

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-10, 2017

71

IMPROVED EDGE FINDING ALGORITHM: ROBOTIC ARM
ROBOT STUDIO

Mitender Kumar1, Manish Mittal2, Shobhit Prajapati3
1,2,3Lecturer, QST, Roorkee, School of Technology, Roorkee

Abstract
Edge finding in Robotics incorporate multiple
application includes PICK and PLACE,
TRAIN WINDOW FITTING, WEILDING
on SHARP EDGES or CAR UNDER BODY
etc. Now it became one critical parameter to
find the EDGE. The way of finding EDGE is
more calculative. The algorithm through
which a robot is finding edge must be
optimized and short. One quite heavy robot
costs on each movement, so minimizing the
movements can directly proportional to
minimizing the cost. Given algorithm is a
slight change in the previous one but used to
minimize the edge finding in order of O (n2).
Keywords: RobotStudio, EDGE finding,
COST, ROBOTICS

1. Introduction
Automation is termed as the advancement of
modern era. Automation is superset of Robotics
and Robotics is not humanoid as per the general
convention. There are different
types of Robots. This study enclosed the
Industrial Robots, which is specifically called as
Industrial Automation.

Fig.2: Motions in Robotic Arm

Industrial automation converges highly on
ROBOTIC ARM. And one robotic Arm has
multiple operations as a whole mentioned
below:-

1. Pick and Place
2. Train wall window set
3. Welding car under body
4. Car Assembling
5. Wall Painting

But all the above mentioned applications need
fundamental operation to assemble with. Among
all the operations finding edge is very first and
critical task, which draws lots of cost in case of
electricity and maintenance.

Fig.1: ABB Robotic Arm

1. Ancient Edge finding Algorithm
The classical way to find edge of a sample body
was to move robotic arm by n number of steps
towards the body. One Proximity Sensor is
continuously tracking the presence of edge. The

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-10, 2017

72

below mentioned algorithm is the correct
elaboration of edge detection:

Algorithm: Static Algorithm Procedural
Version

I. START
II. Move 10 MM towards the body.

III. If Sensor_Out == 0 GOTO step V.
IV. If Sensor_Out == 1 GOTO step VI.
V. MOVE 10 MM steps GOTO step III.

VI. CHANGE the direction.
VII. MOVE 1 MM towards the body.

VIII. If Sensor_Out == 0 GOTO step X.
IX. If Sensor_Out == 1 GOTO step VI.
X. MOVE 1 MM steps GOTO step VIII.

XI. CHANGE the direction.
XII. MOVE 0.1 MM towards the body.

XIII. If Sensor_Out == 0 GOTO step XV.
XIV. If Sensor_Out == 1 GOTO step XVI.
XV. MOVE 0.1 MM towards the body.

XVI. Record the Coordinates (Say X, Y).

Algorithm: Static Algorithm Subroutine
Version

 Main Routine

I. START
II. DECLARE signal , distance and

direction.
III. INTIALIZE distance by 10 and

direction by right.
IV. MovementRoutine(distance,

dierction).
V. signal = GetSensorOutcomeRoutine.

VI. If signal is 0 GOTO VIII.
VII. If signal is 1 GOTO IX.

VIII. MovementRoutine(distance,dierction
),GOTO VI.

IX. direction = getDirection(direction).
X. distance = distance / 10.

XI. MovementRoutine(distance,dierction)
XII. signal = GetSensorOutcomeRoutine.

XIII. If signal is 0 GOTO VIII.
XIV. If signal is 1 GOTO IX.
XV. MovementRoutine(distance,dierction

),GOTO VI.
XVI. direction = getDirection(direction).

XVII. distance = distance / 10.
XVIII. MovementRoutine(distance,dierction)
XIX. Record the Coordinates (Say X, Y).
XX.

 MovementRoutine (distance, direction)
I. MOVE distance in the direction.

Get Sensor Outcome Routine
I. If Getting object return 1.
II. Return 0.

GetDirection(Direction)

I. If direction is right change it to left.
II. If direction is left change it to right.

2. New Algorithm- Binary Search

This algorithm performs binary search for the
edge. Initial pass goes for X distance as per the
static parameter. Then it goes for the X/2
distance with direction change of the movement.
And the above mentioned is in the recursive
execution. This idea finds EDGE faster than the
previous algorithm resulting the less cost also.

Algorithm: Binary Search edge finding

Static Data Structure
1. Speed Of Robot
2. Home Position
3. Object Placement
4. FLAG

Main Routine

I. START
II. DECLARE

moveRoutine(direction)

I. Increment FLAG by 1 on each call
of routine.

II. If FLAG reaches to 4 stop the
routine GOTO VI.

III. Move in the direction and checks
for the sensor output signal =
getSensorOutput.

IV. direction = getDirection.
V. moveRoutine(direction)
VI. Record the Coordinates (Say X,

Y).

getDirection
I. If direction is right change it to

left.
II. If direction is left change it to

right.

getSensorOutput
I. If Getting object return 1.

II. Return 0.

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-10, 2017

73

3. Comparative Analysis
Comparative analysis of both the algorithm is
based on two critical parameters. The parameters
are as under:

1. TIME
2. COST

TIME & COST estimations:
a. By Ancient Algorithm

Geometry of the robotic arm station is given
below:
The distance of object from the base of robotic
arm is X (say).
Arm is moving 10 units in one move.
Each move stop takes t time (say).
In 1st Pass

Total stoppage count C =

Total Time Taken T1 = C * t
In 2nd Pass
The distance of object from the base of robotic
arm is Y (say).
Arm is moving 1 units in one move.
Each move stop takes t time (say).

 Total stoppage count C =

Total Time Taken T2 = C * t
In 3rd Pass
The distance of object from the base of robotic
arm is Z (say).
Arm is moving 0.1 units in one move.
Each move stop takes t time (say).

 Total stoppage count C =

Total Time Taken T3 = C * t

Total Time Taken in the Algorithm

Suppose machine is consuming cost C per unit
of time than Total Cost (TC):

b. Binary Search

In binary search, total numbers of stoppages are
4.

Total time taken

Suppose machine is consuming cost C per unit
of time than Total Cost (TC):

RESULTS

5. Conclusion
We have learnt through our research that there
are lots of scope in cost minimization, time
reduction and geometry optimization in robotics.
Different vendor having different robotic API for
his or her own tool. By using those one can
minimize the above mention parameter. By using
open source library for robotics called ROS
(Robot Operating System) any one can start
learning robotics and any one can adapt
advancement of robotics along with a great
career option.

6. References
[1]http://new.abb.com/products/robotics/robotst
udio

[2]http://wiki.ros.org/abb/Tutorials/RobotStudio

[3]https://en.wikipedia.org/wiki/Robotic_arm

[4]www.cds.caltech.edu/~murray/books/MLS/p
df/mls94- complete.pdf

[5]. http://www.rapidprogramming.com/

[6]. https://en.wikipedia.org/wiki/RAPID

[7].http://developercenter.robotstudio.com/Blob
Proxy/manuals/RobotStudioOpManual/doc12.ht
ml

[8].http://www.emeraldinsight.com/doi/abs/10.1
108/01439910910994605

[9].https://www.researchgate.net/publication/23
5253521_Technology_and_applications_of_AB
B_RobotStudio

[10].http://dl.acm.org/citation.cfm?id=1231103

TAncient = T1 + T2 + T3

TCAncient = T * C

TBinary = 4 * t

TCBinary = T * C

TBinary < TAncient

TCBinary < TCAncient

