

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-10, 2017

43

A THEORETICAL APPROACH TO REDUCE THE NUMBER OF
ITERATIONS IN PUMPING LEMMA

Ankit Tomar1, Kapil Kumar2
1Assistant Professor, Quantum School of Technology, ROORKEE

2Assistant Professor, GRD, IMT, DEHRADUN

Abstract
Every language of finite size is said to be
regular. There are different kind of languages
exists in formal languages and Automata
theory about that we cannot judge whether
they are regular or not. A well known Myhill
Nerode’s theorem is provided for regular
languages that are used to prove that certain
languages are not regular. Another useful tool
is pumping lemma that was invented in 1959
by the Robin and Scott for describing the
properties of regular languages. Here we
presented a lemma with some variations in the
standard pumping lemma that was actually
described by the scientist Canfield. There was
no proper logic given by Canfield why and
how that lemma was actually applied as
compare to standard pumping lemma. In this
paper we rewrite the lemma that has reduced
some extra conditions that were made in
standard pumping lemma. This should allow
some efficient proofs with comparison of
pumping lemma. Here we made all the
variations using the Myhill Nerode’s theorem.
Finally we present the simplification of the
Improved P. LEMMA that is applicable for
our variations and allows some simpler
proofs.
Keywords: Pumping Lemma, Logical
Complexity, Finite languages, Regular
Expression, Myhill Nerode’s theorem, Theory
of Automation, Regex.

I. INTRODUCTION
Regular Expressions and their performance
played a critical role in theory of computer
science since, in recent years. ‘Regex’ (Regular
Expressions) is used to make the recognizers or

tokens in the programming languages. It is clear
that regular expressions can be made using
specific regular languages. The class of regular
languages can be recognized by a DFA, which is
described by regular expression, produced by a
regular grammar. Hence a language is said to be
regular if it has finite no of states and recognized
by the deterministic finite automata, but it is not
an easy task to prove that certain languages are
not regular. In 1959 Alexander L Pumping gives
a lemma that gives necessary conditions to proof.
Myhill Nerode’s theorem also gives the
sufficient and necessary condition to proving
some languages are not regular.

II. BACKGROUND INFORMATION
There exists a well known theorem which is
helpful to solve the problem to proving
irregularity of languages. Another classical
educational concept in formal languages is
PUMPING LEMMA. This is powerful way for
proving certain languages are not regular. The
standard pumping lemma was introduced in
1959.

LEMMA 1: Let M= be a finite automation with
n states. Let L be the regular set accepted by M,
Let w ∈ L and |w|≥m, if m≥n, then there exists x,
y, z, y ≠ Λ, xyiz ∈L for each i≥0. ∃m, ∀w € L,
|w|≥m, ∃x, y, z [w= xyz & y≠ Λ & (∀ i ≥0, xyiz
∈L)}

Most of the Automata teachers may not feel
comfortable to apply the lemma to prove that a
given language is not regular. The standard
lemma contains nested levels of quantifier’s
logic. The objective of this thesis is to write some

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-10, 2017

44

useful effort in trying to make the lemma easier
to understand as well as introduced a new lemma
LEMMA 2: In 1997 Jhang and Canfield invented
such a lemma that does the same work as
pumping lemma but in efficient manner and less
complexity.
 A Language L∈∑* is regular only if all y∈∑*,
there exists integers m>n>0 such that for all
z∈∑*, ynz ∈L iff ymz ∈L, ∀y  ∑*, ∀ m, n
[m>n>0] & ∀z∈ ∑*→ {ymz ∈L ynz ∈L}
This lemma does the same work but in less
complex manner as compared to standard
pumping lemma. Since the new lemma is not
pumping the string of y. Interesting thing with
this Lemma is it is not pumping for every value
of i, hence we named it improved lemma.. In the
Jhang & canfield’s article there was not given
any proper logic or necessary or sufficient
condition to proof that how Improved P.
LEMMA is easier (less complex) as compare to
standard pumping lemma. In the rest of article
we will proof that how a Improved P. LEMMA
is efficient or less complex using logical
complexity and state complexity.

