
 

 
ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-3, ISSUE-8, 2016 

74 

 
DEVELOPMENT AND EVALUATION OF COLLABORATIVE 

EMBEDDED SYSTEMS USING SIMULATION. 
THARABAI C. V. 

Lecturer in Electronics 
Women’s Polytechnic College Ernakulam, Kochi, Kerala. 

 
Abstract: 
Embedded systems are increasingly equipped 
with open interfaces that enable 
communication and collaboration with other 
embedded systems, thus forming 
collaborative embedded systems (CESs). This 
new class of embedded systems, capable of 
collaborating with each other, is planned at 
design time and forms collaborative system 
groups (CSGs) at runtime.Traditionally, 
early-stage validation and verification (V&V) 
of systems composed of collaborative 
subsystems is performed by function 
integration at design time. Simulation is used 
at this stage to verify system's behaviour in a 
predefined set of test scenarios. 
Keywords: 
Simulation, Collaborative Embedded 
Systems, Automotive, CES, Validation and 
Verification, Modelling and Simulation,  
Introduction: 
Modeling and simulation are established 
scientific and industrial methods to support 
system designers, system architects, engineers, 
and operators of several disciplines in their 
work during the system life cycle. Simulation 
methods can be used to address the specific 
challenges that arise with the development and 
operation of collaborative embedded systems 
(CESs). In particular, the evaluation of 
collaborative system behavior in multiple, 
complex contexts, most of them unknown at 
design time, can benefit from simulation. In this 
paper, after a short motivation, we exemplify 
scenarios where simulation methods can 
support the design and the operation of CESs 
and we summarize specific simulation 
challenges. We then describe some core 
simulation techniques that form the basis for 
further enhancements addressed in the 
individual paper. [1] 

Simulation is a technique that aids in the overall 
design, evaluation, and reliable operation of 
systems. CESs are a subset of embedded 
systems that, while designed and developed 
independently, can form collaborations to 
achieve collaborative goals during runtime. This 
new class of systems faces unique design and 
development challenges that simulation 
methods can address. 
Following the traditional approach of 
performing early-stage validation and 
verification (V&V) via simulations, we provide 
a survey of existing simulation approaches and 
investigate whether and how simulation 
approaches should be extended to better address 
the V&V challenges brought by CES in this 
paper. We concentrate on simulation methods, 
which are systematic procedures involving 
simulations for V&V purposes, and tools, which 
are technical frameworks and environments that 
support the simulation methods. [2] 
SimulationforVerificationandValidation 
Software functions are tested at various 
levels. Unit tests, integration tests, system 
tests, and operational acceptance tests are 
performed on the software. The requirements 
for individual test levels are increasing as the 
software's complexity grows. The behaviour 
of complex systems can be virtually mapped 
using simulations, allowing for a quick, 
inexpensive, and efficient analysis of the 
system. All test levels benefit from the use of 
simulations. 
The use of simulation methods for behavioural 
evaluation of software systems and system 
components has numerous advantages, 
regardless of domain: 

• Simulation methods are more 
exploratory than analytical methods 
when given a set of concrete scenarios 
of complex interactions.   



 
INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR) 

 
ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-3, ISSUE-8, 2016 

75 

• Statistical analysis reveals that an 
estimated Because simulation models 
are digital entities, it is possible to 
automate and parallelize the process of 
running multiple simulation scenarios. 

• Systems of systems that did not exist 
before are formed by coupling 
components or systems. As a result, 
there may be insufficient knowledge 
and experience with such systems. 
Simulation of component behaviour 
can reveal the effects of function 
interaction for such a system. 

• Standards such as ISO 26262[3] 
explicitly recommend simulation as a 
quality assurance technique in the 
automotive domain. 

