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Abstract 
Streamlines of steady, plane, viscous, 
incompressible constantly inclined two – phase 
EMFD flows is calculated by solving a non – 
homogeneous partial differential equation of 
second order which is obtained by employing 
Hodograph transformation to the flow. 
Index Terms: Electromagnetic fluid 
dynamics, two phase fluid, streamlines, 
number density.  

I. INTRODUCTION 
  A vast amount of research is been done on the 
motion of electrically conducting fluids using 
MHD approximation since Alfven’s [1] classic 
work. Chandana. et. al. [2] studied the 
incompressible fluids in the case of non – zero 
charge density without assuming the 
proportionality between the magnetic field and 
the aligned velocity field. Wan-Les-Yin [3] 
studied EMFD flows with non-zero charge 
density and analyzed that all steady 
incompressible aligned MFD plane flows are 
irrotational motions. Such irrotational flows are 
either steady rigid translational motions or radial 
flows symmetric with respect to singular point 
and in these flows the magnetic field is a 
constant multiple of the velocity field. Therefore 
for incompressible fluids with non-zero charge 
density, aligned field solutions having non 
proportional magnetic and velocity field do not 
exist, nor there exist any rotational flows.  
              On the other hand multiphase fluid 
phenomena are another extremely important 
field of science and technology such as 
geophysics, nuclear engineering, chemical 

engineering etc [4].  In recent years, 
considerable attention has been paid to the study 
of the multiphase fluid flow system in 
non-rotating or rotating frames of reference. 
Multiphase fluid systems are concerned with the 
motion of a fluid containing immiscible inert 
particles. Even though the presence of particles 
in fluid makes the dynamical study of flow 
problems very complicated, but many 
simplifying assumptions are made to investigate 
these problems. 
Saffman [5] formulated the equations of motion 
of a dusty fluid which is represented in terms of 
large number density N (x, y) of very small 
spherical inert particles whose volume 
concentration is small enough to be neglected. It 
is assumed that the density of the dust particle is 
large when compared with the fluid density so 
that the mass concentration of the particles is an 
appreciable fraction of unity. 

II. BASIC EQUATIONS 
If the electric charge density q (x, y) is a non – 
zero function, the governing equations for steady 
flow of a dusty, viscous, incompressible electro 
magneto fluid – dynamic flow are given by the 
following system: 

0divu 


                      (2.1) 

0div H 


                     (2.2) 

  0curl u H 


           
 (2.3) 

  0curl q u 


               
 (2.4) 
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  q
div q u







          
(2.5) 

     

(2.6)

.

2
2

u u p H H KN v u

q u
u

 




        

  

  
   




 

  0div N v 


  (2.7) 

   .m v grad v K u v 
   

  (2.8) 

where  1 2, ,0 ,u u u


  1 2, ,0 ,v v v


 
 1 2, ,0 ,H H H



 
p, ρ, μ, η, σ are the fluid 

velocity vector, dust velocity vector, the 
magnetic field vector, fluid pressure, fluid 
density, magnetic permittivity, the kinematic 
coefficient of viscosity and the electric 
conductivity respectively. Also m is the mass of 
each dust particle, N the number density of dust 
particles and K the Stoke’s resistance coefficient 

for the particles. Moreover J curl H
 

is the 
electric field vector. 
The velocities of fluid and dust particles are 
parallel everywhere as, for some scalar α 

v u
N




 
,                               (2.9) 

where     0u grad 


.               (2.10) 
 
O.P. Chandna et.al. [14], showed that for 
 , 0q x y  , equations (2.4) and (2.5) are 

equivalent to a single equation                 

   
ln

. .

curl u uu
grad q

u u u u





 

 

   
          

 (2.11) 

 
Vorticity function, current density function and 
the Bernoulli function are defined as 

2 1u u

x y
  
 
 

,  (2.12) 

2 1H H

x y

 
  

 
,  (2.13) 

and 21

2
B p u                       (2.14) 

respectively, where 2 2 2
1 2u u u  . 

