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Abstract 
The energy efficient designs have gained more 
recent attention and for highly employed 
functional units, especially for the adders. The 
energy consumption of an adder depends on 
the circuit sizing, the addition algorithm, the 
recurrence structure and the wiring 
complexity. Weinberger and Ling are the two 
most commonly used binary addition 
algorithms that are used in adders. The 
addition algorithms have been examined on 
Kogge-Stone structure and have been 
observed to save energy by the proper 
selection of addition algorithms in 16-bit 
adders. The design of Kogge-stone adder has 
been carried out by using TANNER EDA tool. 
The efficiency of the adder design can be 
improved by prefix selection, algorithm, 
computational sum and logic depth. When 
Compared to Weinberger algorithm, the 
number of gates used is less in the proposed 
ling recurrence algorithm.  
Keywords: Arithmetic and logic structures, 
computer arithmetic, energy-efficient design, 
high-speed arithmetic, DSP architecture, 
Microprocessor architecture. 

1. INTRODUCTION 

Binary addition is one of the greatest primitive 
and commonly used applications in computer 
arithmetic operation. A huge variety of recent 
algorithms and implementations have been 
proposed for binary arithmetic addition [1–3]. 
Parallel-prefix adder tree topology network such 
as Kogge-Stone adder [4], Sklansky adder [5], 
Brent-Kung adder [6], Han- Carlson adder [7], 

and Kogge-Stone adder using Ling adders [8, 9] 
can be used to realize higher system operating 
speeds and the system high efficiency. Parallel 
prefix adders are suitable for VLSI 
implementation since they trust on the use of 
simple cells and sustain regular connections 
between them. The VLSI integer adders are 
critical elements in general purpose processor 
and digital signal processors since they are 
employed in the design of arithmetic-Logic 
Units, floating-point arithmetic data paths. In 
nanometer range, it is very significant to develop 
different types of addition algorithms that 
provide high energy performance while reducing 
power consumption of the system. The 
requirements of the adder are that it should be 
initially fast and secondarily efficient in terms of 
power consumption, energy and chip area. For 
wide-ranging adders (N > 16), the delay of carry 
look-ahead adders becomes dominated by the 
delay of passing the carry through the look- 
ahead stages. This delay can be decreased by 
looking ahead across the look-ahead blocks. In 
general, we can build a multilevel tree of look-
ahead adders to achieve delay that grows with 
logN. Such adders are commonly referred to as 
tree adders or parallel prefix adders. Many 
parallel prefix topologies have been described in 
the literature, especially in the framework of 
addition.  
 
The basic modules of adders can be designed in 
many ways. At second level, minimization can 
also be achieved by using specific logic families 
in the design. The energy and power 
consumption of a microprocessor adder depends 
on the circuit sizing, the addition algorithm, the 



INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)     

 

 
  ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-10, 2017 

38 

recurrence structure and the wiring complexity. 
In this paper, adder components are designed, 
analyzed, and compared with the previous 
techniques in deep submicron technology. 
Several alternates of the carry look-ahead 
equations, like Ling carries [9], have been 
presented that simplify carry level computation 
and can lead to faster adder structures. Most high 
speed adders depend on the previous carry to 
generate the present sum. Ling adders [8, 9], on 
the other hand, make use of Ling carry and 
propagate bits, in order to calculate the sum bit. 
As a result, dependency on the previous bit 
addition is reduced. This paper describes a 
comparative survey on the above mentioned 
high-speed binary adders and to afford a list of 
energy-efficient circuit topology that will be 
applicable to any parallel prefix computation 
algorithms. By designing and implementing 
high-speed adders, we perceived that there is an 
improvement in energy and power performance.  
 

2. ADDERS 
2.1. Carry Look Ahead Adders 
A carry-look ahead adder (CLA) is a one type of 
high speed adder used in digital logic circuits. A 
carry-look ahead adder increases the speed by 
decreasing the amount of time required to 
determine carry bits in the system. It can be 
distinguished with the simpler, but usually 
slower, ripple carry adder for which the carry bit 
is considered together with the sum bit, and each 
bit must wait until the previous carry has been 
calculated to begin calculating its own result and 
carry bits. The carry-look ahead adder 
determines one or more carry bits before the 
sum, which decreases the wait time to calculate 
the result of the larger value bits. The Kogge- 
Stone adder and Brent-Kung adder are examples 
of this type of adder.  Consider the n-bit addition 
of two numbers: A = an−1, an−2. . . a0and B 
=bn−1, bn−2, . . . , b0 resulting in the sum, 
 S = sn−1, sn−2, . . . , s0 and a carry, Cout.  
 
