

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-11, 2017

DOI: 10.21276/ijcesr.2017.4.11.44
238

MACHINE LEARNING FOR AUTOMATIC MALWARE
SIGNATURE GENERATION AND CLASSIFICATION

1Dr Bhoopathy V, 2Veena Rani, 3J.Sushma
1Professor, 2,3Assistant Professor Department of Computer Science and Engineering,

Malla Reddy College of Engineering, Hyderabad

ABSTRACT:
Malware has always been a problem in

regards to any technological advances in the
software world. Thus, it is to be expected that
smart phones and other mobile devices are
facing the same issues. In this paper, a
practical and effective anomaly based
malware detection framework is proposed
with an emphasis on Android mobile
computing platform. A dataset consisting of
both benign and malicious applications (apps)
were installed on an Android device to
analyze the behavioural patterns. We first
generate the system metrics (feature vector)
from each app by executing it in a controlled
environment. Then, a variety of machine
learning algorithms: Ada Boost, Gradient
Boost, Gaussian Naive Bayes, Random
Forest, and Decision Tree are used to classify
the app as benign or malware. Each
algorithm is assessed using various
performance criteria to identify which ones
are more suitable to detect malicious
software. The results suggest that Random
Forest and Decision Tree provide the best
outcomes thus making them the most
effective techniques for malware detection.

Keywords: Benign, Malicious, Ada Boost,
Gradient Boost, Gaussian Naive Bayes,
Random Forest, Decision Tree

1. INTRODUCTION
Malware is short form of malicious software.

The term “Malware” is commonly used
now-a-days to refer a variety of forms of
intrusive software such as viruses, worms,
spyware, trojan horses etc., The common

function of malware is that they are specifically
designed to damage, disrupt, steal, and some
other illegitimate actions. Malware can infect
any computing machines and the prevention of
the malware have been well studied for personal
computers. As the current generation uses
smartphone more, the chances of malware
intrusion is more compared to previous
generation. Users download files like apk’s from
untrusted third parties which may include many
malware executable files. They get downloaded
along with the users downloaded file and get
executed in the background of our mobile
device. So, our solutions for finding malware in
the mobile platform is less compared to finding
malwares in Personal Computers.

2. LITERATURE SURVEY
2.1 INPUT VALIDATION TECHNIQUES
Input validation based attacks occur due to

lack of inspection or insufficient inspection on
the input provided by the clients. The two most
common input validation based attacks are SQL
injection attacks and Cross site scripting attacks.

2.1.1 SQL Injection Attacks
 SQL Injection Attacks SQL language being a

very rich language, paves the way for a number
of attacks. The first real existence of SQL
injection was explored in 1998 in a magazine
Phrack . In this magazine an article on
implementing attacks using SQL injection was
explained by Rain Forest Puppy (RFP). An
extensive study on the SQL injection attack and
its classification was provided by Halfondetal.,.
This work classified SQL injection attack based
on the type of user input, namely Injection
through cookies, injection through server

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-11, 2017

DOI: 10.21276/ijcesr.2017.4.11.44
239

variables and second order injections. The attack
was also categorized based on the goal of the
attacker, namely identifying injectable
parameters, performing database finger-printing,
determining database schema, extracting data,
adding or modifying data, performing denial of
service, evading detection, bypassing
authentication, executing remote commands,
performing privilege escalation.

Dynamic Analysis Dynamic analysis is done
during runtime of a web application. The input
given by the user is extracted and is combined
with the code of the application to check if there
is an intended attack. Dynamic analysis unearths
most of the real time attacks at the cost of
response time, and thereby affecting the
performance of the server. Gregory et
al.,andZhendongsu et al., implemented systems
that checked queries at runtime to see if they
conform to a model of expected queries. Taint
based approaches like the Security gateway,
implemented by David Scott et al., is a proxy
filtering system that enforces input validation
rules on the data flowing to a web application to
detect and prevent SQLIA and XSS Attacks.
KonstantinosKemalis et al., developed a
prototype SQL injection detection system
(SQL-IDS). This system monitored Java-based
applications and detected SQL injection attacks
in real time. The proposed detection technique
was based on the assumption that injected SQL
commands had differences in their structure with
regard to the expected SQL commands that were
built by the scripts of the web application.

2.1.2Cross-Site Scripting Attacks
Certain works provide client side solutions for

CrossSite Scripting attacks where a change in
the browser code or a fire wall set up is
recommended. The disadvantages of these
works are that client/user involvement is needed
and the clients need to have technical knowledge
for implementing these solutions. Peter et al.,
implemented a system named Secure Web
Application protocol (SWAP), that uses proxy
layer and provides a server-side solution to
detect and prevent XSS attack. It also uses a
modified browser that detects script content that
is included by the user. Noxes is a client side
solution for XSS attacks. It creates a personal
firewall on the client side and checks every

outgoing request and incoming response. It uses
both manual and automatically generated rules
to prevent XSS attacks on the client side.

