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Abstract 
This Paper deals with the asymptotic 
behaviours of the solutions of the similarity 
boundary layer equations governing magneto-
fluid dynamic steady incompressible laminar 
boundary layer flow for a point sink with an 
applied magnetic field, heat and mass 
transfer. The two-point boundary value 
problem governed by self-similar solutions 
has been solved by using the method of the 
asymptotic integration of second order linear 
differential equations. For the study of the 
asymptotic behaviours as the independent 
variable tends to infinity, some topological 
arguments expressed in the form of lemma 
and theorems have been used. 
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1 Introduction 

One of the most important problem in the study 
of differential equation and their applications is 
that of describing the nature of the solution for 
large positive values of the independent variables 
and this purpose is completely served by the 
study of asymptotic behaviours. Because of this 
fact, the study of the asymptotic nature of the 
solution of Falkner -Skan equations governing 
study twodimensional flow of a slightly viscous 
incompressible fluid past a wedge was initiated 
by Hartman [6] and later extended by researchers 
																																																																		

		

like Singh and Kumar [7], Singh and Verma [8], 
Singh [9] ,etc. 
 
2 Governing Equations 
Let us consider the steady laminar 
incompressible axisymmetric boundary layer 
flow of an electrically conducting fluid in a 
circular cane at the vertex (see Fig. 1). The hole 
can be regarded as a three-dimensional sink. 
 
MHD flow problems with magnetic field find 
applications in vortex chambers, power 
generators, nuclear reactors, evolution of 
rotating magnetic tars, geophysical fluid-
dynamic, etc. The study of the boundary layer 
flow of an electrically conducting fluid on a cone 
due to a point sink with an applied magnetic field 
is relevant in the study of conical nozzle or 
diffuser -flow problems and hence has been 
undertaken by Choi and Wilhelm [1]. The 
foregoing problem in the absence of magnetic 
field, mass flux diffusion and heat transfer has 
been studied in the part by Rosenhead [2]. The 
same problem was studied by Takhar [3] to 
include the effects of the magnetic field, mass 
flux diffusion and heat transfer. The problem was 
solved by suing method on the lines of 
soundalgekar et. al. [4].  
The objective of the present paper is to study the 
asymptotic behaviours of the solutions of the 
equations governing the problem dealt by Takhar 
[3] as the independent variable tends to infinity. 
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The principle and the linearly independent 
solutions have been found based on the method 
of asymptotic integration of second order linear 
differential equations. While using the method, 
some required results pertaining to the existence 
and uniqueness of the solutions have also been 
discussed in the form of lemma and theorems on 
the lines of Gabutti [5]. 

 
 
 

 
 
 
 
 
 
 
 
 
 

 
Figure 1: 

A magnetic field B0 fixed relative to the fluid 
is applied in Z-direction. The magnetic Reynolds 
number is assumed to be small so that the induced 
magnetic field can be neglected in compression 
with the applied magnetic field. The wall and the 
free- stream are maintained at a constant 
temperature and concentration. The Hall effect 
and the dissipation terms are neglected. The 

effect of mass transfer (suction and injection) has 
been included in the analysis. It is assumed that 
the injected gas possesses the same physical 
properties as the boundary layer gas and has a 
static temperature equal to the wall temperature. 
Both gases are assumed to be perfect gases. The 
boundary layer equations under the foregoing 
assumptions are: 

 
(ru)r + (rw)z = 0 (2.1)

           (2.2) 
uTr + wTz = αTzz   (2.3)

uCr + wCz = DCzz             (2.4) 
where 

0                                   (2.5) 

The boundary conditions are given by 
( 

u(r,0) = 0, w(r,0) = ww, T(r,0) = Tw, C(r,0) = Cw  (2.6) 
u(r,∞) = U, T(r,∞) = T∞, C(r,∞) = C∞. 
Applying the following transformations 