III. LITERATURE REVIEW
[1] RABIN and SCOTT examined that this
Lemma can be more powerful that the Lemma
developed by the JAFFE. RABIN and SCOTT
established the new lemma in 1959 for the non
regular languages with extra explicit conditions,
so that the new lemma gives the powerful results.
The new lemma behaves introduced the no
administrative behavior of the finite Automation.
Lemma 1: they sufficiently give the gives the
results for the long string say x that is in L. the
basic identification of strings will be on the basis
of pumping string v. Let p, be a finite nonempty
alphabet. A language L ∈∑* is regular if and only
if there exists a positive integer p such that for all
x∈w�(|x|>p), there exists u, v, w ∈w, v does not
contain zero length, such that x= uvw, and for
all t ∈L, for all i≥0, xt ∈w ��if and only if uyiwt
∈L.
 ∃m ∀w ∈ L,
 |x|≥p, ∃ u, v, w

 [x=uvw & |v|≥1 v≠∧ &
 t ∈L(∀i ≥0, uviwt

∈L)]
[2] STANAT and WEISS examined in this
paper, another great characterization of regular
languages that holds the result of Rabin and Scott
a step further is in which he added the left and
right addable strings their work done by the

STANAT and WEISS is as follows in terms of
points
 A language L is regular if and only if the
following condition holds:

1. There exists a positive integer p such that
for every string x

2. Of length p or greater, there exist strings
u, v and w, v nonempty,

3. Such that x = uvw and for all strings r and
t and all non negative

4. Integers i, rut is in L if and only if ruvit is
in L.

Lemma 2:
 Regular (L) →∃ n ∈ N :
 ∀w ∈ L: |w|≥n
 → ∀ x, y, z ∈ ∑*:
 w=xyz where
 |y|≥n
 ∃u, v, w ∈ ∑*:
 v≠€
 ∀k≥0: xuvk wx ∈ L.
This is the stronger version of standard pumping
lemma that allows strings 'in the middle' to be
pumped. This lemma shows the general structure
of the pumping lemma that basically contains the
five basic quantifiers that makes easy to
understand it in terms of discrete mathematics.
[3] According to Jeffrey Jaffe the lemma gives
the necessary condition only for regularity. This
theorem can only prove that the language is not
regular. In 1978, the scientist J JAFFE
introduced us with the Pumping Lemma for the
regular sets that provides the necessary condition
for the languages. In this standard lemma he
includes the concept of Pigeonhole principle and
of both left invariant as well as right invariant.
This lemma is used to determine whether a
specific language is not in a given language
class. Nevertheless, they cannot be used to
determine if a language is in a given class, since
satisfying the pumping lemma is a necessary, but
not sufficient, condition for class membership.

 Regular (L) →∃ n ∈ N:
 ∀w ∈ L: |w|≥n →∀ x, y, z ∈ ∑*:
 w=xyz, y≠
 |xy|≤n
 ∀k ≥0: xyk z ∈ L.
Here he proved that a language of a finitely
generated free monotonic is regular if and only if
it fulfills the positive block pumping property. A
language is regular if it follows the properties for
the language L is