CharacteristicsofCollaborativeEmb
eddedSystems 
The term Embedded System (ES) is defined 
by Schlingloff as "a computational system 
that is a fixed component of a technical 
system." ESs continuously process input and 
can provide real-time output; their 
functionality is limited by the technical 
context in which they operate. ESs can 
supervise, control, or acquire data in a fixed 
context depending on the programmed 
functionality and context of operation. 
Simulation tools and methods can be used to 
evaluate embedded systems in a variety of 
contexts. Before delving into how CES are 
evaluated, we highlight the key differences 
between behavioural CES evaluation and 
single embedded system evaluation, and we 
conclude with a set of CES characteristics 
that must be verified and validated through 
simulation. [4-6] 
1. New behaviour can emerge when systems 
meet and form collaborations in real time. 
This behaviour requires simulation and 
coupling to real-world scenarios such as road 
traffic. Additionally, visualisation must be 
performed intuitively in order to facilitate 
reasoning about the effects of emergent 
behaviour. 
2. When performing simulation-based 
evaluation of an embedded system, the 
system's goals are implicitly considered. 
Multiple CES in a CSG setting may have 
different, even conflicting goals. As a result, 
analysing each CES's goals and their 
contribution to the overall ecosystem goal 

(e.g. forming a platoon) is an important first 
step in evaluating their behaviour. As a result, 
simulation methods and tools should be 
designed to support the modelling and 
analysis of system goals and their 
relationship to simulation outcomes. 
3. In a collaboration, an embedded system 
learns about its surroundings through the 
exchange of functions and data. For example, 
in a vehicle, an embedded system running a 
control function that processes environmental 
information will make decisions based on 
information received from other embedded 
systems in another vehicle. A set of messages 
is used to pass the function of sensing the 
environment to a collaborator. This raises a 
slew of questions about the accuracy and 
timeliness of information sensed, interpreted, 
and delivered by a remote vehicle. As a 
result, when evaluating a collaboration, 
uncertainties and their effects must be 
simulated. One method is to introduce flaws 
such as delayed communication. 
4. Because CSG are open-ended and dynamic 
systems (the number and potentially 
collaborators or type of collaborators may 
change over time as the system runs), it is 
extremely difficult to test for all possible 
scenarios at runtime. In addition to design-
time simulation, simulation methods and 
methods after system deployment can be 
used for runtime validation. As a result, CSG 
simulation methods would need to be usable 
at runtime as well. 
5. Technically, Embedded Systems in 
collaboration can communicate over the 
same shared memory, a bus connection, or 
the Internet via 5G wireless 
communication. In terms of 
communication, ESs can communicate with 
one another using an event-based protocol 
that makes efficient use of network 
resources. This means that information 
processing is triggered by actions triggered 
by user input, alarms, or data inputs from 
other systems. Simulation of 
communication channels is required in 
order to perform CES and CSG evaluation. 
6. Embedded systems interact with their 
physical surroundings in order to achieve the 
system's goals. This implies that, at the level 
of system analysis, simulation of the physical 
environment must be taken into account 
when evaluating CESs. 



 
INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR) 

 
ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-3, ISSUE-8, 2016 

76 

7. The evaluation of CES and CSG 
necessitates the coupling of simulation 
models developed independently. The 
simulation models can be subsystems or 
systems communicating with one another, or 
they can be network communication 
simulations. Co-simulation platforms are 
required to assess emergent system 
behaviour. 
8. All of the preceding points demonstrate the 
complexities of simulating embedded 
systems that collaborate with one another to 
provide required services to other systems or 
end-users. The methodology we used to find 
answers to the challenges mentioned in this 
section is presented below. 
Review Of Literature: 
[Erden et al. 2008] conducted a comparative 
literature review to investigate different 
function modelling approaches and their 
similarities and differences. Functional model 
ontologies, for example [Chandrasekaran and 
Josephson 2000], [Umeda et al. 1996], [Umeda 
et al. 1995], and [Yoshioka et al. 2004] aim to 
develop frameworks and languages for 
modelling system functionality from various 
perspectives [Erden et al. 2008]. None of the 
proposed functional model ontologies take into 
account the modelling of complex CES and 
CSG functions, including the implications of 
the contexts in which these systems operate. [7] 
The authors define two function viewpoints in 
[Chandrasekaran and Josephson 2000]: 
"environment-centric viewpoint" and 
"devicecentric viewpoint." These perspectives 
correspond to the collaboration and system 
functions proposed in our work. In the first 
case, function refers to the external effects that 
an object or system has on its surroundings. In 
contrast, in the second viewpoint, functions are 
associated with the system's internal features 
and parameters. To some extent, our metamodel 
incorporates both of the perspectives proposed 
in [Chandrasekaran and Josephson 2000]: 1) 
taking into account the functions of systems that 
have an impact on their environments, 
specifically the context as the relevant part of 
the environment in our case; 2) as well as the 
other systems involved in a collaboration, 
including their internal system parameters, 
states, and behaviours. In addition, [Gero 1990] 
has created a function-behavior-structure model. 
In his model, a function was viewed as an 
intermediate step between the system's 

