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Abstract—The scalability of systems 
such as Hive and Spark SQL that are 
built on top of big data platforms have 
enabled query processing over very 
large data sets. However, the per- 
node performance of these systems is 
typically low compared to traditional 
relational databases. Conversely, 
Massively Parallel Processing (MPP) 
databases do not scale as well as these 
systems. We present HRDBMS, a fully 
implemented distributed shared- 
nothing relational database developed 
with the goal of improv- ing the 
scalability of OLAP queries. 
HRDBMS achieves high scalability 
through a principled combination of 
techniques from relational and big 
data systems with novel 
communication and work-distribution 
techniques. While we also support 
serializable transactions, the system 
has not been optimized for this use 
case. HRDBMS runs on a custom 
distributed and asynchronous 
execution engine that was built from 
the ground up to support highly 
parallelized operator 
implementations. Our experimental 
comparison with Hive, Spark SQL, 
and Greenplum confirms that 
HRDBMS’s scalability is on par with 
Hive and Spark SQL (up to 96 nodes) 
while its per-node performance can 
compete with MPP databases like 
Greenplum. 

Index Terms—SQL, big data, 
distributed query processing 

 

I. INTRODUCTION 
The increasing scale of data to be 
processed for analytics has brought 
traditional DBMS that scale only to a 
few nodes to their limits. Massively 
Parallel Processing (MPP) databases 
provide better scale out by parallelizing 
query processing across processors and 
nodes using a shared-nothing architec- 
ture. Systems like Greenplum [5], 
Teradata [3], and Netezza feature 
parallel execution engines that are 
specialized for processing relational 
queries. Recently, a new class of SQL 
engines has been built on top of Big 
Data [42] platforms such as MapReduce 
[18] and Spark [11], [49]. This class of 
systems include Hive [44], Spark SQL 
[47], Dremel [32], and many others. Big 
Data platforms utilize distributed file 
systems like HDFS for storage and 
resource managers like YARN [45] to 
schedule execution of tasks on a cluster. 
SQL engines built on top of Big Data 
platforms rely on the fault tolerance and 
load balancing techniques of these 
platforms for scalability. While these 
approaches provide better scale out 
(deployments on 1000s of nodes are not 
uncommon), their performance per-node 
is limited by the programming, storage, 
and execution model of the underlying 
platform. Both types of systems have in 
common that they optimize for OLAP, 
i.e., complex, mostly read-only, queries. 
Figure 2 
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Fig. 1: Anatomy of a HRDBMS cluster 

 

compares systems in terms of scalability 
(scale-out) and per- node performance. 
Databases without intra-query 
parallelism (e.g., Postgres) do not scale 
to large clusters and also have limited 
per-node performance for complex 
queries, because they do not exploit the 
available parallelism on a single 
machine. MPP databases provide better 
per-node performance and better 
scalability. Big Data platforms provide 
scalability at the cost of per-node 
performance. 

The goal of building HRDBMS (highly-
scalable relational DBMS), the system 
we present in this work, is to build a 
DBMS with a per-node performance 
comparable to MPP databases as well as 
scalability comparable with Big Data 
platforms. Based on an analysis of 
scalability bottlenecks in MPP databases 
and Big Data platforms, we propose and 
implement novel techniques to address 

these bottlenecks. In the following we 
discuss the design of our system and the 
techniques we have developed for 
achieving scalability without sacrificing 
performance. An overview of our design 
decisions is shown in Figure 3. We 
indicate in parentheses after a feature 
whether it is typical for relational 
databases, typical for Big Data 
platforms, or is novel. 

A. System Overview 

Cluster Organization. As shown in 
Figure 1, an HRDBMS cluster consists 
of coordinator and worker nodes. 
Coordinators store metadata, handle 
communication with clients, and are 
responsible for query optimization, 
transaction coordinationand cluster-wide 
resource management. HRDBMS 
provides serializability using 2PL [9] 
and 2PC [35], a protocol that is 
implemented by many modern 
distributed databases such as Spanner 
[15]. Workers store data and execute 
queries. Systems such as Hadoop use a 
single node for handling client requests 
and storing metadata. These systems 
allow for additional stand-by masters 
which do not process requests. 
HRDBMS replicates metadata and 
statistics across all coordinators in a 
cluster, but allows multiple coordinators 
to process requests in parallel. Queries 
are executed across the workers using 
HRDBMS’s custom execution platform. 
Query results are always routed to a 
client through the coordinator that 
planned the query. 
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Communication. A challenge faced by 
any distributed database system is that 
operations like shuffling require one node 
to communicate with a large number of 
nodes in the cluster. This is one of the 
primary scalability bottlenecks in MPP 
systems. The shuffle implementation of 
most Big Data platforms is designed to 
scale. However, scalability comes at the 
cost of performance since shuffle 
operations in these systems are blocking 
and most implementations persist data to 
local or distributed file systems. We 
develop new communica- tion primitives 
that enforce scalable communication 
topologies for all communication in the 
system including query execution and 
transaction processing. Our approach 
enforces a hard limit Nmax on the 
number of neighbors a node has to 
communicate with. Specifically, we 
propose two communication topologies - 
the tree topology for hierarchical 
communication (e.g., commit processing 
[35]) as well as a n-to-m topology for all-
to-all communication (e.g., a shuffle). 
Our tree topology is similar to how 
systems like Dremel [32] implement 
hierarchical aggregation. To the best of 
our knowledge we are the first to 
generalize this idea to n-to-m 
communication. As a general rule, all 
operations involving communication in 
HRDBMS are non-blocking and do not 
spill to disk. 