The first stage in carry-look ahead adder 
calculates the bit generates and bit propagate as 
follows: 
 

 gi  ai · bi          (1)  
 pi  ai  bi,   

 

Where gi is the bit generates and pi is the bit 
propagate. These are then utilized to calculate the 
final sum and carry bits, in the last stage as 
follows:        
 

i i is  p c  ,    

ci+1 = gi + pi · ci,       (2)  
 
Where ·, + and ⊕ represent AND, OR, and XOR 
operations. It is seen from (2) that the first and 
last stages are inherently fast because they 
involve only simple operations on signals local 
to each bit position. However, intermediary 
stages represent the long-distance propagation of 
carries, as a result of the performance of the 
adder hinges on this part [10]. These 
intermediate stages can be used to determine 
group generate bit and group propagate bit to 
avoid waiting for a ripple which, in turn, reduces 
the delay period. This group generates and 
propagates are given by: 
  

Pi :  j  Pi : k · Pk 1:  j ,   (3) 
Gi :  j  Gi : k  Gk 1:  j · Pi : k.    

In this paper, we have used the Kogge- Stone 
implementation of Weinberger, Sparse-2 
implementation of Weinberger, sparse-2 ling 
with merged first recurrence stage and bit-wise 
operations implementation of carry-look ahead 
adder.  

2.2 High-speed binary adder 
A new method is used to represent the new carry 
bit formation and propagation bit based on the 
concept of the complementing signal which was 
introduced in 1965 .To study the impact of this 
complementing signal in performing binary 
addition and complementing signal look- ahead 
adder, one should estimate the formation of Hi 
and Hi+1, as a function of adjacent bit pairs (i, i 
+ 1). Let us consider adding two binary numbers 
A and B together, where A = ao2n + al2n-1 + 
a22n-2+. . + at 2n-t+ . . .+ an20;B = b02n + b1 
2n-1 + b22n-2 + . . . + bi2n-i +. . .+ bn20 . The 
relation among the new carry (Hi, Hi+,) and the 
adjacent bit pairs (ai, bi; ai+1, bi+1 ) can be 
expressed all of these are generated by ai, bi or 
transferred through the low- order bits, i + 1, i 
+2, . . ., with the transmitting-enable switch ON. 
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This signal or new carry can only be terminated 
when the inhibitor is ON (ai+l + bi+1, = 0).  
 
2.3. Carry Skip 
Conference on New Digital Computer 
Techniques, Morgan and Jarvis elaborate a 
binary skip circuit. The method is based on the 
detection and by-passing of those stages of a 
parallel prefix binary adder in which, during a 
given addition (X+Y), there exists the condition 
for carry- propagation. That is, the carry-signal 
is enabled to by-pass those stages of the carry 
circuits for which  

xi ≠ yi       (4) 

An another criterion which does not differentiate 
between propagated and generated carries but 
which is more efficient in the carry skip circuit is  

xi ᴗ yi       (5) 

The circuit prescribed by Morgan and Jarvis and 
outlined in block diagram divides the adder into 
fixed groups, each of six stages. The carry signal 
appearing at the input of any group for which 
condition is satisfied for each stage of the group, 
is transmitted to the next group through a special 
skip gate. At the same time the carry is also 
allowed to propagate within the group to permit 
determination of the various sum bits. 
 
 2.4. Carry-select adder 
The carry-select adder commonly consists of two 
ripple carry adders and a multiplexer. Adding 
two n-bit numbers with a carry-select adder is 
done with two adders in order to achieve the 
calculation twice, one time with the assumption 
of the carry being zero and the other assuming 
one. After the two results are determined, the 
correct sum, as well as the correct carry, is then 
selected with the multiplexer once the correct 
carry is known. The number of bits in each carry 
select block can be uniform, or variable. In the 
uniform case, the optimal delay occurs for a 
block of size. When a variable, the block size 
should have a delay, from addition inputs A and 
B to the carry out, equal to that of the multiplexer 
chain leading into it, so that the carry out is 
determined just in time.  
2.5 Conditional-sum adder 
A conditional sum adder is a recursive structure 
based on the carry-select adder. In the 

conditional sum adder, the MUX level chooses 
between two n/2-bit inputs that are themselves 
made as conditional-sum adder. The bottom 
level of the tree consists of pairs of 2-bit adders 
plus 2 single-bit multiplexers. The conditional 
sum adder suffers from a very large fan-out of 
the intermediate carry outputs. The fan out can 
be as high as n/2 on the last level, where drives 
all multiplexers from to. 