     (2.7) 
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to equations (2.1) to (2.4), we find equations (2.1) is satisfied identically and equations (2.2) to 
(2.4) reduce to self-similar equations given by 

f000 − ff00 + 4(1 − f02) + M(1 − f0) = 0   (2.8)

g00 − Prfg0 = 0 (2.9)

G00 − ScfG0 = 0 
The boundary conditions (2.6) reduce to 

(2.10)

f(0) = fw, f0(0) = 0, f0(∞) = 1 (2.11)

g(0) = 1, g(∞) = 0 (2.12)

G(0) = 1, G(∞) = 0 (2.13)

Here r and z are the distance along and 
perpendicular to the cone; R is the radius of the 
cone (R = rsinφ), φ is the semi-vertical angle of 
the cone; u and w are velocity components along 
r and z direction; ψ and f are the dimensional and 
dimensionless stream functions; P is the static 
pressure; C and T are concentration and 
temperature; g and G are dimensionless 
temperature and concentration; η is similarity 
variables; σ, ϑ and ρ are the density, kinematic 
viscosity and electrical conductivity; B0 is the 
magnetic field; α and D are thermal diffusivity 
and binary diffusion coefficient; U is the inviscid 
flow velocity; m is the strength of the point sink; 
Pr and Sc are prandtl number and Schmidt 
number; M is the magnetic parameter;fw is the 
mass transfer parameter the subscripts r and z 
denote derivative w.r.t. r and z; the subscripts w 
and ∞ denote conditions at the wall and in the 
free stream; and prime denotes derivative with 
respect to η. 
3 Mathematical Analysis 

The asymptotic behaviour of solutions of 
(2.8), (2.11) can be studied in terms of 
topological arguments pertaining to the existence 
and uniqueness of the solutions of (2.8),(2.11) 

expressed in solutions, the form of following 
lemma and theorem. 
3.1 Existence and Uniqueness 
Lemma 3.1. Let p, F be d-dimensional vectors 
and F(η,p) continuous on an open (η,p)- set Ω 
such that the solutions of initial value problems 
associated with 

p0 = f(η,p) (3.1) 
are unique. Let Ω0 be an open subset of Ω with 

the properties that all egress points from Ω0 are 
strict egress points and that the set Ωe of egress 
points is not connected. Let Ωi denote the set of 
ingress points of Ω0 and S a connected subset of 
Ω0 ∪ Ωe ∪ Ωi such that S ∩ (Ω0 ∪ Ωi) contains 
two points (η1,p1), (η2,p2) for which the solutions 
pj(η) of (3.1) through (ηj,pj) for j = 1,2 leave Ω0 

with increasing η at points of different connected 
components of Ωe. Then there exists at least one 
point 
(η0,p0) ∈ S ∩(Ω0 ∪Ωi) such that the solution p0(η) 
of (3.1) determined by p0(η0) = p0 remains in Ω0 

on its (open) right maximal interval of existence. 
Proof. The proof of the Lemma 3.1 is given 
(Hartman [10], p.520). For the definitions of 
egress, ingress and strict egress point let us see 
Hartman ([10], p.37)   

Theorem 3.1. The boundary value problem (2.8), (2.11) has at least one solution f = f(η) on (0,∞) 
such that 

0 < f0 < 1, η ∈ [0,∞). (3.2) 
f00 > 0, η ∈ [0,∞). (3.3) 

Proof. The proof of the theorem is based on Lemma 3.1. To this end, we rewrite the equation (2.10) 
in the system form. If we set p1 = f, p2 = f0, p3 = f00 then we have 
 

 
Let us define 
Ω = {(η,p1,p2,p3) : η,p1,p2,p3 ∈<} and Ω0 = {(η,p1,p2,p3) : η,p1 ∈<, 0 < p2 < 1, p3 > 0} 
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To determine the ingress and egress points, let us introduce the following boundary sets associated 
with Ω0: 

Ω1 = {(η,p1,p2,p3) : η,p1 ∈<, p2 = 0, p3 > 0} 
Ω2 = {(η,p1,p2,p3) : η,p1 ∈<, 0 < p2 < 1, p3 = 0} 