2.2 VULNERABILITY DETECTION IN

SMARTPHONE APPLICATIONS
Recent researches carried out in the field of

Smartphone security have concentrated mostly
on Android operating system (OS). The security
issues in Android are a concern owing to the fact
that it is open source and developing of android
application is very easy. Adrienne Porter felt et
al., surveyed and classified mobile malwares
based on their behavior. Some of the commonly
noted behaviors were, collecting user
information, sending premium-rate Short
messaging Service (SMS), malware written for
amusement, for credential theft, search engine
fraud and ransom. Different defensive
mechanisms that were available against these
malwares were discussed and evaluated. Threats
have been classified as physical threats,
application-based threats, network-based
threats, web-based threats, and mobile
vulnerabilities by Jalaluddin Khan et al.,. They
presented a survey on already existing privacy
threats and defensive mechanisms. Biometric
authentication was suggested as a defensive
mechanism for these attacks.
AlexiosMylonasetal.,classified users based on
their trust and awareness on web applications.
They provided a database guideline for trusted
repository, license and agreement, poor security
checks, pirated applications and the users’
perception. Another type of attack called the
android scraping was reported by Ken Munro et
al.,. Android scraping is the unauthorized
extraction of information from Smartphones.
Various methods for scraping data were
discussed, namely

2.2.1 Behavioral Analysis
Jacob et al., conducted a survey of different

reasoning techniques used by behavioral
detectors. They classified these detectors into
main families, namely stimulation based
detectors and formal detectors depending on
their data collection and data interpretation
mechanisms. Timothy K. Buennemeyer et al., in
their work introduced capabilities developed for

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-11, 2017

DOI: 10.21276/ijcesr.2017.4.11.44
240

Battery-Sensing Intrusion protection system
(BSIPS) that raised an alert when an abnormal
current change occurred. They developed a
Correlation Intrusion Detection Engine (CIDE)
that provides power profiling for mobile devices
and a correlated view of B-SIPS and Snort alerts.
The B-SIPS client was designed with
customizable features to accommodate varying
user skill levels. Users with advanced computer
skills could configure the application to provide
more refined detection and alert information.
The basic users could effectively operate the
system with default settings.

2.2.2 Signature Based Analysis
Griffin et al., used signature-based method that

depended on the identifying unique signatures
that defined the malware. This work used string
signatures, each of which was a contiguous byte
sequence that potentially could match many
variants of a malware family. A similar work had
been proposed by Yu Feng et al.,. A system
named Apposcopy, which used a
semantics-based approach to identify a prevalent
class of Android malware that stole private
information, was developed. It used a high level
language for specifying signatures of malware
families and performed static analysis to decide
if an application was benign or malicious.
G.Suarez-Tangil et al., introduced a system
called dendroid based on text mining and
information retrieval. This system automatically
classified malicious applications as families
based on common code structure. For 31 family
classification this system used vector space
model. This also provided relationship among
families and their evolution from common
ancestors. If an unknown application was
installed, the system would automatically
identify its family and assign this application to
that family. The limitation of these systems was
that it can be applied only to known malicious
code.

III.SYSTEM ANALYSIS
A. Existing System
In this existing system, But the main point is

now days malware writers have techniques such
as polymorphism which can fool these
pattern-based methods very easily. But there is a

different approach that can try that is malware
detection behaviour-based techniques. This
approach is very different than pattern based as
here check behaviour and collect its information
by executing it and that information we will use
inorder to detect malware or not. In general,
most of the time we can observe that new
malware’s that arise on a regular basis are just a
little changed version of older malware using
some clever techniques. So, this should be clear
by now that techniques based on behaviour of
malware are a great choice in order classify or
detect malware.

Limitations
• Efficiency levels are very low

B. Proposed System
For each newly collected unknown Android

app, it will be first parsed through the unzipper
and decompiles to get the smali codes, then its
API calls will be extracted from the smali codes,
and the relationships among these API calls will
be further analysed. Based on the extracted
features and using the constructed classification
model, this app will be labelled as either benign
or malicious. Classification is the only technique
used to categorize the given app as malicious or
the genuine one.

Advantages
• Efficiency levels are high
C. Hardware Requirements
• System :Windows
• HardDisk : 120 GB.
• Monitor : 15’’ LED
• Input Devices : Keyboard, Mouse
• Ram : 4GB
D. Software Requirements
• Python
• Included development tools: Jupyter

Notebook, Spyder etc.,
• Compatible tools: PyCharm
E. Architecture

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-11, 2017

DOI: 10.21276/ijcesr.2017.4.11.44
241

Fig. 1: Architecture
IV. MODULES AND DESCRIPTION
A. Modules
1. Mobile Agent
• Resource Monitoring Component
2. Analysis Server
B. Modules Description
1. Mobile Agent
Mobile Agent is the Module which is used to

send the data about the app when the features of
it are extracted, to the Analysis Server. In this
Module, the normal app and the malicious app
are given as input. After the input is given to it,
the feature extractor does the process of
extraction of feature by sending the app for
execution where it is checked for the libraries
and other framework in the Linux kernel. The
data is sent to the “Resource Monitoring
System”.

Resource Monitoring System:
The extracted features are sent to this Module.

