

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-1, 2017

64

REGISTER ALLOCATION OPTIMIZATION IN A KAFFE BASED

DYNAMIC COMPILATION
Amudha.G

Associate Professor, RMD Engineering College

Abstract
Dynamic compilation and optimization are
widely used in heterogeneous computing
environments, in which an intermediate form
of the code is compiled to native code during
execution. An important tradeoff exists
between the amount of time spent
dynamically optimizing the program and the
running time of the program. In this paper,
we explore this trade-off for an important
optimization – global register allocation. I
present a graph-coloring register allocation in
a Kaffe based JIT that has been redesigned
for runtime compilation. Compared to
Chaitin- Briggs, a standard graph-coloring
technique, the reformulated algorithm
requires considerably less allocation time and
produces allocations that are only marginally
worse than those of Chaitin-Briggs. The
experimental results indicate that the
allocator performs better than the linearscan
and Chaitin-Briggs allocators on most
benchmarks in a runtime compilation
environment. By increasing allocation
efficiency and preserving optimization
quality, the presented algorithm increases the
suitability and profitability of a graphcoloring
register allocation strategy for a runtime
compiler.
Introduction
Although Java has for a long time been criticized
for its slow execution, recent advances in better
Java class libraries and Just-in-Time (JIT)
compilation techniques have greatly boosted the
performance of Java. Some results indicate that
Java can deliver a performance in the 65–90%
range of the best Fortran performance for a
variety of benchmarks and can compete with the

performance of C++ .A “Just-In-Time” (JIT)
compiler generates native code from Java byte
code at runtime. It must improve the runtime
performance without compromising the safety
and flexibility of the Java language. . Just-intime
compilers are invoked during application
execution and therefore need to ensure fast
compilation times. Consequently, runtime
compiler designers are averse to implementing
compile-time intensive optimization algorithms.
Instead, they tend to select faster but less
effective transformations Kaffe is an open source
implementation of the Java Virtual Machine
specifications. The Kaffe JVM has been ported
to a lot of different systems, probably more than
any other JVM including SUN’s. The Kaffe VM
is a C based implementation. It also includes
implementation of the Java API’s. The API is
also part of the implementation without which
the Java platform is incomplete.

Fig. 1. The time-space tradeoff.
The Java Compilation Process Programs written
in Java are first compiled into machine-
independent byte codes using a Java bytecode
compiler, such as javac. These bytecodes
are stored in class files to be later read by a Java
Virtual Machine (JVM). The process of
executing a Java method is as follows: A JVM
reads in the bytecodes for each method as each
method is invoked. The JVM transforms the
bytecodes into an intermediate representation

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-1, 2017

65

(IR) and a variety of optimizations are applied.
The IR is then transformed into assembly code
which is then transformed into machine code and
executed.
The core of a JVM implementation contains an
execution engine that executes the byte codes.
There are two popular ways of implementing the
execution engine, interpretation and Just-
In-Time (JIT) compilation. In
interpretation, a loop repeatedly fetches,
decodes, and executes the next byte code. The
interpreter has code to interpret, i.e., to
accomplish the effect of each form of byte code
instruction. Many Java JIT systems provide an
interpreted mode as the initial mode of execution
or for infrequently invoked methods. For hot
(frequently executed) methods, typically JVMs
also provide a JIT that compiles those methods
to native codes, possibly with optimizations.
Jikes RVM is unusual among JVMs in that it
does not include a byte code interpreter, but
always compiles to native code any method that
gets invoked. Java is implemented by static
compilation to byte code instructions for the Java
virtual machine, or JVM. Early JVMs were only
interpreters, resulting in less than-stellar
performance: Interpreting byte codes is slow.
Mere translation from byte code to native code is
not enough code optimization is necessary too.

Overview of JIT compiler
In order to run efficiently, today’s
microprocessors must carefully take advantage
of the registers which reside on the chip. These
are the closest storage units to the CPU’s pipeline
and therefore have the fastest access time. In a
minimal compilation sequence, the front end
parses the source high-level language code,
performing lexical and semantic analyses, and
converting the program into an intermediate
representation (IR). The compiler backend now
takes over, translating the intermediate
representation into instructions in the target
machine’s native instruction set. After this phase

