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Abstract 
Every language of finite size is said to be 
regular. There are different kind of languages 
exists in formal languages and Automata 
theory about that we cannot judge whether 
they are regular or not. A well known Myhill 
Nerode’s theorem is provided for regular 
languages that are used to prove that certain 
languages are not regular. Another useful tool 
is pumping lemma that was invented in 1959 
by the Robin and Scott for describing the 
properties of regular languages. Here we 
presented a lemma with some variations in the 
standard pumping lemma that was actually 
described by the scientist Canfield. There was 
no proper logic given by Canfield why and 
how that lemma was actually applied as 
compare to standard pumping lemma.  In this 
paper we rewrite the lemma that has reduced 
some extra conditions that were made in 
standard pumping lemma. This should allow 
some efficient proofs with comparison of 
pumping lemma. Here we made all the 
variations using the Myhill Nerode’s theorem. 
Finally we present the simplification of the 
Improved P. LEMMA that is applicable for 
our variations and allows some simpler 
proofs.   
Keywords: Pumping Lemma, Logical 
Complexity, Finite languages, Regular 
Expression, Myhill Nerode’s theorem, Theory 
of Automation, Regex. 
 

I. INTRODUCTION 
Regular Expressions and their performance 
played a critical role in theory of computer 
science since, in recent years. ‘Regex’ (Regular 
Expressions) is used to make the recognizers or 

tokens in the programming languages. It is clear 
that regular expressions can be made using 
specific regular languages. The class of regular 
languages can be recognized by a DFA, which is 
described by regular expression, produced by a 
regular grammar. Hence a language is said to be 
regular if it has finite no of states and recognized 
by the deterministic finite automata, but it is not 
an easy task to prove that certain languages are 
not regular. In 1959 Alexander L Pumping gives 
a lemma that gives necessary conditions to proof. 
Myhill Nerode’s theorem also gives the 
sufficient and necessary condition to proving 
some languages are not regular. 
 

II. BACKGROUND INFORMATION 
There exists a well known theorem which is 
helpful to solve the problem to proving 
irregularity of languages. Another classical 
educational concept in formal languages is 
PUMPING LEMMA. This is powerful way for 
proving certain languages are not regular. The 
standard pumping lemma was introduced in 
1959. 

LEMMA 1: Let M= be a finite automation with 
n states. Let L be the regular set accepted by M, 
Let w ∈ L and |w|≥m, if m≥n, then there exists x, 
y, z, y ≠ Λ, xyiz ∈L for each i≥0. ∃m, ∀w € L, 
|w|≥m, ∃x, y, z  [w= xyz & y≠ Λ & (∀ i ≥0, xyiz 
∈L)} 

Most of the Automata teachers may not feel 
comfortable to apply the lemma to prove that a 
given language is not regular. The standard 
lemma contains nested levels of quantifier’s 
logic. The objective of this thesis is to write some 
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useful effort in trying to make the lemma easier 
to understand as well as introduced a new lemma 
LEMMA 2: In 1997 Jhang and Canfield invented 
such a lemma that does the same work as 
pumping lemma but in efficient manner and less 
complexity. 
 A Language L∈∑* is regular only if all y∈∑*, 
there exists integers m>n>0 such that for all 
z∈∑*, ynz ∈L iff ymz ∈L, ∀y  ∑*, ∀ m, n 
[m>n>0] & ∀z∈ ∑*→ {ymz ∈L ynz ∈L} 
This lemma does the same work but in less 
complex manner as compared to standard 
pumping lemma. Since the new lemma is not 
pumping the string of y. Interesting thing with 
this Lemma is it is not pumping for every value 
of i, hence we named it improved lemma.. In the 
Jhang & canfield’s article there was not given 
any proper logic or necessary or sufficient 
condition to proof that how Improved P. 
LEMMA is easier (less complex) as compare to 
standard pumping lemma. In the rest of article 
we will proof that how a Improved P. LEMMA 
is efficient or less complex using logical 
complexity and state complexity. 