Ω3 = {(η,p1,p2,p3) : η,p1 ∈<, p2 = 1, p3 >0}
Ω4 = {(η,p1,p2,p3) : η,p1 ∈<, p2 = 1, p3 = 0}

Ω5 = {(η,p1,p2,p3) : η,p1 ∈<, p2 = 0, p3 = 0}
Here the set of ingress points is Ωi = Ω1. In fact in Ω1 we have p2 = 0 and  
The set of strict egress points is Ωe = Ω2 ∪ Ω3. This follows from 0 for Ω3 and from

0 for Ω2. 
The set Ω4 is composed of solution p1 = η + C (C is constant); therefore, the points in Ω4 are neither 

egress nor ingress points.Thus Ωe is not connected. 
For points (η,p1,p2,p3) ∈ Ω5 it holds that p2(η0) = p3(η0) = 0 and  
These imply that p3(η),p2(η) < 0 if |η−η0| is small enough. Thus the solution (p1,p2,p3) passing 

through (η0,p0,0,0) is not in Ω0. 
Now, if k is a fixed number satisfying 0 < k < ∞, let us set 

S = {(η,p1,p2,p3) : η = 0,p1 = 0,p2 = 0, p3 = k} 
Clearly, S is connected subset of Ω0 ∪ Ωe ∪ Ωi . 
The point (0,0,0,k1) ∈ S, where k1 is small and positive, is a strict ingress point of Ω0 and the 

solution of (3.4) with p1(0) = p2(0) = 0, p3(0) = k1 leaves Ω0 through the component Ω2 . Indeed, the 
solution of (3.4) with p1(0) = p2(0) = 0, p3(0) = k1 satisfies so that, by continuity of 
initial data, it follows p3(η) < 0, η > 0 if k1 is sufficiently small. 

On the other hand, if k2 > 0 is large enough, i.e. solution of (3.4) satisfying p1(0) = p2(0) = 0 , p3(0) 
= k2 leaves Ω0 through a point in Ω3. 
To verify this, let us note that (η,p1,p2,p3) ∈ Ω implies that p3(η),p2(η) > 0 and 0 ≤ p1(η) ≤ η for some 
η > 0. Let us use it in the third equation of (3.4) and integrate to find 

p3(η) ≥ k2 − (4 + M)η 
Hence if k2 is sufficiently large and the solution of (3.4) through (0,0,0,k2) in Ω0 on [0,η1) for some 

η1 > 0, then p3(η) is greater than a given positive constant on [0,η1) and such a solution leaves 
Ω0 through Ω3. 

From the Lemma 3.1, it follows then that there exists a point (0,0,0,kˆ) in S ∩(Ω0∪Ω1) such that 
the solution (pˆ1,pˆ2,pˆ3) of (3.2) with pˆ1(0) = pˆ2(0) = 0, pˆ3(0) = kˆ, remains in Ω0 on its right maximal 
interval of existence. Because of the structure of Ω0, this is necessarily [0,∞). Finally, we prove that 

lim pˆ3(η) = 0 lim pˆ2(η) = 1. (3.5) η→∞ η→∞ 
The first limit follows immediately by observing that if we suppose, for the purpose of obtaining a 

contradiction, that limη→∞pˆ3(η) = C 6= 0, then we obtain |pˆ2(η)| > 1, which contradicts (η,pˆ1,pˆ2,pˆ3) 
∈ Ω0 for η ∈ (0,∞). 

