

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-1, 2017

DOI: 10.21276/ijcesr.2017.4.1.8
56

A HIGH-PERFORMANCE DISTRIBUTED RELATIONAL

DATABASE SYSTEM FOR SCALABLE OLAP PROCESSING
H.Venkata Subbaiah 1, Pambala Nageswara Rao 2, EEDUNURI MURALIDHAR REDDY 3

1Assistant Professor, Department of Computer science &Engineering,
Ellenki college of Engineering and Technonlogy, patelguda (vi), near BHEL ameenpur (m),

Sangareddy Dist. Telangana 502319..

Abstract—The scalability of systems
such as Hive and Spark SQL that are
built on top of big data platforms have
enabled query processing over very
large data sets. However, the per-
node performance of these systems is
typically low compared to traditional
relational databases. Conversely,
Massively Parallel Processing (MPP)
databases do not scale as well as these
systems. We present HRDBMS, a fully
implemented distributed shared-
nothing relational database developed
with the goal of improv- ing the
scalability of OLAP queries.
HRDBMS achieves high scalability
through a principled combination of
techniques from relational and big
data systems with novel
communication and work-distribution
techniques. While we also support
serializable transactions, the system
has not been optimized for this use
case. HRDBMS runs on a custom
distributed and asynchronous
execution engine that was built from
the ground up to support highly
parallelized operator
implementations. Our experimental
comparison with Hive, Spark SQL,
and Greenplum confirms that
HRDBMS’s scalability is on par with
Hive and Spark SQL (up to 96 nodes)
while its per-node performance can
compete with MPP databases like
Greenplum.

Index Terms—SQL, big data,
distributed query processing

I. INTRODUCTION
The increasing scale of data to be
processed for analytics has brought
traditional DBMS that scale only to a
few nodes to their limits. Massively
Parallel Processing (MPP) databases
provide better scale out by parallelizing
query processing across processors and
nodes using a shared-nothing architec-
ture. Systems like Greenplum [5],
Teradata [3], and Netezza feature
parallel execution engines that are
specialized for processing relational
queries. Recently, a new class of SQL
engines has been built on top of Big
Data [42] platforms such as MapReduce
[18] and Spark [11], [49]. This class of
systems include Hive [44], Spark SQL
[47], Dremel [32], and many others. Big
Data platforms utilize distributed file
systems like HDFS for storage and
resource managers like YARN [45] to
schedule execution of tasks on a cluster.
SQL engines built on top of Big Data
platforms rely on the fault tolerance and
load balancing techniques of these
platforms for scalability. While these
approaches provide better scale out
(deployments on 1000s of nodes are not
uncommon), their performance per-node
is limited by the programming, storage,
and execution model of the underlying
platform. Both types of systems have in
common that they optimize for OLAP,
i.e., complex, mostly read-only, queries.
Figure 2

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-1, 2017

DOI: 10.21276/ijcesr.2017.4.1.8
57

Fig. 1: Anatomy of a HRDBMS cluster

compares systems in terms of scalability
(scale-out) and per- node performance.
Databases without intra-query
parallelism (e.g., Postgres) do not scale
to large clusters and also have limited
per-node performance for complex
queries, because they do not exploit the
available parallelism on a single
machine. MPP databases provide better
per-node performance and better
scalability. Big Data platforms provide
scalability at the cost of per-node
performance.

The goal of building HRDBMS (highly-
scalable relational DBMS), the system
we present in this work, is to build a
DBMS with a per-node performance
comparable to MPP databases as well as
scalability comparable with Big Data
platforms. Based on an analysis of
scalability bottlenecks in MPP databases
and Big Data platforms, we propose and
implement novel techniques to address

these bottlenecks. In the following we
discuss the design of our system and the
techniques we have developed for
achieving scalability without sacrificing
performance. An overview of our design
decisions is shown in Figure 3. We
indicate in parentheses after a feature
whether it is typical for relational
databases, typical for Big Data
platforms, or is novel.

A. System Overview

Cluster Organization. As shown in
Figure 1, an HRDBMS cluster consists
of coordinator and worker nodes.
Coordinators store metadata, handle
communication with clients, and are
responsible for query optimization,
transaction coordinationand cluster-wide
resource management. HRDBMS
provides serializability using 2PL [9]
and 2PC [35], a protocol that is
implemented by many modern
distributed databases such as Spanner
[15]. Workers store data and execute
queries. Systems such as Hadoop use a
single node for handling client requests
and storing metadata. These systems
allow for additional stand-by masters
which do not process requests.
HRDBMS replicates metadata and
statistics across all coordinators in a
cluster, but allows multiple coordinators
to process requests in parallel. Queries
are executed across the workers using
HRDBMS’s custom execution platform.
Query results are always routed to a
client through the coordinator that
planned the query.