III. LITERATURE REVIEW 
[1] RABIN and SCOTT examined that this 
Lemma can be more powerful that the Lemma 
developed by the JAFFE. RABIN and SCOTT 
established the new lemma in 1959 for the non 
regular languages with extra explicit conditions, 
so that the new lemma gives the powerful results. 
The new lemma behaves introduced the no 
administrative behavior of the finite Automation. 
Lemma 1: they sufficiently give the gives the 
results for the long string say x that is in L. the 
basic identification of strings will be on the basis 
of pumping string v. Let p, be a finite nonempty 
alphabet. A language L ∈∑* is regular if and only 
if there exists a positive integer p such that for all 
x∈w�(|x|>p), there exists u, v, w ∈w, v does not 
contain zero length,  such that x= uvw, and for 
all t ∈L, for all i≥0, xt ∈w ��if and only if uyiwt 
∈L. 
       ∃m ∀w ∈ L, 
                             |x|≥p, ∃ u, v, w  

                        [x=uvw & |v|≥1 v≠∧ &   
                                    t ∈L(∀i ≥0, uviwt 

∈L)] 
[2] STANAT and WEISS examined in this 
paper, another great characterization of regular 
languages that holds the result of Rabin and Scott 
a step further is in which he added the left and 
right addable strings their work done by the 

STANAT and WEISS is as follows in terms of 
points  
       A language L is regular if and only if the 
following condition holds: 

1. There exists a positive integer p such that 
for every string x  

2. Of length p or greater, there exist strings 
u, v and w, v nonempty,  

3. Such that x = uvw and for all strings r and 
t and all non negative 

4. Integers i, rut is in L if and only if ruvit is 
in L. 

Lemma 2: 
             Regular (L) →∃ n ∈ N : 
              ∀w ∈ L: |w|≥n 
                       → ∀ x, y, z ∈ ∑*: 
                        w=xyz where 
                        |y|≥n 
                       ∃u, v, w ∈ ∑*: 
                                     v≠€ 
                                 ∀k≥0: xuvk wx ∈ L. 
This is the stronger version of standard pumping 
lemma that allows strings 'in the middle' to be 
pumped. This lemma shows the general structure 
of the pumping lemma that basically contains the 
five basic quantifiers that makes easy to 
understand it in terms of discrete mathematics. 
[3] According to Jeffrey Jaffe the lemma gives 
the necessary condition only for regularity. This 
theorem can only prove that the language is not 
regular. In 1978, the scientist J JAFFE 
introduced us with the Pumping Lemma for the 
regular sets that provides the necessary condition 
for the languages. In this standard lemma he 
includes the concept of Pigeonhole principle and 
of both left invariant as well as right invariant. 
This lemma is used to determine whether a 
specific language is not in a given language 
class. Nevertheless, they cannot be used to 
determine if a language is in a given class, since 
satisfying the pumping lemma is a necessary, but 
not sufficient, condition for class membership. 
 
                 Regular (L) →∃ n ∈ N: 
                        ∀w ∈ L: |w|≥n →∀ x, y, z ∈ ∑*: 
                             w=xyz,   y≠                              
                                   |xy|≤n 
                             ∀k ≥0: xyk z ∈ L. 
Here he proved that a language of a finitely 
generated free monotonic is regular if and only if 
it fulfills the positive block pumping property. A 
language is regular if it follows the properties for 
the language L is 
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1. It must be accepted by the DFA (M). 
2. Let w be the string generated for the 
language L. 
3. If n is the number of states in the given 
DFA for the language L, then |w|>n 
4. We crack the string w into three strings x, 
y, z. such that the length of y must be greater than 
zero. 
5. Now pump the length of y for all value of 
a positive integer. 
6. If the family of elements generated by the 
pump able string y belongs L then L is regular 
otherwise it not regular. 
[4] JHANG AND CANFIELD illustrated in 
1997 that for any NFA, there exists a DFA that 
recognizes the similar language. Hence the 
languages that are accepted by the FA are said to 
be regular, but there is not any tool having 
sufficient as well as necessary condition through 
which we can fix the class of regular or non 
regular languages. 
    When we need to prove something is true for 
all elements of some infinite set that can be only 
prove by induction methods inductively. To be in 
class of regular languages, the class must contain 
the finite (countable) number of equivalence 
classes (objects). As showed in earlier literature 
reviews, the pumping lemma and its proof can be 
applied to get some good and interesting results, 
and the lemma has showed its different faces that 
helps to prove and get extremely good results. 
        We have concluded all earlier versions of 
pumping and find that we can make more as well 
as popular as compared to previous ones, like if 
we fix the two integer values say m and n, which 
are treated as finite limits. The question arises 
here why in latest versions of Pumping Lemma, 
they are pumping the sub string y for all values 
of positive integer I, of course it is a very typical 
type of task. So we removed it and invented 
another lemma that does the same work in less 
complex manner. 
 