of code generation, register allocation is
performed. At this point, the instructions contain
references to three kinds of operands: the
program’s symbolic variables, compiler
generated temporaries, and machine registers
that come pre-assigned due to architectural
conventions. Since accessing the registers is
much faster than accessing memory (even if the
request hits in the first or second level caches),
the object of the register allocation phase is to
decide which variable and compiler temporaries
are assigned to registers and which are spilled to
memory. We seek such a register allocation that
minimizes spilling — the traffic between the
registers and memory. We distinguish between
local and global register allocation. Local
register allocation seeks to find an assignment of
variables to registers within a single basic block
— a linear sequence of instructions that are
always executed together without interruption.
Global register allocation seeks to find an
assignment of variables to registers over a
procedure’s entire control flow graph — a data
structure made up of basic blocks, showing the
conditional and looping structure of the program
code. This thesis considers techniques for global
register allocation. Register allocation has been
shown to be NP-complete. The bin packing
formulation of register allocation is in fact
equivalent to the 0-1 knapsack problem. Both the
graph coloring and the 0-1 knapsack problems
are classical NP-complete problems Within these
two formulations, researchers have suggested
heuristics in an attempt to reduce the complexity
of the algorithms. Jikes RVM performs register
allocation for each method, using intra
procedural allocation. Before register allocation
the intermediate representation uses an
unbounded number of registers, called symbolic
registers. The task of the register allocator is to
pack symbolics into available machine registers,
while satisfying some important constraints: If
two symbolics are live at the same time, i.e., both
have been loaded or computed and both have
possible future uses, then the allocator must
assign them to different machine registers.
Integers and pointers must go into integer
registers and floating point numbers into floating
point registers. Some values are bound to specific
machine registers, notably arguments to a
method and the method’s result if any. Also,
some registers are reserved for special use
(e.g.,the frame pointer). It is not always possible
to assign every symbolic to a register while

Class file

Native code

 T

Build flow
graph

Exception
check
elimination

Method in
lining

Common
subexpn.
elimination

Register
mapping

Code
generation

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-1, 2017

66

satisfying these constraints. In that case some
symbolics are spilled, i.e., assigned a location in
memory. Spilled symbolics must be fetched from
memory (into one of two registers reserved
specifically for holding spilled operands) each
time they are used, and immediately written to
memory each time their value is updated.

Flow graph of register allocators

Graph-Coloring Register Allocation:
In order to find an assignment of register
candidates to machine registers, graph-coloring
register allocators use information about liveness
and interference. A variable is said to be live at a
program point if there is a path to the exit along
which its value may be used before it is redefined
. It is dead if there is no such path. A straight-
forward dataflow analysis pass can be used to
compute liveness information. Roughly
speaking, two variables are said to interfere if
they are simultaneously live at some program
point. A graph-coloring allocator summarizes the
liveness information relevant to the register
allocation problem in an interference graph,
where nodes represent register candidates and
edges connect two nodes whose corresponding
candidates interfere. For a k-register target
machine, finding a k-coloring of the interference
graph is equivalent to assigning the candidates to
registers without conflict. The standard
graphcoloring method, adapted for register
allocation by Chaitin et al. , iteratively builds an
interference graph and heuristically attempts to
color it. If the heuristic succeeds, the coloring
results in a register assignment. If it fails, some
register candidates are spilled to memory, spill
code is inserted for their occurrences, and the
whole process repeats. In practice, the cost of the
graph-coloring approach is dominated by the
construction of successive graphs, which is
potentially quadratic in the number of register

candidates. Since a single compilation unit may
have thousands of candidates (variables and
compiler-generated temporaries), coloring can
be expensive. In designing our algorithm, we
wished to construct the interference graph once
and then use incremental methods to update the
graph after spilling and coalescing. To achieve a
substantial decrease in allocation time, we were
willing to accept some loss in allocation
proficiency. To this end, we decided to augment
the representation of the interference graph. The
unmodified interference graph is represented by
two major data structures – a bit matrix and a
collection of edge sets. The bit matrix indicates
whether two nodes in the graph interfere. Each
node in the graph, N, holds an edge-set that lists
the nodes with which it interferes. In this
allocator, we added additional information to the
edge-sets – each edge originating from a node
contains a tag indicating the type of the edge. We
classified every edge in the graph as a definition
edge or use edge. To comprehensively define
these terms. The procedure for building an
interference graph traverses the program,
identifies live ranges, and adds interferences
between them. A careful examination of the
algorithm shows that there exist three scenarios
when an interference edge is added. If the
algorithm added an edge between live range L1
and L2, then either:
1. The algorithm discovered that L2 is live
at a definition point of L1, in which case the edge
< L1, L2 > gets classified as a definition edge, or
2. The algorithm discovered that L1 is live
at a definition point of L2, in which case the edge
< L2, L1 > gets classified as a definition edge, or
for every block B in the procedure iterate through
every inst. I in B if a load is needed for temporary
reg. T locate the last def. in B prior to I if such a
def. D is found add the edge (T, D) to the graph
set D to its name before renaming for every def.
edge <D, E> add the edge (T, E) to the graph if
D is a copy inst., add an edge between the source
and T. else if no such def. exists for every value
L in LiveIn(B) add edge (T, L) to the graph if a
store is needed for reg. T let D = the name of T
before renaming for every def. edge <D, E> add
the edge (T, E) to the graph mark all edges added
to T as def. edges if the load services multiple
instructions. Add interferences between T and all
definitions till the last use of T remove spilled
nodes from graph