behaviour and the user's goal. [8] A few 
frameworks have been proposed in the literature 
to systematically define a well-formed 
functional behaviour of the system. FOCUS (cf. 
[Broy and Stlen 2012], and [Broy 2014]), as 
previously described in Section 4.3, is an 
example of a formal framework that provides 
models and formalisms for the specification and 
development of distributed interactive and 
dynamic systems. According to FOCUS, we 
define a function's behaviour as a stream of 
messages across its input and output channels, 
which take up information, material, or energy 
through its interfaces and transform it before 
outputting it. 
Objectives: 

1. Development And Evaluation of 
Collaborative Embedded Systems Using 
Simulation. 

2. Simulation for Verification and 
Validation. 

3. Define Characteristics of Collaborative 
Embedded Systems. 

4. Overview of collaboration in order-
driven production. 

Research Methodology: 
Close integration of embedded software with 
physical system processes is possible in this 
research simulation for single embedded 
systems. As a result, in a mixed HW/SW 
simulation environment, effective virtual 
prototyping of embedded software can be 
realised. The authors of [9] present an 
embedded SW simulation with a focus on 
hardware-dependent software refinements, 
realised with a toolset that integrates open tools 
and libraries based on C/C++. Open Dynamics 
Engine (ODE) can also be used to simulate 
physical rigid body movement and dynamics. 
System C/System C-AMS are used to simulate 
mixed digital/analogue systems in conjunction 
with the open source software emulator QEMU 
[10], which provides instruction and register 
accu rate CPU abstraction of multiple 
instruction set platforms and is used for fast 
software emulation. Based on this, [11] employs 
a simulation environment that can also embed 
additional simulators in addition to System 
C/System C-AMS. All of these tools provide 
open Matlab/Simulink interfaces through which 
additional design flow of physical components 
can be modelled.  
 
 



 
INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR) 

 
ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-3, ISSUE-8, 2016 

77 

Result And Discussion: 
Order-driven production is a scenario that is 
frequently described in this context, in which 
the CESs involved in the production of a 
product (also known as modules in the factory) 
form a CSG (also known as production network 
in the factory) based on the requirements of the 

product to be manufactured and with the goal of 
manufacturing the product. The application of 
the concept described in results in the formation 
of a production network that is formed to 
produce a specific production order and then 
dissolves after completion. [12] 

 
Figure 1:  Overview of collaboration in order-driven production 
In the case of the adaptable and flexible factory, 
the interaction of the CESs in the CSG must 
also be considered and described using 
appropriate models in order to serve as a 
foundation for CES development and 
collaboration during operation. Figure 1 depicts 
an existing and planned production network for 
the processing of two orders. [13] 

When a CES enters the CSG, for example, its 
internal structure changes. The operational 
context of both the entering CES and the CSG 
changes at the same time. For systems in 
context, we distinguish between collaborative 
systems—that is, systems that can enter a CSG 
due to their architecture and functions—and 
non-collaborative systems. 
CSG at any time. 

 
Figure 2: Taxonomy of CrESt challenges 

A taxonomy of challenges for collaborative 
embedded systems can be defined based on 
these specific challenges, as shown in Figure 2. 