 
3. ADDITION ALGORITHMS 

In this paper, mathematical analysis has been 
given for Weinberger adder and Ling adders.  
 
3.1. Kogge-Stone Adders 
The main difference between Kogge-Stone 
adders and other adders is its high performance. 
It calculates carries corresponding to every bit 
with the help of group generate bit and group 
propagate bit. In this adder the logic levels are 
given by log2N, and fan-out is 2.  
 
3.2. Weinberger’s Recurrence for Addition 
Weinberger offered a general form for carry 
recurrence which was not limited in group sizes 
and number of levels for carry computation. The 
conventional carry-look- ahead (CLA) adder is a 
specific case of this general carry recurrence. 
The sum and carry are defined and indexed as 
follows. 
 

 Si = ai ⊕bi ⊕Ci  
 Ci+1 = ai.bi + (ai + bi)Ci      (6) 

 
In Weinberger’s recurrence, the carry 
propagation speed has been improved through 
the use of generate bit and propagate bit. 
Propagate can either be executed using an OR or 
an XOR. To differentiate them we refer to the 
OR realization of propagate as transmit, t, and 
the XOR realization as, p. We define 
Weinberger’s bit operations as: 

gi = ai.bi 
ti = ai + bi 

 
Substituting into (6) obtains:  

 
Ci+1 = gi + ti.Ci 

 
Weinberger established that the recurrence 
applies to any prefix variation through the use of 
group generate, G, and group transmit, T 
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Figure 1. Weinberger’s recurrence for addition 

 
The computations of G and T are associative and 
idempotent, which allows for a wide range of 
recurrence tree structure possibilities for the 
carry computation.   
 
3.3. Ling’s Transformation 
Technology limitations on fan-in and wired-OR 
in ECL (transistor stack height in CMOS) 
motivated simplifying Weinberger’s recurrence. 
Ling established a transformation which was 
capable to achieve this simplification by 
factoring transmit, t, from carry.  
 

Ci+1 = gi + ti.Ci 
Ci+1 = ti (gi + Ci) 

 
The transformation from Weinberger’s 
recurrence to Ling’s is shown in Fig. 2.   
 

(a) 

 
(b) 

 
(c) 

Figure 2. (a) Weinberger’s recurrence (b) 
Intermediate form (c) Ling’s transformation 
 
To create Ling’s recurrence, this transformation 
is applied to C6 which allows for a recurrence for 
C10 to be created using H and T as shown in Fig. 
3. For the recurrence, H9 has one less term than 
G9 in Weinberger’s recurrence. To allow for 
recurrence T8.6 is combined with t5, resulting in 
the same number of terms as T9.6 used in 
Weinberger’s recurrence.    
 

 
Figure 3. Ling’s recurrence 

 
Ling’s recurrence is performed on  

Hi: Ci+1 = ti Hi 
Hi = gi + ti−1 . Hi−1 

 
The group recurrence relation for H and T 
permits for parallel prefix computation: (H+ and 
T+ denote the next logic level) Hi +=Hi+ Ti-1. 
Hi-1 and Ti−1+= Ti-1 Ti-2. An advantage of 
Ling’s transformation is compatibility with the 
prefix operator “•” for the recurrence of Hi and 
Ti-1. As a result, Ling’s H and T have the same 
favorable properties as Weinberger’s G and T 
when using the prefix operator “•”.  Ling’s 
transformation decreases the difficulty of the 
recurrence by one term ti in the first stage of the 
carry tree through the use of Hi-1 instead of Ci. 
However the decrease in recurrence difficulty is 
achieved at the expense of the increase in sum 
complexity.            

i 1 i 1Si  Ai Bi (t  H )     

The improved sum complexity can be alleviated 
through the use of conditional logic. The 
summation can be implemented using a 
multiplexer, with Hi-1 as the select. 
    

Ai Bi                if  Hi 1  0    
Si

Ai Bi ti 1   if  Hi 1  1    

  
      
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Multiplexer permits for sum to be computed with 
no improved complexity on the critical path 
compared to Weinberger’s in the delay 
improvement achieved from decreasing the 
recurrence by one term.  
 