Analogously, let us suppose if possible, that limη→∞ pˆ2(η) = pˆ2(∞) where 0 < pˆ2(∞) < 1. The 
initial condition pˆ1(η) = 0 and structures of the sets Ω2, Ω3 imply pˆ1(η) and pˆ1(η)pˆ2(η) ≥ 0, η ∈ 
[0,∞). The use of this and the first limit of (3.5) into the third equation of (3.4) gives 

lim pˆ3(η) = lim [pˆ1pˆ3 − 4(1 − pˆ2
2) − M(1 − pˆ2)] η→∞

 η→∞ 
≥−4{(1 − pˆ1

2(∞))}− M){1 − pˆ2
2(∞)}6= 0 

Two integrations lead to limη→∞ pˆ2(η) = ∞. This contradiction completes the proof of (3.5) are true 
showing that the inequalities in (3.2), (3.3) are true. Thus the proof of Theorem 3.1 is completed.   
Theorem 3.2. There is a unique solution of the boundary value problem (2.8), (2.11) such that f0 > 
0. on(0,∞) is satisfied. 
Proof. Let us suppose, for the purpose of obtaining a contradiction, that there are two solutions f1(η) 
and f2(η) of (2.8), (2.11) such that f1(η) > 0, f2(η) > 0 on (0,∞). If f1 6= f2, we assume without loss of 
generality that ) on (0,η0) and ) where 0 < η0 < ∞. Then (2.11) implies that 
f1(η) > f2(η) on [0,η0). 

If we now define r(η) by r(η) = f1(η) − f2(η), we see that 
r(η),r0(η) > 0 (0,η0), r(0) = r(η0) = 0 (3.6) 
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Thus, r0(η) has relative maximum occurring at some point ηM ∈ (0,η0) so that 
r0(ηM) > 0, r00(ηM) = 0, r000(ηM) ≤ 0 (3.7) 

Moreover, since either f1 or f2 is the solutions of (2.8), (2.11) established by Theorem 3.1, hence from 
f00(η) > 0 on (0,∞) and the second equality of (3.7) it follows that 

) (3.8) 
Therefore, from (2.8), we obtain 

r000(ηM) = {f1(ηM)r00(ηM) + [4f1(ηM)} + 4f
2

0(ηM) + M]r0(ηM) +f2
00(ηM)r(ηM) (3.9) 

By using (3.5), (3.6),(3.7) and the fact that 0 into (3.9), we find that RHS is positive 
whereas LHS is non-positive. This contradiction proves the non-existence of ηM and implies that f1(η) 
= f2(η) on (0,∞). Furthermore, the function r0(η) which is positive on (0,η0) cannot attain maximum 
on 0,∞ but ) = 0. This completes the proof Theorem 3.2.   
3.2 Asymptotic Behaviour 
In this section, we shall study the asymptotic behaviour of the solution of (2.8), (2.13) will be 
calculated based on the asymptotic integrations of second order linear differential equations. 

If f = f(η) is the solution of (2.8), let us put 
h(η) = 1 − f0(η) 

Then h(η) satisfies the differential equation 
(3.10)

h00 + fh0 − [M + 4 + 4f0]h = 0 
Differentiating (3.11) gives 

(3.11)

h000 + fh00 − [M + 7f0]h = 0 
In order to eliminate the middle term in (3.11), let us put 

(3.12)

  (3.13) 

to obtain 
x00 − q(η)x = 0 (3.14) 

where 

  (3.15) 

From (3.13) , 

 

 
Since 0 < f0 < 1, f00 > 0 and f0 ∼ 1, f ∼ η as η →∞, there is a constants C0 such that for large η 

 
In addition, R ∞ f00dη is absolutely convergent (since f0 → 1 as η →∞) so that 

  (3.16) 

provided that 
(3.17) 

It is easy to check the validity of (3.15), for an integration by parts (integrating f00 and differentiating 
f00/η5) gives 

 
By (2.8). The last integral is absolutely convergent and liminf f00(η) = 0 as tη →∞. Thus (3.17) holds. 

Consequently, (3.16) holds, and thus (3.14) has a principal solution x(η) satisfying, as η →∞, 
, (3.18) 
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where c1 6= 0 is a constant, while linearly independent solutions 
satisfy 

 

Z η 
x   ∼ c1q−1/2(η)exp( q1/2(s)ds); 
( cf. Exercise XI 9.6 Hartman [10], p.382 ). 