 
From (2.1), we get 

 1 2 0
u u

x y

 
 

 
                             (2.15) 

 
By using (2.12), (2.13) and (2.14) in (2.6), we 
get 

2
2 2 1 1

q Bu H K N u u a
y x
    

 
 
 

       
 

 (2.16) 

 
2

1 1 2 2
q B

u H K N u u
x y


   



 
      

 
    

                                                                (2.17) 
 
By virtue of (2.4) and (2.5), (2.11) gives  

  1 2
2 2 2 2
1 2 1 2

ln 0
u u

q
x u u u u





  

  
  (2.18) 

  
  2 1

2 2 2 2
1 2 1 2

ln 0
u u

q
y u u u u





  

  
.         (2.19) 

 
Expressing (2.3) in terms of components, we get 

1 2 2 1u H u H f  ,  (2.20)                    

where f is an arbitrary constant.  

Similarly, expressing (2.8) in terms of 
components, we get 

2 2
1 2

(2.21)21 1 1 1

u u
u u

N x y

u u u
x N y N

m

N

K u
N



 





   
      

                 
 

 
 
 

2 2
1 2

(2.22)22 1 1 2

u u
u u

N x y

u u u
x N y N

m

N

K u
N



 





   
      

                 
 

 
 
 

 Likewise, from (2.2), we get 

1 2 0.
H H

x y

 
 

 
 (2.23) 

Now, for a constantly inclined plane flow, let β 
be the constant non – zero angle between u


 and 

H


. Then  

1 2 2 1

1 1 2 2

sin

cos cot

u H u H uH f

u H u H uH f


 

  
  

 (2.24) 

Solving (2.22), we get 

   1 1 2 2 2 12 2
,

f f
H cu u H cu u

u u
    , (2.25)    

where c = cot β. 

 Substituting (2.23) in (2.16) and (2.17), we get 
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   

(2.26)

2 2 1 12

2

1

f
u cu u K N u

y u

q B
u

x


   




     




  



   1 1 2 22

2
(2.27)2

f
u cu u K N u

x u

q B
u

y


   




     




 



 respectively.  

Further, (2.21) becomes  

 

 

2 2 1 222 1 1 2

2 2 1 22 0 (2.28)2 1 1 2

u u
u u cu u

y x

u u
cu cu u u

x y

 
   

 

 
   

 

 
 
 

 
 
 

 

and (2.13) becomes  

   2 1 1 22 2

f f
cu u cu u

x u y u f

               
.   

 (2.29) 

The unknown functions to be determined are 
now u1, u2, ξ, Ω, B, q and N. This will lead us to 
the study of flows. 
 
Let the flow variables u1(x, y), u2(x, y) be such 
that, in the flow region under consideration, the 

Jacobian 
 
 

1 2,

,

u u
J

x y





 satisfies 0 < J < ∞.  

In such a case, we apply hodograph 
transformations, where x and y are considered as 
functions of u1 and u2 such that the following 
conditions hold true: 

(2.30)

1 1, ,
2 2

2 2,

1 1

u uy x
J J

x u y u

u uy x
J J

x u y u

  
  

   

  
  

   

Using (2.30) in (2.15) and (2.28), we get 

1 2

0
x y

u u

 
 

 
  (2.31) 

 

 

2 2 21 2 1 2
2 1

2 2 2 0 (2.32)1 2 1 2
1 2

x yu u cu u
u u

x ycu cu u u
u u

 
 
 
 
 
 
 
 

    
 

    
 

 

respectively.  

The equation of continuity implies the existence 
of stream function ψ (x, y) so that  

2 1,u u
x y

  
  

 
. (2.33) 

Likewise equation (2.25) implies the existence of 
Legendre transform function L (u1, u2), so that 

1 2

,
L L

y x
u u

 
  

 
 . (2.34) 

Using (2.27) in (2.25), and introducing the polar 
coordinates (u, θ) in the hodograph plane (u1, u2) 
with 1 cos ,u u   2 sinu u  , we get 

2 2 2
2

2 2
2 2 0

L L L L L
cu u c u

u u u  
    

    
     

, 

 (2.35) 

so that 2 2
1 2u u u 

 

and 1 2

1

tan
u

u
   
  

 
. 

