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ABSTRACT 
Recovery of a sharp image from blurred one 
is vital for the user. Blurred image is not 
acceptable for many scientific applications, 
such as astronomical imaging as well as 
consumer photography. Image restoration is 
used to get the original sharp image from the 
corrupted data. Blurred images may result 
from certain camera properties and also due 
to camera movement. For example, spatially 
uniform defocus blur depends on depth and 
spatially varying blur is due to object 
movements. In this paper, the limitations 
and potentials of recent methods when 
dealing with quite large blurs and severe 
noise are investigated. The different 
processes and algorithms for deblurring 
purpose are also compared. Experimental 
results show that the  proposed method 
improves picture quality by removing 
various types of noise present in the image. 

Keywords: Bayesian estimation, CODA, 
Deterministic filter, MAP 

 
I. INTRODUCTION 

Digital photography has immense applications in 
different fields ranging from medical to 
engineering to various crime investigations. It is 
important that the captured image is clear enough 
to get the complete information from the image. 
But sometimes improper camera settings or 
manual mistakes lead to blurred image and its 

characteristics may get changed depending upon 
the percentage of noise added in the image. In 
order to make the image sharp and clear, various 
mathematical models are employed and this 
process is known as “Image Deblurring”. 

There are various image deblurring methods with 
the help of which blurred image can be converted 
into clear image. Although tremendous progress 
has been recently made, the results for quite large 
blurs (blur kernels of 100 pixels and larger) and 
severe noise are still far from perfect. In this 
paper the three most widely used methods are 
implemented and compared for their blur 
reducing efficiency. The three deblurring 
methods compared are deterministic filter 
method, Bayesian estimation method and 
CODA. 

II. LITERATURE SURVEY 

Blur which arises due to camera wobble is 
common in consumer-level photography. It 
occurs when a long disclosure is essential and 
the camera is not held still. As the camera 
movement progresses, the image formation 
process integrates a stream of photographs of 
the scene taken from slightly different 
viewpoints. Extracting blur arisen due to 
shaking of camera is currently a very active 
area of research. Given only a single 
photograph, this blur removal is known as 
blind deconvolution that is concurrently 
recovering both the blur kernel and the 
deblurred, sharp image. 
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Software-based methods use image priors and 
kernel priors to constrain an optimization for 
the blur kernel and the latent image. Fergus 
et al [ 6 ]  recuperated a blur kernel by using a 
natural image prior on image gradients in a 
variation Bayes framework. Shan et al [12] 
integrated spatial parameters to enforce natural 
image statistics using a local ringing 
suppression step. Osher et al [7] used 
transparency maps to get cues for object 
motion to recover blur kernels by performing 
blind deconvolution on the alpha matte, with 
a prior on the alpha-matte. Joshi et al [5] 
predicted a sharp image that is consistent with 
an observed blurred image. Levin et al [9 ]  
gave a nice overview of several of these 
existing deblurring techniques. Common to all 
of them is that they assume spatial invariance 
for the blur. Levin et al showed that spatial 
invariance is often violated, as it is only valid 
in limited cases of camera motion.  

Motion blur model is generally used in 
deblurring techniques which is described here. 
Let I be the latent image of a constant depth 
scene and b be the recorded blurred image. The 
blurred image can be written as a convolution 
of the latent image with a kernel, k and the 
addition of some noise, n: 

 ܾ ൌ ݇ ⊗ ݈ ൅ ݊ ( 1 )

This convolution model does not account for 
variations in depth and view-dependent 
illumination changes and we do not handle them 
here. This model can also be written as matrix-
vector product: 

ܤ  ൌ ܮܭ ൅ ܰ ( 2 )

where, L, B, and N denote the column-vector 
forms of l, b, and n respectively. K is an image 
filtering matrix that applies the convolution 
each row of K is the blur kernel placed at each 
pixel location and unraveled into a row vector. 
For this reason, we also refer to K as the blur 
matrix. With spatially invariant blur each row 
has the same values that are just shifted in 
location. This matrix-vector form becomes 
particularly useful for formulating spatially 

varying blur as each row contains a different 
blur kernel for each pixel. 

III. DETERMINISTIC FILTER METHOD 

The deterministic filter can be defined as 
deterministic function F of the input blurred 
image I: F(I) = L with  denoting the output sharp 
image. One of the most well-known approaches 
in this paradigm is un-sharp masking [3], which 
reduces the low frequency first, and then 
highlights the high-frequency components. The 
performance of deterministic filter method 
changes according to the selection of high-pass 
filters and the adaptive edge weights [9]–[12]. 
This approach assumes that the blurred edges do 
not drift too far away from the latent sharp edges; 
thus, it can handle only the defocus blurs and 
very small motion blurs. 