Storage and Locality. HRDBMS 
supports both row and columnar tables. 
Data is stored on the local disks of 
worker nodes using a page-oriented 
layout. Similar to MPP databases, tables 
are partitioned across nodes and disks 
based on a partitioning strategy that is 
selected at table creation time. Having 
full control over storage location enables 
our optimizer and execution engine to 
enforce data locality which is critical for 
performance and scalability. Page-
oriented storage and support for disk 
resident index structures enables us to 
feasibly support DML operations and 
transactions. Data is cached in memory 

using a parallel buffer manager. We 
introduce predicate-based data skipping 
as a lightweight method for skipping 
pages during scan operations based on 
the results of previous scans. This 
method generalizes static schemes like 
small materialized aggregates [33], and 
could be retrofitted into existing 
database systems. We do not use a 
distributed file system such as HDFS for 
storage, because these file systems are 
typically append- only and their 
read/write throughput is less than native 
file operations. In addition to better 
read/write performance, we also gain full 
control over data locality by managing 
local storage directly. One advantage of 
Big Data platforms is that they can 
process queries over data from various 
sources without requiring the data to be 
ingested into the system. To combine the 
best of both worlds we have 
implemented an external table 
framework that allows HRDBMS to 
access a variety of external data sources, 
including HDFS. 

Execution Engine. A major contributor 
to the poor per- formance of Hive and 
other Hadoop-based approaches is 
excessive materialization. Even systems 
such as Spark SQL still materialize data 
during shuffle operations per default. 
Similar to MPP systems we only 
materialize intermediate results to disk 
when necessary to save memory. 
Operator implementations in HRDBMS 
are inherently parallel. Similar to both 
Big Data platforms and MPP databases 
we spawn one scan thread for each 
fragment of a table, but the parallelism 
of other operators is controlled 
separately. HRDBMS features a cost-
based query optimizer that uses statistics 
for cost estimation. 

Fault Tolerance. Fault tolerance in 
HRDBMS is currently limited to Aries-
style recovery [34] based on write-ahead 
logs maintained on each node. Metadata 
is replicated across all coordinators and 
kept in-sync using the 2PC protocol 
[35]. 
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Resource management.   Systems   like   
YARN   [45]   andMesos [21] are 
frequently used to manage the resources 
in a cluster, e.g., to let multiple 
applications share the same cluster. We 
deliberately chose to let HRDBMS 
manage its own resources, because 
HRDBMS tasks dynamically resize their 
resource allocations based on their 
current requirements and availability of 
resources. Resource management in 
HRDBMS operates on three levels. At 
the cluster level, our query optimizer 
balances load and communication across 
workers. Workers monitor the resource 
usage on the machine they are running 
on and reduce the degree of parallelism 
for query operators if resources are 
scarce. Finally, operators can spill data 
to disk if necessary to limit memory 
consumption. This decentralization of 
resource management for lower level 
tasks is critical for scalability, because it 
avoids overloading coordinators with 
decisions that can be better made locally. 

B. Contributions 

Our key contributions are two-fold: (i) 
we demonstrate how a principled 
combination of traditional query 
processing techniques with ideas from 
distributed dataflow engines can 
improve performance and scalability 
leading to a system that is more than the 
sum of its components. However, to 
fully achieve our goal we had to (ii) 
develop novel tech- niques that 
overcome the remaining performance 
and scal- ability bottlenecks. We 
implement these ideas as a system called 
HRDBMS, a fully functional shared-
nothing distributed DBMS. HRDBMS’s 
open source codebase (https:// 
github.com/IITDBGroup/HRDBMS) 
currently consists of about 170,000 lines 
of Java code. 

Analysis of Bottlenecks and Principled 
System Design. We identify and address 
performance bottlenecks including non- 
scalable communication, blocking 
shuffle operations, and data locality not 

being exploited. By choosing and 
picking the most effective and scalable 
techniques from MPP databases and big 
data platforms, we can overcome many 
of these bottlenecks. This results in a 
new hybrid design which has both 
characteristics from distributed relational 
databases such as Greenplum as well as 
big data platforms such as Spark as 
discussed in Section I-A. 

Novel Techniques. The principled 
combination of previous ideas however 
is not sufficient for achieving our goal. 
We additionally make the following 
technical contributions that improve the 
state-of-the-art in distributed query 
processing in several regards. 

• Scalable communication patterns 
for all operations: Approaches like 
Dremel [32] reduce the number of neigh- 
bors a node has to communicate with for 
hierarchical op- erations such as 
aggregation. However, to the best of our 
knowledge, we are the first to enforce 
this for operations with n-to-m 
communication patterns such as a 
shuffle. For that we apply a variation of 
the binomial graph topology [4] to be 
able to enforce a constant limit on the 
number of neighbors a node has to 
directly communicate with. Since shuffle 
is a prevalent operation in distributed 
query processing (e.g., it is used to 
implement distributed 

 

versions of group-by aggregation and 
join), this translates into a significant 
improvement in scalability (e.g., see the 
discussion of our experimental results 
for TPC-H query 19 in Section VII). 

• Predicate-based Data Skipping: 
Data skipping based on small 
materialized aggregates [33] stores for 
each page of a table the minimal and 
maximal values for each of the table’s 
attributes. This information is used 
during query processing to skip a page if 
based on the minimal and maximal 
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attributes values of records stored on this 
page, none of the records can fulfill the 
selection conditions of the query. We 
generalize this idea by caching at 
runtime which pages contain rows 
matching a query’s predicate and then 
use this information to skip reading 
pages for future queries with the same or 
similar predicates. Since many 
workloads follow the 80-20 rule, i.e., 
80% of the queries only access 20% of 
data, it is quite effective to cache query-
specific information about relevant data. 

Experimental Evaluation. We 
experimentally evaluate our system on a 
96 node cluster comparing against Hive, 
Spark SQL, and Greenplum. Our results 
demonstrate that HRDBMS provides 
per-node performance competitive with 
Greenplum and exhibits scalability 
comparable with Hive and Spark SQL. 
Furthermore, HRDBMS performs well if 
data is significantly larger than the 
available main memory. 

The remainder of this paper is organized 
as follows. We discuss related work in 
Section II. Section III discusses the 
system’s storage engine and indexing 
capabilities. We intro- duce our 
distributed execution engine in Section 
IV. Section V covers HRDBMS’s cost-
based optimizer. Section VI covers 
concurrency control and recovery. We 
present experimental results in Section 
VII and conclude in Section VIII. 