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-10, 2017

45

1. It must be accepted by the DFA (M).
2. Let w be the string generated for the
language L.
3. If n is the number of states in the given
DFA for the language L, then |w|>n
4. We crack the string w into three strings x,
y, z. such that the length of y must be greater than
zero.
5. Now pump the length of y for all value of
a positive integer.
6. If the family of elements generated by the
pump able string y belongs L then L is regular
otherwise it not regular.
[4] JHANG AND CANFIELD illustrated in
1997 that for any NFA, there exists a DFA that
recognizes the similar language. Hence the
languages that are accepted by the FA are said to
be regular, but there is not any tool having
sufficient as well as necessary condition through
which we can fix the class of regular or non
regular languages.
 When we need to prove something is true for
all elements of some infinite set that can be only
prove by induction methods inductively. To be in
class of regular languages, the class must contain
the finite (countable) number of equivalence
classes (objects). As showed in earlier literature
reviews, the pumping lemma and its proof can be
applied to get some good and interesting results,
and the lemma has showed its different faces that
helps to prove and get extremely good results.
 We have concluded all earlier versions of
pumping and find that we can make more as well
as popular as compared to previous ones, like if
we fix the two integer values say m and n, which
are treated as finite limits. The question arises
here why in latest versions of Pumping Lemma,
they are pumping the sub string y for all values
of positive integer I, of course it is a very typical
type of task. So we removed it and invented
another lemma that does the same work in less
complex manner.

 IV OUR CONTRIBUTION
a. STATE COMPLEXITY
DFA is considered as very basic computational
device that works as a acceptor and a rejecter.
The complexity of a DFA than it can be
calculated by the time and complexity of its
states. The state complexity of a regular language
L is the no. of the number of states of the minimal
DFA that accepts L. State complexity of a
regular language is related to the lower bound for
the time as well as space complexity at the

similar operation performed. By the way a
regular language can be accepted by many
DFA’s but if we want to find out the complexity
of regular language that it can be computed by
choosing the DFA that have minimal no of states
and transitions. So far the transition graph T
(G1) of standard Pumping Lemma will be like
that

 y
 x z

Fig.1 Structure of Pumping Lemma T (G1)

Upper bound of the transition graph T(G1) in
figure 1 is the ith value that will go 0 to n.
Now the transition graph T (G2) of the Improved
P. LEMMA is follows

 y (i times) z

 Fig.2 Structure of Improved PE T(G2)
There are several ways to measure the size of a
DFA, the number of states, number of
transitions, or both. Another thing is that the
number of states gives linear upper bound on the
transitions. So the latest one is you can say the
reduced or minimized DFA as compare to the
first one and the logical depth of the second one
is less as compare to the first transition graph.
Definability of these two finite graphs of first
order logic depends on the adjacency and
equality of the vertices. Any transition graph has
its logical depth D (G) (equal to minimum
quantifiers’ logic depth of a sentence defining G
up to isomorphism) and logical width W (G) (is
the minimum no. of variables occurring in the
sentence). If we closely compare these two
transition graphs T(G1) and T(G2) the
definability of T(G2) is quite simple that
contains first order quantifier logics, as well as
T(G2) has less logical depth with compare
T(G1), and the reachablity from the initial state
to final state has taken less path in T(G2). Hence
conclusion is that Improved P. LEMMA is less
complex as compare to standard pumping
lemma.

p q r

qp

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-10, 2017

46

b. LOGICAL COMPLEXITY
Another thing is efficiency of Pumping Lemma
& Improved P. LEMMA, then the expressive
power are having both the same but the bounded
number of variables (logical quantifiers) used in
NPL with comparison to Pumping Lemma.
Although Non Pumping Lemma is more
restrictive hence it is less complex.There are
three levels of nested quantifiers used in
Improved P. LEMMA on having similar logical
properties on other hand five alternative levels of
quantifiers nesting logics used in standard
pumping lemma. Basically the complexity of a
statement is depends on how much a quantifier
logic has nested predicate logic. Thus it is clear
that the complexity of Improved P. LEMMA is
best as compare to the pumping lemma.

 V TEST CASES TAKEN
The Improved P. LEMMA and standard are non
comparable. To compute the advantages of the
new lemma we will show the lots of examples.
We show here that the given language L is not
regular using PEL. All our needs we choose a
string y and show that any distinct numbers m>n,
there exists a z such that ym€L but yn€L ym does
not €L (or vice versa).