coloring

anything spilled

build

simplify

spill code
costs

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-1, 2017

67

Related Work on Register Allocation
The first to implement a graph coloring
algorithm to solve register allocation was
Chaitin. The approach builds an interference
graph that represents the interferences or
overlaps between the live ranges of the variables
in the code for which one is allocating registers.
The live range of a variable is the contiguous
region of the program where definitions flow to
uses of that live variable. Formally, a variable, V
is live at point P if there exists a control path that
includes P consisting of a definition of V before
P which reaches a use of V after P .The algorithm
then tries to find a k-coloring for the interference
graph where k represents the number of registers
available on the processor being targeted.
Determining whether a k-coloring exists is
known to be an NP-complete problem for k _ 3,
therefore Chaitin’s algorithm, as in all global
register allocation algorithms, uses heuristics to
find a k-coloring or to change the graph in order
to make it k-colorable. The algorithm proceeds
by repeatedly removing all those nodes (and their
corresponding edges) that have degree less than
k and placing them in a stack to be colored later.
If nodes remain after this graph reduction phase,
the graph cannot easily be k-colored. The
algorithm therefore spills, i.e., copies values to
memory, one or more live ranges in order to
transform the graph into one that has a simple k-
coloring. Thus, each spill causes a successive
graph to be built. The cost of the algorithm is
dominated by the building and processing of
these successive graphs, which is in the worst
case quadratic in the number of register
candidates. Briggs et al. use the same order as
Chaitin to remove nodes, but they continue
removing nodes and pushing them on the stack
even if they have k neighbors. This optimistic
algorithm hopes some neighbors will get the
same color so that this node can still trivially get
a color. During coloring if there is not a color
available (for a node with k neighbors), Briggs et
al. spill, rebuild the interference graph, and try
again. It has the same worst case complexity as
Chaitin but tends to perform better in practice.
Recently Omri Traub et al. formulated the
register allocation problem as a binpacking
problem. This algorithm allocates registers for a
code sequence by traversing the sequence in a
linear scan. When a temporary variable is
encountered it is placed in a bin. The constraint
on a bin is that it can contain only one valid value
at any given point in a program’s execution. If a

new temporary is encountered and all bins are
full, one of the values in a bin must be spilled.
The spilled value marks a split in the temporary’s
live range. Picking a spill candidate employs a
heuristic that looks at the distance to the
candidate’s next reference. This algorithm
improves on a previous bin-packing allocation
implementation by being able to allocate and
rewrite the instruction stream in a single pass.
Vegdahl describes a modification to Chaitin’s
algorithm that leads to a reduction in the number
of colors (and therefore number of registers
needed) to color an interference graph. Chaitin’s
coloring algorithm blocks during the
simplification stage, that is after all 27 nodes that
have degree less than K have been removed from
the graph. At this point, the algorithm splits a live
range (which introduces spilling), or (in Briggs’s
algorithm) optimistically continues hoping K-
coloring will still be found. Vegdahl observed
that merging two nodes in the graph that are not
neighbors, but that share common neighbors,
causes a reduction in the degree of any node that
had been adjacent to both. In some cases, this
reduction can allow simplification to continue
without introducing spilling. Also, Vegdahl
noticed that there were two aspects in Chaitin’s
algorithm that were non-deterministic. First,
during simplification there may be many nodes
that have less than degree K, and the order of
their removal indicates what color they will get.
Second, during coloring, there may be more than
one color to choose from when coloring a node.
Thus, there are many different colorings of the
same graph and these colorings can differ in the
number of colors that are used. This led to the
insight of applying Chaitin’s algorithm
repeatedly to the interference graph, and using
random choices whenever a non-deterministic
choice was available. Node merging colors
interference graphs with fewer colors than
Chaitin’s algorithm and applying Chaitin’s
algorithm repeatedly by 8% and 0.6%
respectively. The fact that node merging and
applying Chaitin’s algorithm repeatedly produce
improvements over Chaitin’s original algorithm
are evidence that applying heuristics in several
phases of the original algorithm proves
beneficial.