II. RELATED WORK 

HRDBMS builds upon the long history 
of relational query processing as well as 
on ideas from big data platforms. We did 
present a preliminary version of the 
system in [7], [8]. 

MPP Databases. MPP databases such 
Greenplum, Netezza, and Teradata 
distribute pipelined query processing 
across nodes using a shared-nothing 
architecture. MPP databases utilize local 
disks on worker nodes for page-oriented 
record storage and replication for fail-

over. A single master node handles 
communication with clients and query 
optimization. In general these systems 
are high-performance, but are not 
designed to scale to large clusters. 
Several approaches pair MPP processing 
with HDFS storage (e.g., HAWQ [13]). 

SQL on Big Data Platforms. Hive [44] is 
an SQL engine built on top of Hadoop. 
While inheriting the scalability of its 
host platform, the per-node performance 
of Hive is severely restricted by the 
excessive materialization of MapReduce 
and lack of support for exploiting data 
locality. Since MapReduce is largely 
I/O-bound, compressed file formats like 
ORC and Parquet can significantly 
improve performance [19]. While these 
techniques address some of the 
bottlenecks of MapRe- duce, others, 
such as limitations of the MapReduce 
shufflemodel, are inherent to the 
platform itself. Tez [39] improves 
MapReduce by allowing multiple 
mappers and reducers to be chained 
together without writing temporary data 
to HDFS and by reconfiguring dataflows 
at runtime. Impala [25] deploys daemons 
on HDFS data nodes which access the 
data stored locally on a node to ensure 
data locality and eliminate most of the 
overhead of HDFS. Spark SQL [6] is an 
SQL engine that is part of Spark. The 
system features an extensible optimizer. 
Even though most materialization is 
eliminated by using Spark, shuffle 
operations still write data to disk by de- 
fault. Furthermore, the system has high 
memory requirements. Dremel [32] is 
designed for aggregation-heavy analytics 
across large clusters. The system 
performs well for aggregation queries 
with small result sets because of its 
serving-tree architecture. HRDBMS 
applies a generalization of this idea by 
dynamically organizing nodes in a 
suitable topology to compute 
aggregation, sort, and shuffle operations. 
Apache Flink [10], [20] is a streaming 
dataflow engine. Operators execute in 
parallel and slower operators can 
backpressure upstream operators to 
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prevent unlimited growth of streams. 

SQL on Key-value Stores. Recently, 
several SQL front- ends for NoSQL 
databases (key-value stores) such as 
Cassan- dra [26] and ZHT [29], [30] 
have been introduced. NoSQL databases 
are typically designed for high-
throughput CRUD operations and cannot 
efficiently process batch operations [38] 
which is required for OLAP workloads. 
However, there are key-value stores such 
as BigTable [12] that are better suited as 
storage backends for relational engines. 
Spanner [15] is a database based on 
BigTable with support for strongly 
consis- tency. In Spanner, data is co-
located within the key-value store 
backend based on a hierarchical nesting 
of tables. However, not all workloads 
can benefit from hierarchical co-
location. NewSQL. Another class of 
systems target scalable processing of 
OLTP workloads. These include 
Spanner [15], VoltDB [43] (which is a 
commercialization of the H-store [23] 
research prototype), FoundationsDB, 
Amazon Aurora, and many more. To 
scale-out, these systems horizontally 
partition tables across several nodes. 
Transactions that only access data stored 
on one node are handled locally while 
transactions involving multiple nodes 
use a distributed commit protocol such 
as 2PC [35] or a consensus protocol like 
Paxos [27] or Raft [37]. For example, 
Spanner [15] applies Paxos to ensure 
consistency among multiple replicas of a 
table fragment and 2PC to coordinate 
transactions that access more than one 
fragment. While transaction processing 
is not our main focus, HRDBMS 
nonetheless supports serializable 
transactions relying on a hierarchical 
version of the 2PC protocol. However, 
the per- formance of our current 
implementation is relatively poor. 

III. STORAGE 

HRDBMS stores data on the local 
filesystems of worker nodes. Tables may 
be hash- or range-partitioned, or dupli- 

cated across nodes. Within each node an 
additional level of partitioning is applied 
to spread data across the node’s disks. 
The partitioning strategy for a table is 
selected by the user at table creation 
time. The coordinator nodes track how 
table 

 

data is distributed across workers and 
use this information to enforce that data 
is always read on the worker node(s) 
where it resides. This is in contrast to 
systems such as Hive or Spark SQL 
where locality can only be stated as a 
preference. 

Block Storage. All index and table data 
in HRDBMS is stored in pages of 
configurable size (up to 64MB). Pages 
are compressed using LZ4 [14] (fast 
decompression). 

Row and Column Storage. HRDBMS 
supports both row and columnar tables. 
The row-oriented table implementation 
is standard: each page contains a header 
with information about the rows stored 
on that page and their schema; the rest of 
the page contains data. Each row is 
assigned a physical row ID (RID) that 
consists of identifiers for the node, disk, 
and page on which the row resides plus a 
slot number identifying the row’s 
position within the page. The user can 
specify that a table should be clustered 
on a list of attributes. Data is sorted 
during loading to enforce the clustering. 
DML operations do not respect the 
clustering. However, HRDBMS 
provides support for reorganizing tables 
to restore clustering. 

Columnar tables are implemented as a 
row/columnar hybrid, similar to PAX 
[2]. All columns of a table are stored in a 
single file as a sequence of page sets. A 
page set for a table with n columns 
consists of n pages, each storing values 
of one column. Each page in a page set 
stores the same number of values which 
simplifies reconstruction of rows. A 
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na¨ıve implementation of the page-set 
approach would underutilize pages since 
the column with the largest values 
determines the number of rows that can 
be stored in a page set. We address this 
problem by 1) using Huffman encoding 
[22] of strings and LZ4 page 
compression and 2) using a Linux sparse 
file, i.e., free space on pages will 
(almost) not occupy any space on disk. 
The Linux sparse file approach allows us 
to directly access a certain page in a file 
without knowing the offsets of 
compressed pages within the file. 