III. VORTEX FLOW  

 
A solution of (2.35) is given by 

    (3.1)
2 2 2cos sin2 1 1 2 1 2 1 1 1 2L B u A B u B u u Au B u       

where A1, B1 and B2 are arbitrary constants 
and

2 0B  .  

Now, using (3.1) in (2.34), we get 

 2 2 1 2 1 1
2 1

2 , 2 (3.2)
L L

x B u B y B u A
u u

 
      
 

and therefore the fluid velocity field is given by 

 1 1
1 2

2 2

,
2 2

y A x B
u u

B B

 
  

   
 (3.3) 

The above relation represents a circulatory flow. 
Substituting, (3.3) in (2.25), we get 

   
   

   
   

2 1 1
1 2 2

1 1

2 1 1
2 2 2

1 1

2

2

B f x B c y A
H

x B y A

B f c x B y A
H

x B y A

     
  

    
  

  (3.4) 

Hence by virtue of (2.12), (2.13), the vorticity 
function 

 
and the current density Ω

 
are 

respectively given by 

 
2

1
and 0

B
             (3.5) 
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Using (3.3), (3.5) in (2.16), (2.17) and by virtue 
of the integrability condition for B,  we obtain 

       

     

1 1

22 2
2 0 (3.6)1 1

K x B N y A N
x y

q q q q
K N x B y A

x y

 


 

 
     

 

 
      

 

 
  

 
  

Also, by using (2.4), (2.5), (3.3) equation (3.6) 
reduces to 

       

 

1 1

22
2 0 (3.7)

K x B N y A N
x y

q
K N

 




 
    

 

   

 
  

For the fluid with infinite electric conductivity, 
equation (3.7) becomes 

       

 

1 1

2 0 (3.8)

x B N y A N
x y

N

 



 
    

 

  

 
  

In particular, the approximation of infinite 
electrical conductivity is not believed to be 
appropriate for most problems in the field called 
‘magneto-aerodynamics’ [15], it should be 
appropriate in other situations which involve 
greater ‘magnetic Reynolds numbers’. Such 
situations may include flows involving high gas 
temperatures, or flows of liquid metals.  

Solving (3.8), the number density of the dust 
particles       N (x, y) is given by  

  
1

1 1

C
N

x B y A
 

 
,  where C1 is an 

arbitrary constant. Using equations (2.10) and 
(3.3), we get  

   2 2

2 1 1C x B y A       ,  where C2 is 

another arbitrary constant.  

Therefore 

      2 21 (3.9)2 1 1
1 1

C
N C x B y A

x B y A
    

 
 
    

Using equations (2.16), (2.17) and (3.3), (3.4), 
(3.5) we get 

 

   2 2 1 1log1 1 32 24 2 12

KC x B
B x B y A C

B y AB

 
     



          
Where C3 is an arbitrary constant.  

 

 

Finally the pressure is given by 

    (3.10)
2 2 1 1log3 1 12 28 2 12

KC x B
P C x B y A

B y AB

 
     



         
 

In this case the streamlines of the fluid flow are 
given by   

   2 2

1 1 constantx B y A      

This shows that the streamlines are concentric 
circles. 

IV. CONCLUSION 
If the dust particle is everywhere parallel to the 
fluid velocity in the steady, plane, constantly 
inclined EMFD flow of a viscous, 
incompressible two-phase fluid, then the 
streamlines are concentric circles and the dust 
particle number density is given by (3.9). Also 
the velocity, the magnetic field, the vorticity, the 
current density and the pressure are given by 
(3.3), (3.4), (3.5) and (3.10) respectively. 
Although the mathematical complexity in 
solving equations governing by electrical 
conduction restrict us in making certain 
assumptions, but further explorations can be 
continued with the approach of this paper 
considering different cases of inclination as well 
other types of EMFD flows. Even it is believed 
that some problems based on super conductivity 
can be taken up and various situations can be 
derived for further analysis. 
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