This module consists of Network Collector,
Memory Collector, Battery Collector, CPU
Collector. The malicious file may effect one of
the above resources. Therefore, the features
which effect those, are extracted and sent to the
Data Management Module. Further, the data is
vectorized and the vectorized data is sent to the
Analysis Server.

2. Analysis Server
In this Module, the vectorized data, collected

from the Mobile Agent, is received. The
Vectorized data may be of either Malicious App
data or Genuine App Data. The machine gets
trained with the dataset given in prior by the
admin. After the training phase of machine, the
data from the above module is entered into the
testing phase where the Classification
Algorithms are applied. Those Algorithms

categorize the benign and malicious data. Finally
the Prediction is shown, which algorithm shows
more accuracy in-terms of Classification.

V. IMPLEMENTATION
1. Data Collection
In this we have used a dataset which is

obtained from the *******. It contains all the
features for an app being malicious to predict
whether the given app is benign or not. All the
features represent the app as malicious or benign
based on many values present in the dataset.
There are many datasets present in Kaggle,
Github and other repositories which are used not
only Malware classification but also in Genre
Classification etc., As we wanted to use for
Malware and Benign Classification, this dataset
is very helpful and shows high accuracy in
finding or in prediction of Malware.

2. Data Description
Our dataset contains many features which are

used to categorize the malware and benign apps.
There are a total of 54 features which help in
classification of them. But the main features
which our project extracted for the Classification
is 13. Some of the features are:
Subsystem, Dll Characteristics, Size of Optional
Header, Resources Max Entropy, Sections Max
Entropy, Major Subsystem version, Size of
Stack Reserve, Major Operating SystemVersion
etc.,

Outputs are represented in the form of

percentages of accuracy values of each
Classification Algorithm. The final accuracy
shows how best the Algorithm is interms of
prediction.

VI. FUTURE ENHANCEMENT
As we know the same malware doesn’t

continue to be long time. New forms malware
and its intrusion is possible in the days ahead.
So, we would like to modify the following in our
project.

• Increase the size of the training set.
• To use Algorithms which gives more

accuracy if any new kind of malware evolves.
• Implement unique techniques to control the

malware.

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-11, 2017

DOI: 10.21276/ijcesr.2017.4.11.44
242

VII.CONCLUSION
We can predict that it is possible to reduce the

number of malware by being analysed for mobile
malware detection, while maintaining high
effectiveness and accuracy. This technique has
been designed to extract not only significant
permission detection analysis, but also many
other modes for creation of malware through a
systematic approach.

REFERNCES
[1] IDC, “Smartphone os market share, 2017

q1.” [Online]. Available:
https://www.idc.com/promo/smartphone-market
-share/os

[2] Statista, “Cumulative number of apps
downloaded from the google play as of may
2016.” [Online]. Available:
https://www.statista.com/
statistics/281106/number-of-android-app-downl
oads-from-google-play/

[3] G. Kelly, “Report: 97% of mobile malware
is on android. this is the easy way you stay safe,”
in Forbes Tech, 2014

[4] G. DATA, “8,400 new android malware
samples every day.” [Online].
Available:https://www.gdatasoftware.com/blog/
2017/
04/29712-8-400-new-android-malware-samples
-every-day

 [5] Symantec, “Latest intelligence for march
2016,” in Symantec Official Blog, 2016.

[6] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and
X. Jiang, “Riskranker: scalable and accurate
zero-day android malware detection,” in
Proceedings of the 10th international conference
on Mobile systems, applications, and services.
ACM, 2012, pp. 281–294.

[7] A. P. Felt, E. Chin, S. Hanna, D. Song, and
D. Wagner, “Android permissions demystified,”
in Proceedings of the 18th ACM conference on
Computer and communications security. ACM,
2011, pp. 627–638.

[8] W. Enck, P. Gilbert, S. Han, V. Tendulkar,
B.-G. Chun, L. P. Cox, J. Jung, P. McDaniel, and
A. N. Sheth, “Taintdroid: an informationflow
tracking system for realtime privacy monitoring
on smartphones,” ACM Transactions on
Computer Systems (TOCS), vol. 32, no. 2, p. 5,

2014.
[9] D. Arp, M. Spreitzenbarth, M. Hubner, H.

Gascon, K. Rieck, and ¨ C. Siemens, “Drebin:
Effective and explainable detection of android
malware in your pocket,” in Proceedings of the
Annual Symposium on Network and Distributed
System Security (NDSS), 2014.

 [10] C. Yang, Z. Xu, G. Gu, V. Yegneswaran,
and P. Porras, “Droidminer: Automated mining
and characterization of fine-grained malicious
behaviors in android applications,” in European
Symposium on Research in Computer Security.
Springer, 2014, pp. 163–182.

 [11] M. Lindorfer, M. Neugschwandtner, L.
Weichselbaum, Y. Fratantonio, V. Van Der
Veen, and C. Platzer, “Andrubis–1,000,000 apps
later: A view on current android malware
behaviors,” in Building Analysis Datasets and
Gathering Experience Returns for Security
(BADGERS), 2014 Third International
Workshop on. IEEE, 2014, pp. 3–17.