Problem 1: To show that a given language L=
{anbn | n is a positive integer} is not regular.
Solution: Let y be a in non-pumping lemma. For
any integers m,n such that m>n>0, let a string
z=bm. Clearly ymz = ambm which belongs to L.
However, ynz= anbm, which does not belong to L.
So L is not regular.

Problem 2: To show that a given language L=
{0i^2 | i is a positive integer} is not regular.
Solution: Let y be o in non-pumping lemma. For
any integers m, n such that m>n>0, let a string
z=0m^2-m. Clearly ymz=0m^2 which belongs to L.
For ynz, we have
|ynz|=n+m2-m<m+m2-m=m2. We also have,
|ynz|=n+m2-m>m2-m=m(m-1)> (m-1)2.
Therefore,(m-1)2<|ynz| < m2.
So ynz does not belong to L. Therefore, L cannot
be regular.

Problem 3: To show that a given language L=
{0p | p is prime} is not regular.
Solution: Let y be 0 in non-pumping lemma. For
any integers m,n such that m>n>0, let a string
z=0p-m. Clearly ymz=0m0p-m=0p, which belongs to

L. However, ynz=0n0p-m=0n+p-m, which does not
belong to L. So L is not regular.

Problem 4: To show that a given language L=
{0m1n | m≠n} is not regular.
Solution: Let y be 0 in non-pumping lemma. For
any integers m,n such that m>n>0, let a string
z=1n. Clearly ymz=0m1n which belongs to L.
However, ynz=0n0n, which does not belong to L.
So L is not regular.

Problem 5: To show that a given language L=
{0i1j | i>j} is not regular.
Solution: Let y be 0 in non-pumping lemma. For
any integers m,n such that m>n>0, let a string
z=1n. Clearly ymz=0m1n (m>n as i>j) which
belongs to L. However, ynz=0n0n, which does not
belong to L. So L is not regular.

Problem 6: To show that a given language L=
{1n^2 | n is a positive integer} is not regular.
Solution: Let y be 1 in non-pumping lemma. For
any integers m, n such that m>n>0, let a string
z=1m^2-mClearly ymz=1m.1m^2-m = 1m^2which
belongs to L. For ynz=1n.1m^2-m=1n+m^2-m, we
have |ynz| = n+m2-m < m+m2-m = m2. We also
have, |ynz| = n+m2-m > m2-m = m (m-1) > (m-
1)2. Therefore,(m-1)2 < |ynz| < m2. Which shows
ynz lies between squares of two consecutive
numbers? So ynz does not belong to L. Therefore,
L cannot be regular.

Problem 7: To show that a given language L=

{w | ∈ (0, 1) with equal number of 0’s and 1’s}
is not regular.
Solution: Let y be 0 in non-pumping lemma. For
any integers m, n such that m>n>0, let a string
z=1m. Clearly ym z=0m1m which belongs to L.
However, yn z=0n1m, which does not belong to L.
So L is not regular.

Problem 8: To show that a given language L= {

ww | w ∈(0,1) }is not regular.
Solution: Let y be 01 in non-pumping lemma.
For any integers m,n such that m>n>0, let a
string z=0m1n. Clearly ymz=(01)m0m1m =
0m1m0m1m which belongs to L. However, ynz==
(01)n0m1m= 0n1n0m1m , which does not belong to
L. So L is not regular.

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-10, 2017

47

 VI ANALYSIS OF TEST CASES

SN Languages Pumping
Lemma

Improved P.
LEMMA

Conclusio
n

1.

L= {anbn | n is
a positive
integer}

Solved
by
Standard
P
Lemma

Solved By

∀y⊊∑*, ∃m,	 n	
ሾm൐n൐0ሿ	 &	
∀z⊊∑* & {yf(m)
z∈L↔ yf(n) z}

Less
Complex

2.

L= {0i^2 | i is a
positive
integer}

Solved
by
Standard
P
Lemma

Solved By ∀y⊊∑*,
∃m,	n	ሾm൐n൐0ሿ	&	
∀z⊊∑* & {yf(m)
z∈L↔ yf(n) z }

Less
Complex

3.