Buffer Manager. All access to data and 
index pages in HRDBMS is handled by 
a node’s buffer manager. The buffer 
manager has the ability to dynamically 
grow and shrink the buffer pool as 
needed. The buffer pool of a node is 
partitioned into stripes - each managed 
by a stripe manager (separate thread). 
The assignment of pages to stripes is 
determined by a hash of the page  
number. The parallel nature of the buffer 
manager is hidden from its clients 
through a lightweight wrapper that 
forwards requests to the stripe managers. 
We use a variant of the standard clock 
algorithm for page eviction. Our 
implementation differs from the standard 
clock algorithm in that table scans 
periodically pre-declare the pages they 
will request in the near future and these 
pages will be prioritized by the clock 
algorithm. This approach is particularly 
effective if a large percentage of buffer 
operations stems from concurrent table 
scan operations as is common for OLAP 
workloads. 

Predicate-based Data Skipping. During a 
table scan, HRDBMS keeps track of 
which pages do not contain any rows 
matching a predicate and records this 
information in a predicate cache 
associated with each individual page. 
This is 

maintained as a mapping cache : P  → 
{θi} from a page P  toa  set  of  
predicates  θi.  Subsequent  table  scan  

operations  with a predicate θ can then 
skip each page P with θ cache(P ). 
Furthermore, if a predicate θ logically 
implies one of the cached  predicates  for  
a  page  P ,  say  predicate  θi,  then  it  is 
guaranteed that page P cannot contain 
any rows matching the predicate and, 
thus, can safely be skipped. Inserts in 
HRDBMSare append-only and updates 
are not executed in place. Thus, 

as long as a page or page set is full, any 
information we cache about it will be 
valid until the table is reorganized. 
Based on our experience with 
HRDBMS, a 10TB database with 1000 
previously executed queries running on 
10 nodes would contain about 250MB of 
predicate cache data per node. Predicate 
caches are periodically persisted to disk 
and loaded during database restarts. 
Many databases implement a concept 
known as min-max indexes where the 
database tracks the minimum and 
maximum value of a column on each 
page [33]. Our method is a 
generalization of min-max indexes. 

Index Structures. HRDBMS supports 
B+-trees and disk- resident skip lists. 
Skip lists are fairly common in main- 
memory databases (e.g., [17]) because 
they can support non- blocking 
concurrent access. We map skip lists to 
disk as an append-only page file. Any 
new node inserted into a skip list is 
inserted to the current page and deletes 
are logical. In spite of its simplicity, this 
results in reasonable I/O performance for 
traversing the index if data is mostly 
inserted in batches. 

External Data Sources. HRDBMS 
features an extensible external table 
framework which supports distributed 
access to external data sources. A user-
defined external table type (UET) for a 
distributed data source can expose the 
horizontal partitioning of data to 
HRDBMS and the system will distribute 
scans of fragments of such a table across 
worker nodes. As a proof-of-concept we 
have implemented an external table type 



 
INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR) 

 
ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-1, 2017 

DOI: 10.21276/ijcesr.2017.4.1.8 
63 

for reading CSV data from HDFS. 

 

IV. EXECUTION    ENGINE 

HRDBMS features a distributed 
dataflow engine with built- in support 
for relational operators. Our engine is 
inherently asynchronous and pipelines 
operations within and across nodes and 
processors. Per default, once data is read 
from disk, all operations execute in main 
memory, spilling to disk only where 
necessary. The engine enforces data 
locality - all table and intermediate data 
is accessed locally on the node where it 
resides. Importantly, HRDBMS’s 
optimizer can place any operator on any 
worker node. 

Pipelined Execution. Pipelining is a 
standard practice that avoids 
unnecessary materialization of 
intermediate results. Operators that need 
to consume their whole input before 
producing a result are called blocking. 
HRDBMS tries to avoid blocking 
operators, e.g., by choosing a non-
blocking implementation of an operator 
or by splitting an operator into two 
phases where only one of the phases is 
blocking. 

Enforcing Scalable Communication. A 
critical scalability bottleneck of many 
distributed SQL engines is that 
operations such as shuffle may require 
nodes to communicate with (n) 
neighbors where n is the number of 
nodes in the cluster. 

For large cluster sizes, the amount of 
resources occupied by opening and 
monitoring such a large number of 
sockets may already be a performance 
bottleneck. We support two strategies for 

enforcing a limit Nmax on the number of 
network connections per node which we 
refer to as tree- topology and n-to-m-
topology, respectively. 

We distribute hierarchical computations 
using a tree topol- ogy with a maximal 
fan-out of Nmax 1 (see Figure 4(a)). An 
example of a hierarchical operator is a 
distributed merge sort, where each 
merge phase can be processed by a 
separate level in such a tree. Note that 
this topology is similar to what has been 
referred to as a serve-tree in [32]. In this 
topology every node is only 
communicating with its parent and 
children. In addition to limiting the 
amount of network connections, the tree-
topology also results in more evenly 
balanced load. 

The second strategy is applied for 
operations that require n-to-m 
communication, e.g., a shuffle. To 
enforce the Nmax limit, we use some 
nodes as intermediate communication 
hubs which forward data from senders to 
receivers. Our approach is based on the 
binomial graph topology [4]. In this 
topology, nodes are organized in a ring. 
Particularly, a node has links to nodes if 
the distance (on the ring) between the 
source and the destination is a power of 
2, e.g., 0, 1, 2, 4, and so on. This 
topology has logarithmic diameter and 
node degrees. We determine the base of 
the powers based on the number of 
nodes n and Nmax. The appropriate base 
b is computed as b = n Nmax . Figure 
4(a) shows such a topology. 

Non-blocking, Hierarchical Shuffle. A 
shuffle operation hash-partitions data 
across nodes. In Hadoop, reducers 
expect their input to be sorted by key. 
Hadoop’s shuffle is a blocking operation 
because of this sorting step. Since many 
relational operator implementations such 
as a partition hash join can be performed 
on unsorted data, it is beneficial to make 
the sort optional. HRDBMS implements 
this idea as a non-blocking shuffle 
operation that avoids writing data to 
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disk. A potential drawback of a non-
blocking shuffle is the large number of 
concurrent network connections that are 
required - each node has a connection to 
each other node involved in the shuffle. 
We use our n-to-m topology to address 
this drawback and refer to the resulting 
operation as a hierarchical shuffle. 