This approach assumes that the blurred edges do 
not drift too far away from the latent sharp edges; 
thus, it can handle only the defocus blurs and 
very small motion blurs. For very large blurs, the 
image narrow edges or details are severely 
damaged and very difficult to restore. A practical 
solution is to detect and restore large step edges 
explicitly or implicitly, which we call the step-
edge-based filter (SEBF) [5]. Explicit SEBF first 
locates the step edge and then propagates the 
local intensity extrema towards the edge. 
Implicit SEBF performs edge detection and 
restoration in a single step, based on zero 
crossings of high-pass filters. Commonly used 
implicit SEBFs include the shock filter [6], the 
backward diffusion, the morphological filtering, 
the fuzzy operator and many other adapted 
versions. 

3.1 Limitation of Deterministic Filter method 

The deterministic filter has been widely used in 
sharpening small blurs. The SEBF cannot handle 
very large blur kernels.  

IV. BAYESIAN ESTIMATION 

To infer the deblurred image from the posterior, 
we extend the approach of [15] and in contrast to 
previous deblurring methods compute Bayesian 
minimum mean squared error estimate (MMSE). 
(MMSE) estimate is obtained as the parameter 
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vector that minimizes a mean square error cost 
function defined as 

 ܴெெௌா൫ߠ෠|ݕ൯

ൌ න൫ߠ෠ െ ൯ߠ
ଶ
ఏ݂|௬

ఏ
ሺݕ|ߠሻ݀ߠ 

( 3 )

From Bayes’ rule the posterior probability 
density function of the parameter vector θ given 
y, ఏ݂|௬ሺݕ|ߠሻ), can be expressed as 

 
ఏ݂|௬ሺݕ|ߠሻ ൌ

ఏ݂|௬ሺߠ|ݕሻ ఏ݂ሺߠሻ

௒݂ሺݕሻ
 

( 4 )

Where for a given observation, fY(y) is a constant 
and has only a normalizing effect and 

ఏ݂|௬ሺݕ|ߠሻis the likelihood that the observation 

signal y was generated by the parameter vector 
θ. The advantage over the more common MAP 
approach, at least for image de-noising [16], is 
that that it leads to superior results, both for 
smooth and textured image regions. Secondly, 
MMSE estimates yield a higher correlation 
between the image restoration performance and 
the generative quality of the model. This on one 
hand lets us take advantage of powerful learned 
priors, and on the other hand allows us to work 
without any regularization parameter that 
balances the prior and the likelihood, which is 
very desirable especially when the noise level is 
not known. The middle flow- chart in Figure 1 
illustrates this method. By contrast, the MAP (L, 
K) estimator is well constrained and can 
accurately recover the true kernel if the image 
size is much larger than the kernel size 
Compared. With the first method, Bayesian 
estimation has the following advantages:  

1) This method is not responsive to local narrow 
edges because it depends on statistics; 

2) If the noise does not create much changes in 
the statistics of image this method is not sensitive 
to image noise. 

4.1 Limitations of Bayesian Estimation  

The MAP and MAP estimators have very similar 
performance with respect to the same SN. They 
both belong to Bayesian estimation and should 
have similar properties. The estimation states 
that theory states that when the SN is small, the 

Bayesian estimation will be “biased” towards the 
prior mean, which, however, is not the true 
solution in the blind deconvolution case from the 
perspective of the energy function to understand 
this limitation. 

The first limitation can be overcome by adopting 
different blur models. For example, by using the 
same variational Bayes method, Fergus et al. [6] 
address uniform blurs with a simple convolution 
model, whereas Whyte et al. [15] address non 
uniform blurs with a weighted integral model. 
The second limitation is very challenging to 
overcome because it is the latent limitation of 
Bayesian estimation. We will show that, counter 
intuitively, the naive MAP estimator and the 
MAP estimator have similar performance in 
blind deconvolution and own the same limitation 
when dealing with very large blurs: Insufficient 
samples make the global optimum no longer 
favour the true solution. 