               IV        OUR CONTRIBUTION 
a. STATE COMPLEXITY 
DFA is considered as very basic computational 
device that works as a acceptor and a rejecter. 
The complexity of a DFA than it can be 
calculated by the time and complexity of its 
states. The state complexity of a regular language 
L is the no. of the number of states of the minimal 
DFA that accepts L. State complexity of a 
regular language is related to the lower bound for 
the time as well as space complexity at the 

similar operation performed. By the way a 
regular language can be accepted by many 
DFA’s but if we want to find out the complexity 
of regular language that it can be computed by 
choosing the DFA that have minimal no of states 
and transitions.  So far the transition graph T 
(G1) of standard Pumping Lemma will be like 
that    
 
                                                        y 
                               x                                z 
  
                  
 
 
Fig.1 Structure of Pumping Lemma T (G1)   
     
Upper bound of the transition graph T(G1) in 
figure 1 is the ith value that will go 0 to n. 
Now the transition graph T (G2) of the Improved 
P. LEMMA is follows                    
 
                             y (i times)                 z 
                                             
                 
 
 
                  Fig.2 Structure of Improved PE T(G2)       
There are several ways to measure the size of a 
DFA, the number of states, number of 
transitions, or both. Another thing is that the 
number of states gives linear upper bound on the 
transitions.  So the latest one is you can say the 
reduced or minimized DFA as compare to the 
first one and the logical depth of the second one 
is less as compare to the first transition graph. 
Definability of these two finite graphs of first 
order logic depends on the adjacency and 
equality of the vertices. Any transition graph has 
its logical depth D (G) (equal to minimum 
quantifiers’ logic depth of a sentence defining G 
up to isomorphism) and logical width W (G) (is 
the minimum no. of variables occurring in the 
sentence). If we closely compare these two 
transition graphs T(G1) and T(G2) the 
definability of T(G2) is quite simple that 
contains first order quantifier logics, as well as 
T(G2) has less logical depth with compare 
T(G1), and the reachablity from the initial state 
to final state has taken less path in T(G2). Hence 
conclusion is that Improved P. LEMMA is less 
complex as compare to standard pumping 
lemma.  
 
 

p q    r

qp
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b. LOGICAL COMPLEXITY 
Another thing is efficiency of Pumping Lemma 
& Improved P. LEMMA, then the expressive 
power are having both the same but the bounded 
number of variables (logical quantifiers) used in 
NPL with comparison to Pumping Lemma. 
Although Non Pumping Lemma is more 
restrictive hence it is less complex.There are 
three levels of nested quantifiers used in 
Improved P. LEMMA on having similar logical 
properties on other hand five alternative levels of 
quantifiers nesting logics used in standard 
pumping lemma. Basically the complexity of a 
statement is depends on how much a quantifier 
logic has nested predicate logic. Thus it is clear 
that the complexity of Improved P. LEMMA is 
best as compare to the pumping lemma. 

                    V TEST CASES TAKEN 
The Improved P. LEMMA and standard are non 
comparable. To compute the advantages of the 
new lemma we will show the lots of examples. 
We show here that the given language L is not 
regular using PEL. All our needs we choose a 
string y and show that any distinct numbers m>n, 
there exists a z such that ym€L but yn€L ym does 
not €L (or vice versa). 
 