Operator Implementations. HRDBMS 
implements hash- based aggregation, 
optionally using a shuffle to assign a 
subset of the groups to each worker. 
Alternatively, each nodes pre- 
aggregates data available locally akin to 
a combiner in MapRe- duce. If pre-
aggregation is used, then we use our tree 
topology where each node further 
aggregates the pre-aggregated results 

 
Fig. 5: Initial plan for the query from 
Example 1 

 

received from its children. The same 
concept applies to sorting. We use a 
distributed implementation of an n-way 
merge sort based on the tree topology. 
Leaf nodes create sorted runs. Non- leaf 
nodes merge runs into larger runs. 
HRDBMS uses hash joins as long as at 
least one conjunct in the join condition is 
an equality comparison. Our hash join 
implementation uses bloom filters built 
over the join attributes of both inputs to 
filter rows to reduce communication 
(e.g., see [36]). 

Operator Parallelism. HRDBMS uses 
both intra- and inter- operator 
parallelism to evaluate an execution plan 
on a worker node. The degree of 
parallelism for scan operators is deter- 
mined based on the number of disks per 
worker. Complex operations such as 
joins and aggregations are executed in 

separate threads with a degree of 
parallelism that is adjusted 
independently. For example, an in-
memory hash join has multiple threads 
reading records from its input, and each 
of these threads simultaneously probes 
the hash table. 

Spilling to Disk. All operator 
implementations in HRDBMS have the 
ability to spill data to disk as needed. 
This decision is made at runtime based 
on available memory and statistics 
which predict the amount of memory 
that will be required. 

 

V. OPTIMIZER 

HRDBMS has a cost-based optimizer 
that uses statistics for cost estimation. To 
reduce the size of the search space, we 
split optimization into multiple phases 
(e.g., join order is 

 

Example 1. Consider the following 
query over the TPC- H schema [16] that 
computes how much money Canadian 
customers have spent. Figure 5 shows 
the initial operator tree produced by 
HRDBMS’s parser. 

 

SELECT sum(l_extendedprice) 

FROM lineitem, orders, customer, 
nation WHERE o_orderkey = l_orderkey 

AND o_custkey = c_custkey 

AND c_nationkey = n_nationkey AND 
n_name = ’CANADA’ 

 

1. Global Optimization Phase. 
HRDBMS takes advantage of decades of 
research and development in relational 
query optimization to build efficient 
execution plans. As a first step, 
conditional expressions are normalized 

× 

σoorderkey=lorderkey∧ocustkey=ccustkey∧cnationkey=nnationkey∧nname='CANADA' 

Lineitem Orders Customer Nation 

γsum(extendedprice) 
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and attribute equivalence classes are 
computed (e.g., equivalence classes are 
later used in join reordering). 
Afterwards, we apply stan- dard 
heuristic transformations including 
pushing down selec- tions [28] and 
projections. HRDBMS always de-
correlates and un-nests nested subqueries 
if possible. Currently, we support the 
rewrites described by Kim [24]. We plan 
to implement more advanced techniques 
in the future (e.g., magic decorre- lation 
as described by Seshadri et al. [41]). 

Next we use statistics to apply cost-
based join enumeration (determining the 
join order with the lowest cost) using a 
variant of the so-called greedy join 
enumeration algorithm [46] and choose 
which physical operators to use (e.g., 
table vs. index scan). Currently, our cost 
estimation module uses simple models 
for operator implementations. 
Parameters of these cost models are the 
estimated cardinalities of an operator’s 
inputs (and for some operators also the 
estimated output cardinality). We 
estimate intermediate result sizes using 
standard tech- niques based on attribute-
level statistics. 

Afterwards, we apply transformations 
such as pushing group-by through joins. 
Our group-by transformation is in- 
spired by Wong et al. [48]. Since this 
transformation is only 

 

determined in the 1st phase independent 
on how the query will be distributed 
across nodes) and make extensive use of 
heuristics. Optimization consists of the 
following phases: 

• 1. Global Optimization Phase - 
Perform heuristic and cost-based 
optimizations ignoring distribution. 

• 2. Dataflow Conversion Phase - 
Convert the query plan into a na¨ıve 
distributed dataflow by ensuring data-
locality of table and index scans. This is 
achieved by splitting scan operators into 

one scan per fragment of a table and 
placing the scan for each fragment on 
the node where the fragment resides. At 
this point all remaining operators of the 
query are placed on a coordinator node. 

• 3. Dataflow Optimization Phase - 
Optimize the dataflow by re-distributing 
operators from the coordinator to worker 
nodes and distributing the execution of 
individual operators across nodes. 

In the following we describe each of 
these phases in detail using the example 
shown below. 

 

sometimes beneficial, we make a cost-
based decision on when to apply it. In 
the future, we will implement a wider 
variety of such transformations. 
Furthermore, we will investigate the use 
of non-exhaustive search strategies 
following an approach similar to cost-
based transformations [1]. 

Example 2. Reconsider the previous 
example query. Fig- ure 6(a) shows a 
plan for this query that may be generated 
by the first phase of optimization. The 
selection on n name has been pushed 
through the crossproduct and the 
crossproduct has been transformed into 
joins using conjuncts from the 
selection’s condition. The system has 
decided to use a left-deep plan joining 
tables nation and customer first, then 
joining the result with the orders table 
and afterwards the lineitem table. 