4. ANALYSIS OF ADDITION 
ALGORITHMS 

As mentioned earlier, Weinberger and Ling are 
the most commonly used addition algorithms in 
CMOS technology. Doran’s transformations are 
not suitable for efficient CMOS realization. 
Doran demonstrations the recurrences that are 
more suitable in CMOS technology are 
Weinberger and Ling. In Weinberger introduced 
the concept of generate bit and propagate bit 
signals to permit parallel prefix computation of 
carry signals to increase the system speed of 
addition. Ling transformation simplifies the 
carry recurrence of Weinberger at the cost of an 
increase in sum complexity as compared to 
Weinberger. Also, Ling recurrence algorithm 
may give better performance than Weinberger 
adder. For accurate energy comparison of those 
well-known recurrence algorithms, the switching 
activity of internal nodes needs to be considered.  
 
 

 
Figure 4: 16-bit kogge stone Weinberger’s 

adder 
 

 
Figure 5: 16-bit kogge stone Ling adder 

 

Kogge-Stone (KS) adder is the one of the well-
known high performance and minimum depth 
parallel prefix adder structure, but it has high 
wiring complexity and energy consumption. 
This structure can be applied by Weinberger and 
Ling addition algorithms and the schematic of 
16-bit Kogge-Stone adder with Weinberger 
addition algorithm is shown in Figure 4 and the 
schematic of sparse-2 Ling adder with merged 
first recurrence stage is shown in figure 5.  
 
The logic gates in carry path for both addition 
algorithms are the same except the first carry 
combine stage. Ling recurrence uses NAND gate 
in the first carry combine stage that is OAI gate 
in Weinberger. Also, the internal connections of 
gates are different from each other. In addition to 
them, sum generation blocks include different 
logic gates and their complexities are different. 
The number of internal nodes is higher in Ling 
adder. 
 

5. DESIGN OF ADDERS 
Adders have been applied with static CMOS, 
dynamic CMOS and CMOS compound domino 
logic families. Several approaches have been 
proposed to increase the energy efficiency: 
proper selection of circuit family and prefix; 
reducing the number of logic gates without 
increasing gate count; reducing switching 
activity; reducing number of logic gates; load 
buffering and reducing the wiring complexity.  
Based on these approaches a high performance 
and energy efficient VLSI adders are 
constructed.  

 
6. SIMULATION RESULTS 

In this project, 16 bit Kogge Stone prefix-2 adder 
using Weinberger and ling recurrence algorithm 
is designed in static, dynamic and domino 
CMOS logic. For high-performance dynamic 
adders Ling shows a fundamental advantage in 
CMOS by reducing the complexity of the first 
stage of the recurrence tree. The designs which 
have the least number of stages are the most 
energy-efficient. The reduced energy is a result 
of the decreased number of stages in the design, 
which allows for the same delay to be attained 
while using a greater fan-out per stage. The 
energy reduction and performance enhancement 
of these designs is limited due to the increased 
branching and gate complexity. The design of 
Kogge-stone adder has been carried out by using 
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TANNER EDA tool and the design parameters 
are obtained namely: Power and Delay. 

 
Figure 4: Power vs delay parameters (KSW-

DOM) 
 
 

 
 

Figure 5 power vs delay parameters (KSW-
DYN) 

 

 
Figure 6 power vs delay parameters (KSW-

STA) 
 
 
 

 
 

Figure 8 power vs delay parameters (KSL- 
DYN) 

 

 
Figure 9 power vs delay parameters (KSL-

DOM) 
 

 
Figure 10 power vs delay parameters (KSL-

STA) 
 
All results are obtained by characterizing the 
delay of logic gates in nm CMOS technologies 
using the typical process corners. The delay of 
each logic gate is characterized under worst case 
single input switching conditions. 
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7. CONCLUSION  
To increase the speed of computation of the 
arithmetic unit, Kogge Stone adder has been 
used. The present work comprises of the design 
of a low power and high efficiency VLSI adder 
in Static and dynamic and domino CMOS logic 
using Weinberger and ling recurrence algorithm. 
The power and delay of Kogge-Stone adder has 
been analyzed for Weinberger and Ling 
recurrence algorithm. By applying power-delay 
tradeoff on various levels, the simulation results 
show that Static kogge- stone ling adder has 11.9 
% power reduction and 17.8 % delay 
improvement over Static Weinberger adder and 
the Dynamic KSA Ling adder has 13.8 % power 
reduction and 13.1% delay improvement over 
dynamic Weinberger adder and the Domino 
KSA Ling adder has 17.6 % power reduction and 
13.1% delay improvement over Domino 
Weinberger adder. Energy efficient design may 
be applied to 16 bit Static and dynamic and 
domino CMOS Han-CARLSON adder using 
Ling recurrence algorithm. Across different 
nanometer technology nodes energy efficiency 
may be calculated in terms of energy and delay.  
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