A number of characteristics were defined for the 
two superordinate categories "Collaboration" 
and "Dynamics." [14] 



 
INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR) 

 
ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-3, ISSUE-8, 2016 

78 

Conclusion: 
Collaboration introduces new challenges in the 
model-based development of embedded 
systems, necessitating the adaptation and 
extension of existing modelling languages. In 
this chapter, we discussed the factors to 
consider when modelling functions for CESs 
and CSGs in a metamodel. We then evaluated 
and illustrated this metamodel using two 
examples from the adaptable and flexible 
factory and autonomous transport robots use 
cases. Specific extensions of modelling 
languages can be executed based on the 
metamodel. Methods for applying these 
extended modelling languages can be developed 
based on domain-specific requirements. The use 
case examples presented in this chapter will 
serve as the foundation for future research. 
References: 

1. Tuomas W. Sandholm, "Distributed 
rational decision making" in 
Multiagent Systems: A Modern 
Approach to Distributed Artificial 
Intelligence, Cambridge, MA, 
USA:The MIT Press, pp. 201-258, 
1999 

2. M.B. Dias, R. Zlot, N. Kalra and A. 
Stentz, "Market-based multirobot 
coordination: A survey and 
analysis", Proceedings of the IEEE, 
vol. 94, no. 7, pp. 1257-1270, 2006. 

3. Sven Koenig, Pinar Keskinocak and 
A. Craig, "Tovey. Progress on agent 
coordination with cooperative 
auctions", Proceedings of the 
Twenty-Fourth AAAI Conference 
on Artificial Intelligence AAAI 
2010, July 11–15, 2010 

4. M. Lagoudakis, V. Markakis, D. 
Kempe, P. Keskinocak, S. Koenig, 
A. Kleywegt, et al., "Auction-based 
multi-robot routing", Proceedings of 
the InternationalConference on 
Robotics: Science and Systems, pp. 
343-350, 2005. 

5. Burrill, G. (2002). Simulation as a 
tool to develop statistical 
understanding. Paper Presented at 
the International Conference on 
Teaching Statistics, 2002. 

6. Gnanadesikan, M., Scheaffer, J. L., 
& Swift, J. (1987). The Art and 
Techniques of Simulation. 
Quantitative Literacy Series. 

7. M.S. Erden, H. Komoto, T. J. van 
Beek, V. D'Amelio, E. Echavarria, 
T. Tomiyama: A Review of Function 
Modeling: Approaches and 
Applications. Ai Edam 22, no. 2, 
2008, pp. 147-169. 

8. B. Chandrasekaran, John R. 
Josephson: Function in Device 
Representation. In: Engineering with 
Computers 16.3-4: pp.162-177, 
2000. 

9. M. Broy, K. Stølen: Specification 
and Development of Interactive 
Systems: Focus on Streams, 
Interfaces, and Refinement. Springer 
Science & Business Media, 2012. 

10. Mueller, W., Becker, M., Elfeky, A., 
DiPasquale, A.: Vir- tual prototyping 
of cyber-physical systems. In: 
Design Automation Conference 
(ASP-DAC), 2012 17th Asia and 
South Pacific, pp. 219–226. IEEE 
(2012) 

11. Ilieskou, N., Blom, M., Somers, L.,  
Reniers,  M.,  Bas- ten, T.: Multi-
domain virtual prototyping in a 
systemc sil framework: A heating 
system case study. In: 2015 In- 
ternational Conference on 
Embedded Computer Systems: 
Architectures, Modeling, and 
Simulation (SAMOS), pp. 286–294 
(2015) 

12. Grosz: Collaborative Systems. In: AI 
Magazine, vol 17, no 2, 1996. 

13. K. Pohl, H. Hönninger, R. Achatz, 
M. Broy (Eds.): Model-Based 
Engineering of Embedded Systems: 
The SPES2020 Methodology, 
Springer, Heidelberg/New York, 
2012 

14. Mark W. Maier: Architecting 
Principles for Systems-of-Systems. 
In: Systems Engineering 1(4), 1998, 
pp. 267-284 

. 


