly focuses on
fixing the problem with data skew.

E. Dynamic Reduce Task Adjustment for
Hadoop
Workloads

The challenging aspect [28] of executing
the Hadoop job is the management of reduce task.
The algorithm proposes, first an approach for
calculating the appropriate number of reduce
tasks per job. Second, usage for profile job in
gathering information for the reduce task
computation and third, two different policies for
fragmenting the reduce task to the available
system resources when multiple jobs execute
concurrently in the cluster. Appropriate number
of reduce task is calculated using the historical
information regarding the input data sets.

VI. PERFORMANCE MANAGING
SCHEDULER

A. Joint Optimization of Overlapping Phase in
MapReduce

 This algorithm [14] deals with the problems
occur when map & reduce phase, execute in an
overlapping manner. MapReduce phase like
Map, shuffle \& reduce phase works in such a
way that the output of one phase becomes the
input to another phase. So, it becomes
challenging to schedule and allocate resources in
complex and critical MapReduce system. It uses
shortest remaining processing time (SPRT) first
scheduling algorithm minimizes average
response time within a single server. So, map task
with large shuffle size completed first to avoid
wastage of resources.

B. Busrtiness-aware I/O Scheduler

 Virtual environments like cloud computing and
virtual cluster are popular recently because of the
low cost and flexibility. In this algorithm [16] a
burstiness-aware I/O scheduler is proposed.
Long seek distances in a disk leads to I/O
interference and then it leads to numerous
context switches in the virtualization software.
For utilizing the I/O bandwidth without
interference, the proposed scheduler encounters
I/O burstiness of a virtual machine on-line. The
key idea of the scheduler is to schedule the
identified bursty virtual machines with a

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-3, ISSUE-11, 2016

96

comparatively big time quantum in round robin
fashion and to avoid the starvation situation I/O
bandwith for the non-bursty virtual machine is
used.

C. DynMR

 DynMR algorithm [17] is used to improve the
performance of MapReduce, it lists some
problem present in the existing MapReduce
implementation. 1. Optimal performance
parameter is challenging to select for a single job
in a dedicated environment. In multijob cluster it
lacks the efficiency to construct parameters that
can behave optimally. 2. Long job execution
leads to taileffect. 3. Hardware resources in
inefficiently used. DynMR uses the interleave
way of execution where several partially
completed reduce tasks and map tasks executes.
It consists of three components. 1. Detection of
underutilized resources in the shuffle phase and
give up the allocated hardware resources
efforlessly to the next task. 2. All the reduce task
is assembled in progressive queue and execute in
interleave rotation. 3. Merges the threads of all
partial complete reduce task, it allows to keep the
data segment of multiple reduce task in one JVM
heap.

D. Throughput Driven Scheduler

 The native Hadoop scheduler are not job-
intensive scheduler so provided less throughput.
So the algorithm proposes a way for improving
throughput using jobintensive scheduling. A
novel job scheduling technique is proposed,
Throughput driven [29] task scheduler for
obtaining high system throughput in the job-
intensive MapReduce environment. The
algorithm summarizes several aspects which can
impact throughput of a job intensive MapReduce
environment. High ratio is attained for local task
assignment using throughput driven task
scheduler, and full advantage of the system
resource can be attained effectively.

E. ARIA

 The issue in shared MapReduce cluster [30] is to
keep track of the resource allocation of different
applications for achieving their performance
goal. With native Hadoop scheduler, no such job
scheduler is present that can appropriately
allocate the resources to the job once given a job
completion deadline. The proposed algorithm

called AIRA deals with the above mentioned
problem. ARIA consists three interrelated
components. Initially, a job that is frequently
executed on a new dataset, job profile is
maintained which contains the info about Map
and Reduce tasks. Lastly, the MapReduce
performance model is made for estimating the
amount of resources for job completion.

VII. RECENT SCHEDULING
ALGORITHMS

MapReduce scheduler is the emerging area for
many researchers, scheduling algorithm based on
data locality, performance manager, speculative
task execution and resource contention is as
follows.