V. CONJUNCTIVE DEBLURRING 
ALGORITHM 

In this paradigm, the deterministic filter and 
Bayesian estimation are performed in a 
conjunctive manner. The rightmost flowchart in 
Figure. 1 illustrates the CODA. The works in 
[11] and [13] can be viewed as two 
approximations of this paradigm, although the 
authors might not have motivated themselves in 
this way. In the work of Cho and Lee, a edge 
prediction scheme, which is a combination of the 
bilateral filter and the shock filter together with 
a simple threshold method, is introduced to 
remedy the MAP estimator. Xu and Jiaya 
enhance the work of Cho and Lee by proposing 
a gradient selection algorithm in order to exclude 
the narrow edges, which cannot be restored by 
the shock filter. The resultant methods can 
handle challenging examples beyond the 
capability of the first and second paradigms. 
Unfortunately, the latent reason why this 
paradigm can handle quite large blurs beyond 
Bayesian estimation is not given in either the 
work of Cho and Lee or that of Xu and Jiaya. 

The adaptive tonal correction algorithm 
presented here uses the low- exposure or darker 
looking image as its input and enhances its 
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appearance via tonal correction by making use of 
the mean (brightness) and variance (contrast) of 
the original blurred image in an adaptive manner. 
The main contribution here thus consists of an 
automatic process by which the tonal correction 
is done. The following tonal curve equation is 
considered in our algorithm is: 

 
݂ሺݔሻ ൌ

1
log ݔ

 
( 5 )

Whereas a parameter altering the contrast level. 
The optimum value of is taken to be the one that 
makes the contrast of the enhanced image equal 
to the contrast of the blurred image. To obtain the 
optimum parameter values in a computationally 
efficient manner, the binary search approach is 
used. 

Figure 1: Block diagram of proposed work 

4.1 LIMITATIONS OF CODA 

Deterministic filters cannot recover the narrow 
edges totally damaged by the blur. Bayesian 
estimation with the strong aware prior is capable 
of recovering the narrow edges only if a 
reasonably accurate kernel is available. In 

CODA, the temporal kernel is computed by 
using the large step edges restored by the 
deterministic filter. Therefore, if the image 
structures are dominated by narrow edges, 
CODA cannot produce an accurate blur kernel 
and for these types of images the result of 
Bayesian estimation is better than CODA. This 
problem is also faced by other CODAs. Texture 
hallucination techniques [16] might be adopted 
to restore the narrow edges. Our algorithm does 
not consider a number of common photographic 
effects, such as saturated pixels from strong 
lights, underexposed regions in very dark 
environments, and nonlinear tone scale. 
Incorporating these factors into our model will 
be an interesting future work. 

VI. RESULTS 

The software used for this implementation is 
MATLAB version 10 or above. As the algorithm 
states that the image first converted to blur one 
and then applying three different techniques we 
recovered the image with different property 
values. Block diagram of all the techniques is 
shown in Figure1. 

The first output step after making image blurred 
is shown in Figure 2. 

 

Figure 2: Scanning of image 

After scanning the image, different techniques 
have been applied on it and the property values 
in each case are calculated as shown in Figure 3. 

The values in tabular format are shown in Table 
1.The results are shown in graphical format in 
Figure 4(a) and 4(b). This graph shows the error 
on y axis and number of iterations on x axis. The 
errors are PSNR (Peak Signal to Noise Ratio) 
and MSE (Mean Square Error). 



 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)    

 
 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-3, ISSUE-7, 2016 

56 

  

Figure 3: 10 CODA iterations for calculation of 
image properties 

  

Figure 4(b) Variation of MSE in CODA 

The results in tabular format are shown in Table 
1. 

Table 1: Comparison of three methods in terms 
of MSE and PSNR 

 

Image 

 

Propert
y  

Determinist
ic Filter 

Bayesia
n Filter

CODA

Bridge.pn
g 

MSE 90.16 112.03 98.04

PSNR 22.76 34.96 39.03

Veggies.p
ng 

MSE 56.33 177.61 36.92

PSNR 25.32 32.71 60.06

  

Figure 5: Final result of each method 

The deblurred image with values of PSNR and 
MSE of each method is shown in Figure 5. 

VII. CONCLUSION 

Three methods of image deblurring viz., 
Deterministic filter method; Bayesian estimation 
method and CODA have been implemented on 
different colour images. A detailed study of these 
methods has evolved that each method is good 
on its own and provides quite good results in 
some particular conditions but a comparative 
analysis shows that for the same image CODA 
provides much better result than deterministic 
and Bayesian method. CODA also has some 
limitations. CODA results are not much 
appreciated when image is dominated by narrow 
edges. 
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