From the last part of (3.13) and f ∼ η, 

(3.19) 

, 

Hence 

, 

where c0 is a constant. Thus (3.18), (3.19) become 

  , 

In view of (3.13), the equation (3.11) has a principal solution satisfying 

, (3.20) 

while the linearly independent solutions satisfy 

, (3.21) 

as η →∞. 
By treating (3.12) as a second order equation for h0 in the same way that (3.11) was handled, it is seen 
that (3.12) has the principal solutions satisfying, 

, (3.22) 

and the linearly independent solutions satisfy 

, (3.23) 

as η →∞. 
If (3.13) satisfies (3.20), then since f ∼ η, it follows that R ∞ hηdη < ∞; thus 

 
as η →∞. 
Substituting this into (3.20), (3.22) gives 

, (3.24) 

as η →∞ where c0 > 0, c2 are the constants. 
Similarly, from (3.21), (3.23) following result 

1 − f0 ∼ c0η8+M, f00 ∼ η−1(1 − f0), (3.25) 
η →∞ 

Similarly (2.9) and (2.12) has the principal solutions 
, (3.26) 

and that the linearly independent solutions satisfy 
, (3.27) 

as η →∞. Finally (2.10) , (2.13) has the principal solutions 
, (3.28) 

while the linearly independent solutions satisfy 

, (3.29) 

as η →∞. 
4 Results 

The study of the asymptotic behaviour pays 
particular attention towards a desired problem for 

finding conditions under which a solution 
approaches zero as the independent variable 
tends to infinity, or is very small for all 
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independent variables, or is bounded as the 
independent variable tends to infinity. The 
asymptotic behaviour of (3.24) and (3.25) can be 
understood from the following Theorem: 
Theorem 4.1. Let f(η) be solution of (2.8),(2.11). 
Then there exists constants c0 > 0, c2 such that 
(3.24), holds as η →∞. 
Proof. For a given f(η), it has to be decided 
whether h = 1 − f0(η) satisfies (3.20), (3.22) or 
(3.21) , (3.23). But (3.21) can not hold as M > 0, 
for otherwise f = 1−f0 → 0 as η →∞ fails to hold. 
Thus (3.20), (3.22) are valid and, as was seen, 
this gives (3.24). So the relations given in(3.24) 
holds as η →∞. 

But the relations given in (3.25) do not hold 
as η →∞. Likewise, it can be seen that the 
principal solution (3.26) holds as η →∞,because 
the constant = 0 has a finite value. On the 
contrary, the linearly independent solutions given 
by (3.27) do not holds as η →∞ whereas (3.29) 
do not. 

As a matter of above facts, it can be 
concluded that the principal solutions given by 
(3.24) , (3.26) and (3.28) exhibit asymptotic 
behaviour, whereas the linearly independent 
solution given by (3.25),(3.27) and (3.29) do not, 
as η →∞.   
5 Concluding Remarks 

The asymptotic integration method to find out 
the solutions of non-linear boundary layer 
equations is the corner-stone of fluid Mechanics. 
This is the method to find the approximate 
solutions of nonlinear, non-homogenous 
boundary layer equations with very high 
accuracy for very large values of the independent 
variables. Thus, the main objective of the method 
here is to provide reasonably accurate expression 
for the solution for large values of independent 
variable. By doing this, we have succeeded in 
understanding the physics of the problem also. 
These solutions can be used to obtain the more 
efficient numerical procedures for computing the 
solution. 

From the expressions it is obvious that the 
principal solutions are convergent in nature, 
whereas the linearly independent (non-principal) 
solutions are divergent. So the principal solutions 
will be o great significance for deciding the 
nature of the velocity and temperature profiles 
even for tremendous large values of the 
independent variable. Thus the principal 
solutions will provide much insight to 
computational methods in understanding the 

physics of the problem and accordingly in 
deciding the correctness of the solutions obtained 
by appropriate software or computer. Also the 
principal and non-principal solutions will satisfy 

0 and

, 

; 
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