A. Job aware scheduling algorithm for
MapReduce framework.

 The approach [11] is proposed to decrease the
runtime of the MapReduce jobs running in the
cluster. When some task running on the node and
other task appears, then scheduler tries to allocate
the task to the node if it doesn't affect running
one. The algorithm selects the compatible task
from the pending list of the task to the already
running task in the Node. The proposed
algorithm achieve low runtime by avoiding the
overload to a node. The proposed algorithm tries
to monitor the usage of resources in each task and
each node. Using the intelligent scheduling the
algorithm tries to maintain stability at node and
cluster level.

B. Resource-aware adaptive scheduling for
MapReduce cluster

 In the Hadoop native scheduler, the static
number of execution slots is examined to
determine the capacity of the cluster. But the
native scheduler fails to get the individual
requirement of the each job. The resource aware
adaptive scheduler [12] gets the job requirement
through the job profiling and adjust the number
of slots on each machine. The capacity
calculation in the Hadoop cluster is the function
of the task can run concurrently in the system.

C. Improving MapReduce performance in
heterogeneous network environments and
resource utilization

In the MapReduce framework when some slots
are idle and task is scheduled based on data

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-3, ISSUE-11, 2016

97

locality, the resource reserved for the task will be
wasted if no such task present at that moment.
The algorithm propose [13] the concept of
resource stealing, which enables running task to
steal utilized resource and return when new task
will be assigned. It helps in increasing overall job
execution time and resource utilization.
D. A case study of MapReduce speculation for

failure recovery

 The existing Hadoop framework has some major
drawback which hinders the efficiency of job
execution during the recovery of failure, which is
termed as speculation breakdown. So, failure
aware speculation scheme is suggested to solve
the problems related to speculation.
 To overcome the problem of speculation
mechanism, the proper examination of the
existing speculation mechanism is done. First
[18], it examines the impact and implication of
failure in node using the current speculation
mechanism. Second, it introduces new
speculation scheme FARMS. Last, it uses a fast
analytic scheduling algorithm to work with
YARN, which adds resilience to the
heterogeneous real-world environment.

E. Map task scheduling in MapReduce with

data locality: Throughput and Heavy-
Traffic optimality

 MapReduce program shows high performance
and utilization when the task present in the
program scheduled based on data locality. Some
limitations present in the MapReduce cluster
while scheduling based on data locality. Traffic
optimal algorithm [21] (2016) is proposed along
with that it focuses on the right balance between
data locality and load balancing to
simultaneously maximize throughput and
minimize delay.
 Based on the stochastic process model the map
task arrives at the beginning of each time slot will
be scheduled. The algorithm also provides
support for backlogged tasks.

F. HScheduler

On MapReduce cluster, the execution time of the
job depends on the way the map task is
scheduled, the overall make span and the
resource utilization depends on the scheduling of
the map and reduce tasks. The goal of
HScheduler [22] is to design the MapReduce

scheduler, which reduces the make span of the
jobs.
 So, the algorithm provide a new modeling and
scheduling approach for multiple MapReduce
jobs, proposed online and offline both type of
scheduling approach.

G. Shortest remaining time first policy (STRF)

 Native Hadoop [23] scheduler faces the problem
of how to reduce makespans by reducing job
waiting time and execution times. Native
scheduler, improves execution time by
considering waiting time. STRF algorithm is
proposed in the shared Hadoop cluster shortest-
remaining time first (SRTF) in shared Hadoop
cluster, estimates the remaining time of a job and
preempt job whenever needed.

F. Towards efficient resource provisioning in
MapReduce The key objective of the algorithm
[24], for any work assigned in Hadoop
MapReduce is to attain optimal number of task
resources. Algorithm proposes the standard
method for calculating the optimal number of
tasks for any work assigned in Hadoop
MapReduce. For optimal resource provisioning
for any MapReduce workload, the algorithm
develops a job profiling method of getting the
runtime samples of the cluster. The algorithm
provides stepwise computation processes with a
mathematical formula for the runtime graph
function. The algorithm is designed for best
trade-off point for a work assigned as input and
output the exact recommended number of task
resources.