Experimental Setup
For the experiments we used the KAFFE JVM
compiler infrastructure since it was modular,
flexible, and very well documented. The JIT

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-1, 2017

68

compiles a procedure to native code upon the
first invocation of the procedure. We
implemented both the classic Chaitin-Briggs
algorithm and our allocator in KAFFE JVM. We
also use JIKES RVM with the GNU classpath for
our experiment. Now JIKES use linear scan
register allocation algorithm which will be
modified by Graph coloring algorithm. We are
decided to compile and evaluate our benchmarks
on an Intel Pentium 4, 3.2GHz processor with 1
GB of main memory running Linux.
The Pentium 4 has 7 allocatable integer registers
and 8 allocatable floating-point registers. We
decided to evaluated the allocators on
benchmarks from the SPEC CINT2000 suite. We
selected these benchmarks since they perform
mostly integer computations. Also normal Java
programs in interpreted mode are evaluated using
Specjvm98 benchmark programs which will be
compared with the JIT compiled programs.

Conclusion
The optimized graph coloring algorithm when
implemented under Kaffe JIT surely the runtime
will be reduced at a minimum of factor of two.
Here we decided to optimize the register
allocation in JIKES RVM in a Kaffe based JIT
by applying graph coloring algorithm. In future
more concentration can be done on the code
generation part.

References
[1] John aycock “ A brief history of Just-in-
Time” In ACM computing surveys in JUNE
2003

[2] Keith.D.Cooper “Tailoring Graph coloring
register allocation for runtime compilation” in
the Proceedings of the International Symposium
on code generation and optimization.

[3] Briggs, P. 1992. Register allocation via graph
coloring Ph.D. thesis, Dept. of Computer
Science, Rice Univ., Houston.

[4] Briggs, P., Cooper, K. D., And Torczon,L,
1992. Coloring Register Pares ACM Lett,
Program Lang, Syst. 1, 1(Mar.), 3-13.

[5] CHAITIN, G, J. 1982. Register allocation
and spilling via graph coloring, In Proceedings
of the ACM SIGPLAN 82 Symposium on
Compder Construction. SIGPLAN Not. 17. 6
(June),

 www.Kaffe.org
www.jikes.sf.net

[6] Chaitin, G. J., Auslander, M. A., Chandra, A
K , Cocke, J., Hopkins, M. E., And Markstein) P.
W. 1981. Register allocation via coloring.
Comput. Lang. 6, 1 (Jan.), 47-57.

[7] Toshia Suganama “Design Implementation
and Evaluation of optimization in a just-in-time
compiler “ in the proceedings of ACM 1999.

[8] Cramer, T., Friedman, R., Miller, T.,
Seberger, D., Wilson, R., Andwolczko, M. 1997.
Compiling Java Just In Time. IEEE Micro 17, 3
(May/June)

[9] Adl-Tabatabai, A.-R., Cierniak, M., Lueh,
G.Y.,Parikh, V.M., And Stichnoth, J.M. 1998.
Fast, Effective Code generation in a just-in-time
Java compiler. In PLDI ’98. 280–290.

[10] Bik, A. J. C., Girkar, M., And Haghighat, M.
R. 1999. Experiences With Java Jit Optimization.
In Innovative Architecture for Future Generation
High-Performance Processors and Systems.
IEEE Computer Society Press, Los Alamitos,
CA, 87–94.

[11] Burke,M.G.,Choi, J.-D., Fink,
S.,Grove,D.,Hind, M., Sarkar, V., Serrano, M. J.,
Sreedhar, V. C., And Srinivasan, H. 1999. The
Jalape~no dynamic optimizing compiler for
Java. In Proceedings of JAVA ’99. 129–141.

[12] Plezbert, M. P. And Cytron, R. K. 1997.
Does “Justin Time” = “Better Late Then never”?
In Proceedings of POPL ’97. 120–131.

[13] John Cavazos “Automatically Constructing
Compiler Optimization Heuristics Using
supervised learning“ Doctor Of Philosophy
February 2005 Department Of Computer Science

[14] Michael Matz “ Design and
Implementationof a Graph Coloring Register
Allocator for GCC”