2. Dataflow Conversion Phase. After 
a global plan has been produced by 
phase 1, the operator tree is converted 
into a na¨ıve distributed dataflow by 
splitting each table scan operator into 
individual scan operators for the 
fragments of the table. The scan operator 
for a fragment is placed on the node 
storing the 

fragment to enforce data locality. For 
tables that are replicated across the 
cluster, we assign the scan to a random 
worker. In this na¨ıve dataflow translation 
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all other operators are placed on the 
coordinator. Furthermore, union operators 
executed on the coordinator are used to 
merge the results of the fragment table 
scans on the worker nodes. The optimizer 
uses the selection conditions applied by 
the query to prune scans of fragments that 
are not needed to answer the query. For 

instance, if a table is range partitioned 
then we can exclude fragments for 
inequality and equality comparisons (e.g., 
a < 5). 

 

 

Example 3. Continuing with Example 2, 
assume the query is executed on a cluster 
with one coordinator and two workers 
with one disk each. Table nation is 
replicated across both workers, table 
customer is hash-partitioned on c custkey, 
table orders is hash-partitioned on o 
custkey, and table lineitem is hash-
partitioned on attribute l orderkey. Fig- 
ure 6(b) shows the dataflow graph 
produced by Phase 2 for the running 
example. We use R[i] to denote the 
fragment of table R stored on node i. 
Note that locality is enforced for scans, 
but all remaining operators are placed on 
the coordinator. 

3. Dataflow Optimization Phase. In 
the dataflow optimization phase, we 
redistribute work from the coordinator to 
worker nodes by replacing operators with 
distributed implementations. We apply 
tree or n-to-m topologies to enforce the 
threshold Nmax of neighbors a node has 
to communicate with. A major objective 
in this phase is to take further advantage 
of data locality and co-location - both 
existing locality based on partitioned 
table storage as well as data locality that 
is the result of shuffle operations. By 
striving to achieve locality we 
automatically reduce the amount of 
communication required and often reduce 
the number of shuffle operations. 

Push Operators from Coordinator to 
Worker Nodes. We traverse the query 
plan produced by phase 2 bottom-up to 
distribute relational operators that are 
currently placed on the coordinator to the 
workers. Operators such as projection and 
selection can be pushed to the worker 
nodes directly. Equi- joins can be 
performed using a parallel distributed 
hash join as long as the data is partitioned 
across workers based on the join keys (or 
replicated across all workers 
corresponding to a 

 

 

broadcast join). At this stage we 
introduce shuffle operations to ensure co-
location of join inputs. Likewise, sorting 
can be distributed by sorting 
independently at the workers followed by 
a merge phase on the coordinator. Instead 
of using a full sort, top-k queries (LIMIT 
with ORDER BY) are implemented using 
a local min-heap (assuming descending 
sort order) on each worker that computes 
the top-k rows on this worker. A newly 
arriving element is compared with the 
current minimum in the heap and only if 
the element is larger than the current 
minimun, then the minimum is removed 
and the new element is inserted into the 
heap. This guarantees that at any moment 
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in time the heap stores the top-k elements 
we have seen so far. A max-heap is used 
at the coordinator (or another worker 
node) to merge the results of the 
individual top-k computations. There are 
corresponding rules for parallelization of 
all remaining relational operators. When 
multiple options for distributing an 
operator are available (e.g., aggregation) 
we make a greedy cost-based decision 
considering the cost of the complete plan 
for both options (at this stage we use a 
refined cost model that also incorporates 
communication cost). For instance, 
consider a query with an aggregation 
followed by a sort. Once we have 
determined which method to use for the 
aggregation we would never revert this 
decision. 

Removing Unnecessary Shuffle Steps. 
Next, we remove unnecessary shuffle 
operations. For example, consider a query 
where one operation requires that data is 
hash-partitioned on a column a (all rows 
with a = x are on the same worker node) 
and another operation requires that data is 
partitioned on columns a (first) and 
column b (second). We can omit the 
second shuffle operation since 
guaranteeing that all tuples with the same 
a attribute value are present on the same 
worker automatically implies that all 
tuples with common a and b attribute 
values are present on the same worker. 

Example 4. Continuing with Example 3, 
the output of the final optimization phase 
is shown in Figure 6(c). The optimizer 
de- termines that the join between the 
nation and customer tables can be 
executed locally since the nation table is 
replicated across both nodes. Since the 
customer table is partitioned on c custkey 
and the orders table is partitioned on o 
custkeythe join between these two tables 
can be executed locally too. Finally, since 
lineitem is partitioned on l orderkey, the 
result of the previous joins has to be 
partitioned on o orderkey using a shuffle 
to evaluate the final join. Since the final 
aggregation does not use group-by, the 
optimizer decides to split the aggregation 

into a pre-aggregation at the worker 
nodes and a final aggregation on the 
coordinator. 

VI. CONCURRENCY    CONTROL 

Unlike most databases built on-top Big 
Data platforms, HRDBMS supports DML 
operations and serializable transac- tions. 
HRDBMS runs a lock manager, 
transaction manager, and log manager on 
every coordinator and worker node. 
Additionally, each coordinator runs an 
XA manager that is responsible for 
coordinating commits using a hierarchical 
two- phase commit (2PC) protocol. While 
HRDBMS does support serializable 
transactions and DML, this has not been 
our main focus, and thus the performance 
and scalability of OLTP has not been 
thoroughly evaluated yet. 

Lock Manager. HRDBMS achieves 
serializability and weaker isolation levels 
(such as repeatable read and read 
committed) via page-level locks using 
two lock-modes (shared and exclu- sive). 
We use a standard SS2PL locking 
protocol [9] (i.e., locks are held until 
transactions commit) to ensure 
serializability. The lock manager running 
on a node is only responsible for granting 
locks on that node. If a lock request fails 
on a node (due to deadlock or timeout), 
that lock manager will inform the XA 
manager on the coordinator handling the 
transaction. The XA manager will then 
initiate a cluster-wide rollback of the 
transaction. The lock managers currently 
implement local deadlock detection via a 
wait-for graph [31] and timeout to 
prevent deadlocks with multiple nodes 
involved. By default deadlock detection 
runs once a minute. 