VIII. CONCLUSION

Finally, we conclude that many works have
been done so far to enhance MapReduce
execution time. Moreover, we have discussed a
small change can lead to drastically change in
MapReduce performance. We have also
discussed many issues related MapReduce
scheduler. Furthermore, this article provide
insight on the recent development of MapReduce
scheduler.

REFERENCES

[1] M. Zaharia, A. Konwinski, A. D. Joseph, R.
Katz, and I. Stoica, ``Improving MapReduce
performance in heterogeneous

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-3, ISSUE-11, 2016

98

environments'', In the Proceedings of the 8th
USENIX conference on Operating systems
design and implementation, Pages 29-42,
2008.

[2] K. Shvachko, H. Kuang, S. Radia, and R.
Chansler,`` The Hadoop Distributed File
System ‘‘,In the Proceedings of the 2010
IEEE 26th Symposium on Mass Storage
Systems and Technologies (MSST), pages 1-
10, 2010, doi:
http://dx.doi.org/10.1109/MSST.2010.5496
972

[3] M. Yong, N. Garegrat and S. Mohan,
``Towards a Resource Aware Scheduler in
Hadoop'', 2009.

[4] L. Guo, H. Sun, and Z. Luo, ``A Data
Distribution Aware Task Scheduling
Strategy for MapReduce System'' First
International Conference, CloudCom 2009,
Beijing, China, December 1-4, 2009.
Proceedings , pages 694 - 699, 2009, doi:
http://dx.doi.org/10.1007/978-3-642-10665-
1_74

[5] Q. Chen, D. Zhang, M. Guo, Q. Deng and S.
Guo,``SAMR: A Self-adaptive MapReduce
Scheduling Algorithm in
Heterogeneous Environment'', Proceeding
CIT '10 Proceedings of the 2010 10th IEEE
International Conference on Computer and
Information Technology, Pages 2736-2743 ,
2010, DOI:
http://dx.doi.org/10.1109/CIT.2010.458.

[6] M. Zaharia, D. Borthakur, J. Sen Sarma, K.
Elmeleegy, S. Shenker and I. Stoica ``Delay
scheduling: a simple technique for achieving
locality and fairness in cluster scheduling'',
EuroSys '10 Proceedings of the 5th European
conference on
Computer systems, Pages 265-278,
 doi:
http://dx.doi.org/10.1145/1755913.1755940

[7] X. Zhang, Y. Feng, S. Feng, J. Fan and Z.
Ming ``An effective data locality aware task
scheduling method for MapReduce
framework in heterogeneous environments'' ,
Cloud and Service Computing (CSC), 2011
International Conference on, pages 235 - 242,
2011, doi:
http://dx.doi.org/10.1109/CSC.2011.613852
7

[8] C. He, Y. Lu and D.Swanson
,``Matchmaking: A New MapReduce
Scheduling Technique'', CLOUDCOM '11
Proceedings of the 2011 IEEE Third
International Conference on Cloud
Computing Technology and Science , Pages
40-47, doi:
http://dx.doi.org/10.1109/CloudCom.2011.1
6

[9] M. Hammoud and M. F. Sakr, ``Locality-
Aware Reduce Task Scheduling for
MapReduce'', CLOUDCOM '11 Proceedings
of the 2011 IEEE Third International
Conference on Cloud Computing
Technology and Science, Pages 570-576 ,
2011,doi:
http://dx.doi.org/10.1109/CloudCom.2011.8
7 [10] K. A. Kumar, V. K. Konishetty, K.
Voruganti and G. V. P. Rao,``CASH: context
aware scheduler for Hadoop'', Proceeding
ICACCI '12 Proceedings of the International
Conference on Advances in Computing,
Communications and
Informatics, Pages 52-61 ,
 2012, doi:
http://dx.doi.org/10.1145/2345396.2345406