L= {0p | p is
prime}

Solved
by
Standard
P
Lemma

Solved By

∀y⊊∑*, ∃m,	 n	
ሾm൐n൐0ሿ	 &	
∀z⊊∑* & {yf(m)
z∈L↔ yf(n) z}

Less
Complex

4.

L= {0m1n | m ≠
n}

Solved
by
Standard
P
Lemma

Solved By

∀y⊊∑*, ∃m,	 n	
ሾm൐n൐0ሿ	 &	
∀z⊊∑* & {yf(m)
z∈L↔ yf(n) z}

Less
Complex

5.

L= {0i1j | i>j}

Solved
by
Standard
P
Lemma

Solved By

∀y⊊∑*, ∃m,	 n	
ሾm൐n൐0ሿ	 &	
∀z⊊∑* & {yf(m)
z∈L↔ yf(n) z}

Less
Complex

6.

L= {1n^2 | n is
a positive
integer}

Solved
by
Standard
P
Lemma

Solved By

∀y⊊∑*, ∃m,	 n	
ሾm൐n൐0ሿ	 &	
∀z⊊∑* & {yf(m)
z∈L↔ yf(n) z}

Less
Complex

7.

L= {w |

∈(0,1)* with
equal number
of 0’s and 1’s
}

Solved
by
Standard
P
Lemma

Solved By

∀y⊊∑*, ∃m,	 n	
ሾm൐n൐0ሿ	 &	
∀z⊊∑* & {yf(m)
z∈L↔ yf(n) z}

Less
Complex

8.

L= { ww | w

∈(0,1) } with
equal number
of 0’s and 1’s

Solved
by
Standard
P
Lemma

Solved By

∀y⊊∑*, ∃m,	 n	
ሾm൐n൐0ሿ	 &	
∀z⊊∑* & {yf(m)
z∈L↔ yf(n) z}

Less
Complex

9.

L= { ww | w

∈(0,1)* }

Solved
by
Standard
P
Lemma

Solved By

∀y⊊∑*, ∃m,	 n	
ሾm൐n൐0ሿ	 &	
∀z⊊∑* & {yf(m)
z∈L↔ yf(n) z}

Less
Complex

10.

L= {0i1j | i≤j}

Solved
by
Standard
P
Lemma

Solved By

∀y⊊∑*, ∃m,	 n	
ሾm൐n൐0ሿ	 &	
∀z⊊∑* & {yf(m)
z∈L↔ yf(n) z}

Less
Complex

Table 1.1 Comparison of Algorithms

VII CONCLUSION
In this paper, we modify the concept of pumping
lemma invented by Robin and Scott that gives
actually the necessary condition for validation of
regular languages. We present Jhang and
Canfield Improved P. LEMMA that invented
using the concept of Myhill Nerode’s
(equivalence relationships and finite index)
theorem and generalization of standard pumping
lemma. This Lemma gives the sufficient as well
as necessary condition for validation of regular
languages. This generalization also provides the
efficient and less complex logics.