Problem 1: To show that a given language L= 
{anbn | n is a positive integer} is not regular. 
Solution: Let y be a in non-pumping lemma. For 
any integers m,n such that m>n>0, let a string 
z=bm. Clearly ymz = ambm which belongs to L. 
However, ynz= anbm, which does not belong to L. 
So L is not regular. 
 
Problem 2: To show that a given language L= 
{0i^2 | i is a positive integer} is not regular.    
Solution: Let y be o in non-pumping lemma. For 
any integers m, n such that m>n>0, let a string 
z=0m^2-m. Clearly ymz=0m^2 which belongs to L. 
For ynz, we have                                                                                                      
|ynz|=n+m2-m<m+m2-m=m2. We also have, 
|ynz|=n+m2-m>m2-m=m(m-1)> (m-1)2.                                                             
Therefore,(m-1)2<|ynz| < m2.                                                                                       
So ynz does not belong to L. Therefore, L cannot 
be regular. 
 
Problem 3: To show that a given language L= 
{0p | p is prime} is not regular.    
Solution: Let y be 0 in non-pumping lemma. For 
any integers m,n such that m>n>0, let a string 
z=0p-m. Clearly ymz=0m0p-m=0p, which belongs to 

L. However, ynz=0n0p-m=0n+p-m, which does not 
belong to L. So L is not regular. 
 
Problem 4: To show that a given language L= 
{0m1n | m≠n} is not regular.        
Solution: Let y be 0 in non-pumping lemma. For 
any integers m,n such that m>n>0, let a string 
z=1n. Clearly ymz=0m1n which belongs to L. 
However, ynz=0n0n, which does not belong to L. 
So L is not regular. 
 
Problem 5: To show that a given language L= 
{0i1j | i>j} is not regular.  
Solution: Let y be 0 in non-pumping lemma. For 
any integers m,n such that m>n>0, let a string 
z=1n. Clearly ymz=0m1n (m>n as i>j) which 
belongs to L. However, ynz=0n0n, which does not 
belong to L. So L is not regular. 
 
Problem 6: To show that a given language L= 
{1n^2 | n is a positive integer} is not regular.  
Solution: Let y be 1 in non-pumping lemma. For 
any integers m, n such that m>n>0, let a string 
z=1m^2-mClearly ymz=1m.1m^2-m = 1m^2which 
belongs to L. For ynz=1n.1m^2-m=1n+m^2-m, we 
have |ynz| = n+m2-m < m+m2-m = m2. We also 
have, |ynz| = n+m2-m > m2-m = m (m-1) > (m-
1)2. Therefore,(m-1)2 < |ynz| < m2. Which shows 
ynz lies between squares of two consecutive 
numbers? So ynz does not belong to L. Therefore, 
L cannot be regular. 
 
Problem 7: To show that a given language L= 

{w | ∈ (0, 1) with equal number of 0’s and 1’s} 
is not regular.                                                                          
Solution: Let y be 0 in non-pumping lemma. For 
any integers m, n such that m>n>0, let a string 
z=1m. Clearly ym z=0m1m which belongs to L. 
However, yn z=0n1m, which does not belong to L. 
So L is not regular. 
 
Problem 8: To show that a given language L= { 

ww | w  ∈(0,1) }is not regular.   
Solution: Let y be 01 in non-pumping lemma. 
For any integers m,n such that m>n>0, let a 
string z=0m1n. Clearly ymz=(01)m0m1m = 
0m1m0m1m which belongs to L. However, ynz== 
(01)n0m1m= 0n1n0m1m , which does not belong to 
L. So L is not regular. 
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             VI    ANALYSIS OF TEST CASES 
 

SN  Languages Pumping 
Lemma 

Improved P. 
LEMMA  

Conclusio
n 

1. 