[11] R. Nanduri, N. Maheshwari and A.
Reddyraja, ``Job Aware Scheduling
Algorithm for MapReduce Framework'',
Cloud Computing Technology and Science
(CloudCom), 2011
IEEE Third International Conference on

2011, Pages: 724 - 729, doi:
http://dx.doi.org/10.1109/CloudCom.2011.112
[12] J. Polo, C. Castillo, D. Carrera, Y. Becerra,
I. Whalley, M. Steinder, J. Torres and E.
Ayguadé, ``Resource-Aware Adaptive
Scheduling for MapReduce Clusters'', Chapter

Middleware 2011 Volume 7049 of the series
Lecture Notes in
Computer Science pp 187-207,
 doi:
http://dx.doi.org/10.1007/978-3-642-25821-
3_10

[13] Z. Guo and G. Fox, ̀ `Improving MapReduce
Performance in Heterogeneous Network
Environments and Resource Utilization'',
Proceeding CCGRID '12 Proceedings of the
2012 12th IEEE/ACM International
Symposium on Cluster, Cloud and Grid
Computing (ccgrid 2012), Pages 714-716,

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-3, ISSUE-11, 2016

99

doi:
http://dx.doi.org/10.1109/CCGrid.2012.12

[14] M. Lin, L. Zhang, A. Wierman and J. Tan,
``Joint optimization of overlapping phases
in MapReduce'', January 2014 ACM
SIGMETRICS Performance Evaluation
Review: Volume 41 Issue 3, December
2013, Pages 16-18 , doi:

http://dx.doi.org/10.1145/2567529.2567534
[15] B. Cho, M. Rahman, T. Chajed, I. Gupta, C.

Abad, N. Roberts and P. Lin, ``Natjam:
design and evaluation of eviction policies
for supporting priorities and deadlines in
MapReduce clusters'', Proceeding SOCC '13
Proceedings of the 4th annual Symposium
on Cloud Computing Article No. 6 , doi:
http://dx.doi.org/10.1145/2523616.2523624

[16] S. Kim, D. Kang, J. Choi and J. Kim,
``Burstiness-aware I/O scheduler for
MapReduce framework on virtualized
environments'', 2014 International
Conference on Big Data and Smart
Computing (BIGCOMP), 2014, Pages: 305
- 308, doi:
http://dx.doi.org/10.1109/BIGCOMP.2014.
6741458

[17] J. Tan, A. Chin, Z. Z. Hu, Y. Hu, S. Meng,
X. Meng and L. Zhang, ``DynMR: dynamic
MapReduce with ReduceTask interleaving
and MapTask backfilling'', April 2014,
EuroSys '14: Proceedings of the Ninth
European Conference on Computer
Systems, doi:
http://dx.doi.org/10.1145/2592798.2592805

[18] H. Fu, Y. Zhu and W. Yu, ``A case study of
MapReduce speculation for failure
recovery'', Proceeding DISCS '15
Proceedings of the 2015 International
Workshop on Data-Intensive Scalable
Computing Systems Article No. 7,

November 2015, doi:
http://dx.doi.org/10.1145/2831244.2831245

[19] X. Li, Y. Wang, Y. Jiao, C. Xu and W. Yu,
``CooMR: cross-task coordination for
efficient data management in MapReduce
programs'', Proceeding SC '13 Proceedings
of the International Conference on High
Performance Computing, Networking,
Storage and Analysis Article No. 42 , doi:

http://dx.doi.org/10.1145/2503210.2503276
[20] M. C. Nita, F. Pop, C. Voicu, C. Dobre and

F. Xhafa, ``MOMTH: multi-objective

scheduling algorithm of many tasks in
Hadoop'', Cluster Computing September
2015, Volume 18,

Issue 3, pp 1011–1024,
 doi:
http://dx.doi.org/10.1007/s10586-015-0454-
8

[21] W. Wang, K. Zhu, L. Ying, J. Tan and L.
Zhang, ``MapTask scheduling in
MapReduce with data locality: throughput
and heavy-traffic optimality'', Journal
IEEE/ACM Transactions on Networking
(TON) archive Volume 24 Issue 1, February
2016 ,