XA Manager and Transaction Manager. 
The XA man- ager on a coordinator acts 
as the global transaction manager keeping 
track of all active transactions that 
initiated from that coordinator. For each 
transaction it tracks which nodes are 
involved in this transaction. If a 
transaction T is to be committed or rolled 
back, the XA manager initiates a two- 
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phase commit (2PC) process. HRDBMS 
uses a hierarchical 2PC protocol similar 
to the one used in System R* [35], i.e., all 
2PC communication is based on our tree 
topology. The advantage of our tree 
topology is that messages can be quickly 
broadcasted to a large number of nodes, 
and that responses are aggregated before 
they are returned to the coordinator. This 
effectively reduces the amount of work 
and network communication at the 
coordinator. First, a PREPARE message 
is sent to all nodes involved in the 
transaction. Each node prepares the 
commit (or signals abort) and waits for a 
response from all nodes to which it 
forwarded the prepare message (its 
children in the tree topology). If the 
prepare processing on a node is 
successful and it receives positive 
responses from all of its children, then it 
returns a positive response to its parent. 
Only if all responses are positive, the 
coordinator sends a COMMIT message to 
all involved nodes. When a node 

 

receives a PREPARE, COMMIT, or 
ROLLBACK message, the transaction 
manager on that node that processes the 
necessary actions. This includes 1) 
requesting the buffer manager to unpin 
pages, 2) requesting the lock manager to 
release locks, and 3) requesting the log 
manager to persist entries to the write-
ahead log. 

Log Manager. Each node has a log 
manager that manages the write-ahead 
log (WAL) on that node. In the case of 
worker nodes, the WAL is tracking 
changes to user data. For the coordinator 
nodes, the WAL is tracking changes to 
the system metadata tables. The log 
managers on the coordinator nodes also 
manage an additional log called the XA 
log. This log stores PREPARE, 
COMMIT, and ROLLBACK records as 
required by the 2PC protocol. The XA 
log is used to deal with worker node 
failures. When a worker node restarts, it 
attempts recovery from its own WAL. In 

some cases this log may not have enough 
information to determine the global state 
of a transaction. For example, if the last 
message that a worker received before it 
crashed was a PREPARE message for a 
transaction T , then it does not know if 
the consensus was to commit or rollback 
transaction T . The PREPARE record 
stored in the worker’s WAL stores which 
coordinator is responsible. The worker 
contacts this coordinator to determine 
whether it should commit or rollback the 
transaction. While HRDBMS does not 
yet implement recovery for permanent 
node failures, it can recover the database 
state after a failed node (worker or 
coordinator) is brought back online. 

Synchronization of Coordinator 
Metadata. In a deployment of HRDBMS 
with multiple coordinator nodes, the 
system metadata tables must be kept in 
sync across the coordinators. To achieve 
this, all insert, update, and delete 
statements that access metadata tables 
have to finish successfully on all 
coordinators in order to be considered 
successful. This means that a transaction 
changing metadata is not allowed to 
commit unless its DML operations have 
completed successfully on every 
coordinator. This is achieved using the 
2PC protocol described above where the 
coordinator receiving a DDL state- ment 
coordinates the protocol. 

VII. EXPERIMENTS 

Setup & Workloads. We ran the TPC-H 
benchmark [16] query workload over a 
1TB instance (SF1000) on setups rang- 
ing from 8 to 96 nodes. All tests were run 
on the Cooley cluster at Argonne 
National Laboratory. Each node has two 
Intel Haswell E5-2620 v3 processors, for 
a total of 12 cores and 384GB RAM. The 
nodes are connected via FDR Infiniband. 
All data, including temporary data, was 
placed on the GPFS filesystem [40] that 
these nodes share. All of the databases 
that we tested are designed to operate 
with local filesystems. Since the system 
we had access to only has a shared 
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filesystem, we had to make sure that the 
shared filesystem was not a bottleneck in 
our experiments. We did extensive testing 
to determine appropriate sizing, i.e., as 
how many local disks should the GPFS 
filesystem be represented as on each 
node. We determined that we could allow 
each node to mimic 2local disks for data 
storage and 2 local disks for temporary 
data using the GPFS filesystem, and that 
this could be scaled to 96 nodes in the 
Cooley environment without becoming a 
bottleneck. Since in our setup, data is 
distributed quite evenly across nodes, I/O 
operations also were quite evenly 
distributed. That is, the use of GPFS was 

not hiding load balancing issues. The 
main purpose of our evaluation is to 
compare the scalability and per-node 
performance of our system over a typical 
OLAP workload against main memory 
and disk- resident SQL engines built on 
top of Big Data platforms as well as 
against an MPP database system. We 
chose to test with Hive V1.2.1, Spark 
SQL V1.6.0, and Greenplum V4.3.99. 
Since we also wanted to evaluate system 
performance when the size of data 
exceeds available main memory, we 
restricted each node to use 24GB of 
RAM. 

 

TPC-H. For our evaluation we use the 
TPC-H benchmark at the 1TB scale. The 
benchmark consists of 22 complex 
decision support queries. We ran 21 of 
the 22 queries, skipping the one that 
involved an outer join as outer joins have 
not been implemented in HRDBMS yet. 

As mentioned before, we ran the 
benchmark on Hive, Spark SQL, 
Greenplum, and HRDBMS. Figure 7a 
shows the total elapsed time (wall clock 
time) for all TPC-H queries for each 
system when scaling from 8 to 96 nodes 
(log-log scale). Note that no result is 

shown for Greenplum at 8 nodes because 
the system ran out of memory for some of 
the queries. Figure 7b shows the speedup 
for each system relative to performance at 
8 nodes. For computing the speedup, we 
used the elapsed time of the 19 queries 
that did finish at 8 nodes on Greenplum. 

 

Figure 7c shows stepwise speed-up for all 
systems (bottom) and stepwise speed-up 
as a percentage of linear speed-up on top 
(e.g, doubling the number of nodes 
decreases the runtime by 50%). Figure 8 
shows individual query runtimes for 8 
(top) and 96 nodes (bottom). 