REFERENCES
[1] G.Q Zhang and E. R. Canfield, “The End
of Pumping?” Theoretical Computer Science,
174; 1, PP275-279, 1997
[2] Sheng Yu, “State Complexity of Regular
Languages” January 2000
[3] Peter Linz, “Introduction of Theory of
Formal Languages and Autamata”
[4] John E. Hopocraft and Jeffery D.
Ullaman, “Introduction of Autamata Theory,
Langauges, And Computataion.
[5] M.D.Davis, R.Sigal, E.J.Weyuker.
Computability, Complexity, and Languages.
Academic Press 1994(Second Edition).
[6] P.J.Denning, J.B.Dennis, J.E.Qualitz.
Machines, Languages, and Computation.
Prentice-Hall, 1978.
[7] R.W.Floyd and R.Beigel. The Languages
of Machines, an introduction to compatibility
and formal languages. Computer Science Press,
1994.
[8] J.E.Hopcroft, J.D.Ullman. Introduction
to Automata Theory, Languages, and
Computation. Addison-Wesley, 1979.
[9] H.R.Lewis, C.H.Papadimitriou.
Elements of the Theory of Computation.
Prentice-Hall, 1981.
[10] P.Linz. An Introduction to Formal
Languages and Automata. D.C.Heath and
Company, 1990.
[11] J.C.Martin. Introduction to Languages
and the Theory of Computation. McGraw hill,
1991.
[12] R.McNaughton. Elementary
Computability, Formal Languages, and
Automata. Prentice-Hall, 1982.
[13] T.A.Sudkamp. Languages and Machines:
An Introduction to the Theory of Computer
Science. Addison-Wesley, 1988.

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-10, 2017

48

[14] J.Jaffe, “A Necessary and Sufficient
Pumping Lemma for Regular Languages,” ACM
SIGACT News, 10:2, pp. 48-49, Summer 1978.
[15] D.F.Stanat and S.F.Weiss, “A Pumping
Theorem for Regular Languages,” ACM
SIGACT News, 14:1, pp. 36-37, Winter 1982.
[16] A.W.Burks and Hao Wang, “The logic of
automata,” journal of the Association for
Computing Machinery, 4, 193-218 and 279-297
(1957).
[17] S.C.Kleene, “Representation of events in
nerve nets and finite automata,” Automata
Studies, Princeton, pp. 3-41, (1956).
[18] E.Leiss, “Saccinct representation of
regular languages by Boolean automata”.
Theoretical Computer Science 13 (1981) 323-
330.
[19] W.S.McCulloch and E.Pitts, “A Logical
calculus of the ideas imminent in nervous
activity,” Bulletin of Mathematical Biophysics,
5, 115-133 (1943).
[20] F.R.Moore, “On the Bounds for State-Set
Size in the Proofs of Equivalence between
Deterministic, Nondeterministic and Two-Way
Finite Automata”, IEEE Trans. Computers 20
(1971) 1211-1214.
[21] A.V.Aho, J.E.Hopcroft and J.D.Ullman,
the Design and Analysis of Computer
Algorithms, Addison-Wesley, Reading, MA,
1974.
[22] C.Campeanu, K.Culik II, K.Salomaa,
S.Yu, “ State complexity of basic operations on
finite languages”, Proceedings of the Fourth

International Workshop on Implementing
Automata, WIA’ 99, to appear.
[23] A.Fellah, H.Jurgensen, S.Yu,
“Constructions for alternating finite automata”,
Intern. J.ComputerMath . vol. 35 (1990) 117-
132.
[24] J.E.Hopcroft, “An n log n algorithm for
minimizing the states in the finite automaton”,
The Theory of Machines and Computations
(Z.Kohavi edited), pp. 189-196, Academic Press,
New York.
[25] J.E.Hopcroft and J.D.Ullman,
Introduction to Automata Theory, Languages,
and computation, Addison-Wesley (1979).
Reading, Mass.
[26] M.S.Ying, “A formal model of
computing with words”, IEEE Trans. Fuzzy
Systems, 10(2002)5, pp. 640-652.
[27] A.Ada, “On the Non-deterministic
Communication Complexity of Regular
Languages”, Lecture Notes in Computer
Science, Springer Berlin/Heidelberg, 2008, pp.
96-107.
[28] A.Ginzbury, “Algebraic Theory of
Automata”(Assoc. Comput. Math. Monagraphy
Series), Academic Press, New York, 1968.
[29] R.McNaughton, S.Papert, “Counter-Free
Automata”, M.I.T. Press, 1971.
[30] M.O.Raom, D.Scott, “Finite Automata
and their Decision Problems”, IBM J.Res
Develop, 3 (1959) pp. 114-125.