Pages 190-203 , doi:
http://dx.doi.org/110.1109/TNET.2014.2362
745

[22] W. Tian, G. Li, W. Yang and R. Buyya,
``HScheduler: an optimal approach to
minimize the makespan of multiple
MapReduce jobs'', The Journal of
Supercomputing June 2016,

Volume 72, Issue 6, pp
 2376–2393, doi:
http://dx.doi.org/10.1007/s11227-016-1737-
4

[23] N. Cheriere, P. D. Bouillud, S. Ibrahim
and M. Simonin, ``On the usability of
shortest remaining time first policy in shared
Hadoop clusters'', Proceeding SAC '16
Proceedings of the 31st Annual ACM
Symposium on Applied

Computing, Pages 426-431,
 doi:
http://dx.doi.org/10.1145/2851613.2851626

[24] P. P. Nghiem and S. M. Figueira, ``Towards
efficient resource provisioning in
MapReduce'', Simulation Modelling
Practice and Theory, Volume 64, May 2016,
Pages 18-29, doi:
http://dx.doi.org/10.1016/j.jpdc.2016.04.00
1

[25] X. Sun, C. He and Y. Lu, ``ESAMR: An
Enhanced Self-Adaptive MapReduce
Scheduling Algorithm'', Parallel and
Distributed Systems (ICPADS), 2012 IEEE
18th International Conference on, 2012, doi:
http://dx.doi.org/ 10.1109/ICPADS.2012.30

[26] H. H. You, C. C. Yang and J. L. Huang, ``A
load-aware scheduler for MapReduce
framework in heterogeneous cloud
environments'', Proceeding SAC '11

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-3, ISSUE-11, 2016

100

Proceedings of the 2011 ACM Symposium
on Applied Computing, Pages 127-132 , doi:
http://dx.doi.org/10.1145/1982185.1982218

[27] L. Qi, Z. Tang, Y. Qin and Y. Ye, ``CSRA:
An Efficient Resource Allocation Algorithm
in MapReduce Considering Data
Skewness'', Chapter Knowledge Science,
Engineering and Management Volume 9403
of the series Lecture Notes in

Computer Science pp 651-662,
 doi:
http://dx.doi.org/10.1007/978-3-319-25159-
2_59

[28] V. Antypas, N. Zacheilas and V. Kalogeraki,
``Dynamic reduce task adjustment for
Hadoop workloads'', Proceeding PCI '15
Proceedings of the 19th Panhellenic
Conference on

Informatics , Pages 203-208,
 doi:
http://dx.doi.org/10.1145/2801948.2801953

[29] X. Wang, D. Shen, G. Yu, T. Nie and Y.
Kou, ``A Throughput

Driven Task Scheduler for Improving
MapReduce Performance in Job-Intensive
Environments'', 2013 IEEE International
Congress on Big Data, 2013, Pages: 211 -
218, doi:
http://dx.doi.org/10.1109/BigData.Congress.
2013.36

[30] A. Verma, L. Cherkasova and R. H.
Campbell, ``ARIA: automatic resource
inference and allocation for MapReduce
environments'', Proceeding ICAC '11
Proceedings of the 8th ACM international
conference on Autonomic computing,

Pages 235-244, doi:
http://dx.doi.org/10.1145/1998582.1998637

[31] S. Ghemawat, H. Gobioff, and S. T. Leung,
Sanjay Ghemawat, Howard Gobioff, and
Shun-Tak Leung, ``The Google File
Systems'' In the Proceedings of the
nineteenth ACM symposium on Operating
systems principles, 2003, doi:
http://dx.doi.org/10.1145/945445.945450

[32] J. Dean, and S. Ghemawat, ``MapReduce:
simplified data processing on large clusters'',
In the Proceedings of the 6th conference on
Symposium on Opearting Systems Design
& Implementation, volume 6, pages 10-10,
2004.