 
INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR) 

 
ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-1, 2017 

DOI: 10.21276/ijcesr.2017.4.1.8 
70 

In general, Spark SQL is several times 
faster than Hive in our evaluation, 
HRDBMS is several times faster than 
Spark SQL, and Greenplum is 15% - 30% 
faster than HRDBMS. The performance 
gains over Spark are due to our non-
blocking shuffle without materialization, 
scalable n-to-m topology for shuffles, 
predicate-based data skipping, and 
enforced data locality which allows us to 
often avoid shuffles for joins (and other 
operations). At 8 nodes, the performance 
for Spark SQL is much worse compared 
to the other cluster sizes. This is due to 
the fact that Spark uses excessive 
amounts of memory which results in high 
JVM garbage collection overhead. The 
poor performance of Spark SQL at 8 
nodes artificially inflates its speedup 
results. Thus, we also show step-wise 
speed-up in Figure 7(c). While Spark 
SQL exhibits decent speedup, HRDBMS 
did even better. At the other end of the 
cluster size spectrum, we observe that 
Greenplum runs into scalability issues at 
64 nodes and had significant problems 
scaling to 96 nodes. The other databases, 
HRDBMS included, scaled well to 96 
nodes. In fact at 96 nodes, HRDBMS 
outperformed Greenplum by 3%. 

Per Query Comparison with Greenplum. 
Since Greenplum was most competitive 
in terms of performance, we take a closer 
look at the performance of individual 
queries comparing against this system. 
Query 1 exhibits similar runtime on 

#Nodes Greenplum(runtime) (speed-up) HRDBMS(runtime) (speed-up) 

8 OOM 2,580 

16 856 1.00 1,499 1.00 

32 395 2.17 731 2.05 

64 351 2.44 319 4.70 

96 433 1.98 194 7.73 

 

Fig. 9: TPC-H query Q18 runtime (sec) 
and speed-up relative to 16 nodes (in 
parentheses) for Greenplum and 
HRDBMS. 

 

to newer versions of the tested systems, 
we repeated the 8 node experiments 
utilizing the full memory of the nodes 

(384GB) using Hive 2.1.0 (Hadoop 2.7.3) 
on Tez 0.8.4, Spark 2.0.1 (Hadoop 2.7.3), 
and Greenplum (V4.3.99). The total 
runtimes for each system are shown 
below. Spark SQL runtime is improved 
by 40%, HRDBMS by 12%, and all 
queries finished successfully with 
Greenplum. We observed a 3.7x speedup 
for Hive on Tez compared to Hive. 
However, HRDBMS still outperforms 
Hive on Tez by a factor of 2.9. 

HRDBMS and Greenplum at both 8 
nodes and 96 nodes. This indicates that 
both systems have similar table scan 
performance and aggregation 
performance. Note that we use columnar 
tables for both systems. HRDBMS 
performs much better than Greenplum for 
queries 6, 14, 15, and 20. This is due to 
predicate-based data skipping. 
Greenplum outperforms HRDBMS on 
queries 2, 11, and 21 which involve 
correlated subqueries. Both Greenplum 
and HRDBMS unnest and decor- relate 
these subqueries, however there is an 
opportunity in these queries for reuse of 
intermediate results which HRDBMS 
does not currently exploit. Greenplum 
outperforms HRDBMS on query 19. 
Query 19 involves a complex predicate 
that becomes massive when converted 
into conjunctive normal form. Greenplum 
reorders the conjunctions after the con- 
version such that tuples are eliminated as 
early as possible. HRDBMS currently 
does not apply this optimization. Query 
22 is an aggregation over a single table. 
The query contains two nested subqueries 
- one is a correlated NOT EXISTS while 
the other one is an uncorrelated scalar 
subquery (it returns a single value). 
Greenplum outperforms HRDBMS on 
this query, because it caches the result of 
the scalar subquery while, as mentioned 
above, HRDBMS does not yet support 
caching of intermediate results. 

Figure 9 shows the runtime and speed-up 
for query 18. Up to 32 nodes, Greenplum 
outperforms HRDBMS. For higher 
number of nodes HRDBMS outperforms 
Greenplum. At 96 nodes, HRDBMS 
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significantly outperforms Greenplum on 
this query. This query involves (semi-
)joins producing large intermediate 
results, and an aggregation with 1.5 
billion groups (for the 1TB instance). 
HRDBMS benefits from our n-to-m 
topology and from implementing the 
group-by using a shuffle. 

3TB TPC-H Instance. In this experiment, 
we increased the size of the dataset to 
3TB on 8 nodes. For this configuration 
the data is about 15 times larger than 
memory prior to com- pression. Given 
that Greenplum failed with out-of-
memory errors for two queries at the 1TB 
scale at 8 nodes, it is not surprising that 
the same queries (Q9 and Q18) also failed 
at 3TB. In addition, Spark SQL failed 
with out-of-memory errors for the same 
queries at 3TB. We assume that Hive 
would have been able to complete all of 
the queries successfully, but based on our 
results for the 1TB TPC-H instance, we 
estimate that runtime of the entire 
benchmark would have taken close to 9 
days to complete for the 3TB instance. 
HRDBMS, on the other hand, completed 
all 21 queries successfully taking 2.85x 

longer than the runtime for 1TB (for a 
total of ∼12 hours). 

Current System Versions. To test how 
HRDBMS compares 

 HiveonTez SparkSQL Greenplum HRDBMS 

Runtime(sec) 39,228 86,227 10,186 13,621 

 

Summary. These results demonstrate that 
we were able to meet our main goal in 
developing HRDBMS. We have devel- 
oped a distributed query execution engine 
capable of per-node performance on par 
with a traditional MPP relational database 
and with scalability on par with systems 
such as Hive and Spark SQL up to scales 
of 96 nodes. 
I. CONCLUSIONS AND FUTURE 
WORK 
We present HRDBMS, a shared-nothing 
distributed database aimed to achieve 
good per-node performance as well as 

scalability. HRDBMS achieves this goal 
though a careful com- bination of 
traditional query processing techniques 
with tech- to be able to recover from the 
complete loss of a node or disk and 
support iterative dataflows for machine 
learning and complex analytics. 
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