 

L= {anbn | n is 
a positive 
integer} 

Solved 
by 
Standard 
P 
Lemma 

Solved By 

∀y⊊∑*,  ∃m,	 n	
ሾm൐n൐0ሿ	 &	
∀z⊊∑*  &  {yf(m) 
z∈L↔ yf(n) z}  

Less 
Complex 

2. 

 

L= {0i^2 | i is a 
positive 
integer} 

Solved 
by 
Standard 
P 
Lemma 

Solved By ∀y⊊∑*, 
∃m,	n	ሾm൐n൐0ሿ	&	
∀z⊊∑*  &  {yf(m) 
z∈L↔ yf(n) z } 

Less 
Complex 

3. 

 

 

L= {0p | p is 
prime} 

Solved 
by 
Standard 
P 
Lemma 

Solved By 

∀y⊊∑*,  ∃m,	 n	
ሾm൐n൐0ሿ	 &	
∀z⊊∑*  &  {yf(m) 
z∈L↔ yf(n) z} 

Less 
Complex 

4. 

 

 

L= {0m1n | m ≠ 
n} 

Solved 
by 
Standard 
P 
Lemma 

Solved By 

∀y⊊∑*,  ∃m,	 n	
ሾm൐n൐0ሿ	 &	
∀z⊊∑*  &  {yf(m) 
z∈L↔ yf(n) z} 

Less 
Complex 

5. 

 

 

L= {0i1j | i>j} 

Solved 
by 
Standard 
P 
Lemma 

Solved By 

∀y⊊∑*,  ∃m,	 n	
ሾm൐n൐0ሿ	 &	
∀z⊊∑*  &  {yf(m) 
z∈L↔ yf(n) z} 

Less 
Complex 

6. 

 

L= {1n^2 | n is 
a positive 
integer} 

Solved 
by 
Standard 
P 
Lemma 

Solved By 

∀y⊊∑*,  ∃m,	 n	
ሾm൐n൐0ሿ	 &	
∀z⊊∑*  &  {yf(m) 
z∈L↔ yf(n) z} 

Less 
Complex 

7. 

 

L= {w | 

∈(0,1)*  with 
equal number 
of 0’s and 1’s 
} 

Solved 
by 
Standard 
P 
Lemma 

Solved By 

∀y⊊∑*,  ∃m,	 n	
ሾm൐n൐0ሿ	 &	
∀z⊊∑*  &  {yf(m) 
z∈L↔ yf(n) z} 

Less 
Complex 

8. 

 

L= { ww | w 

∈(0,1) } with 
equal number 
of 0’s and 1’s 

Solved 
by 
Standard 
P 
Lemma 

Solved By 

∀y⊊∑*,  ∃m,	 n	
ሾm൐n൐0ሿ	 &	
∀z⊊∑*  &  {yf(m) 
z∈L↔ yf(n) z} 

Less 
Complex 

9. 

 

 

L= { ww | w 

∈(0,1)* } 

Solved 
by 
Standard 
P 
Lemma 

Solved By 

∀y⊊∑*,  ∃m,	 n	
ሾm൐n൐0ሿ	 &	
∀z⊊∑*  &  {yf(m) 
z∈L↔ yf(n) z} 

Less 
Complex 

10. 

 

 

L= {0i1j | i≤j} 

Solved 
by 
Standard 
P 
Lemma 

Solved By 

∀y⊊∑*,  ∃m,	 n	
ሾm൐n൐0ሿ	 &	
∀z⊊∑*  &  {yf(m) 
z∈L↔ yf(n) z} 

Less 
Complex 

Table 1.1 Comparison of Algorithms 
 
 
 

VII     CONCLUSION 
In this paper, we modify the concept of pumping 
lemma invented by Robin and Scott that gives 
actually the necessary condition for validation of 
regular languages. We present Jhang and 
Canfield Improved P. LEMMA that invented 
using the concept of Myhill Nerode’s 
(equivalence relationships and finite index) 
theorem and generalization of standard pumping 
lemma. This Lemma gives the sufficient as well 
as necessary condition for validation of regular 
languages. This generalization also provides the 
efficient and less complex logics. 
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