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-1, 2017

DOI: 10.21276/ijcesr.2017.4.1.8
58

Communication. A challenge faced by
any distributed database system is that
operations like shuffling require one node
to communicate with a large number of
nodes in the cluster. This is one of the
primary scalability bottlenecks in MPP
systems. The shuffle implementation of
most Big Data platforms is designed to
scale. However, scalability comes at the
cost of performance since shuffle
operations in these systems are blocking
and most implementations persist data to
local or distributed file systems. We
develop new communica- tion primitives
that enforce scalable communication
topologies for all communication in the
system including query execution and
transaction processing. Our approach
enforces a hard limit Nmax on the
number of neighbors a node has to
communicate with. Specifically, we
propose two communication topologies -
the tree topology for hierarchical
communication (e.g., commit processing
[35]) as well as a n-to-m topology for all-
to-all communication (e.g., a shuffle).
Our tree topology is similar to how
systems like Dremel [32] implement
hierarchical aggregation. To the best of
our knowledge we are the first to
generalize this idea to n-to-m
communication. As a general rule, all
operations involving communication in
HRDBMS are non-blocking and do not
spill to disk.

Storage and Locality. HRDBMS
supports both row and columnar tables.
Data is stored on the local disks of
worker nodes using a page-oriented
layout. Similar to MPP databases, tables
are partitioned across nodes and disks
based on a partitioning strategy that is
selected at table creation time. Having
full control over storage location enables
our optimizer and execution engine to
enforce data locality which is critical for
performance and scalability. Page-
oriented storage and support for disk
resident index structures enables us to
feasibly support DML operations and
transactions. Data is cached in memory

using a parallel buffer manager. We
introduce predicate-based data skipping
as a lightweight method for skipping
pages during scan operations based on
the results of previous scans. This
method generalizes static schemes like
small materialized aggregates [33], and
could be retrofitted into existing
database systems. We do not use a
distributed file system such as HDFS for
storage, because these file systems are
typically append- only and their
read/write throughput is less than native
file operations. In addition to better
read/write performance, we also gain full
control over data locality by managing
local storage directly. One advantage of
Big Data platforms is that they can
process queries over data from various
sources without requiring the data to be
ingested into the system. To combine the
best of both worlds we have
implemented an external table
framework that allows HRDBMS to
access a variety of external data sources,
including HDFS.

Execution Engine. A major contributor
to the poor per- formance of Hive and
other Hadoop-based approaches is
excessive materialization. Even systems
such as Spark SQL still materialize data
during shuffle operations per default.
Similar to MPP systems we only
materialize intermediate results to disk
when necessary to save memory.
Operator implementations in HRDBMS
are inherently parallel. Similar to both
Big Data platforms and MPP databases
we spawn one scan thread for each
fragment of a table, but the parallelism
of other operators is controlled
separately. HRDBMS features a cost-
based query optimizer that uses statistics
for cost estimation.

Fault Tolerance. Fault tolerance in
HRDBMS is currently limited to Aries-
style recovery [34] based on write-ahead
logs maintained on each node. Metadata
is replicated across all coordinators and
kept in-sync using the 2PC protocol
[35].

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-1, 2017

DOI: 10.21276/ijcesr.2017.4.1.8
59

Resource management. Systems like
YARN [45] andMesos [21] are
frequently used to manage the resources
in a cluster, e.g., to let multiple
applications share the same cluster. We
deliberately chose to let HRDBMS
manage its own resources, because
HRDBMS tasks dynamically resize their
resource allocations based on their
current requirements and availability of
resources. Resource management in
HRDBMS operates on three levels. At
the cluster level, our query optimizer
balances load and communication across
workers. Workers monitor the resource
usage on the machine they are running
on and reduce the degree of parallelism
for query operators if resources are
scarce. Finally, operators can spill data
to disk if necessary to limit memory
consumption. This decentralization of
resource management for lower level
tasks is critical for scalability, because it
avoids overloading coordinators with
decisions that can be better made locally.

B. Contributions

Our key contributions are two-fold: (i)
we demonstrate how a principled
combination of traditional query
processing techniques with ideas from
distributed dataflow engines can
improve performance and scalability
leading to a system that is more than the
sum of its components. However, to
fully achieve our goal we had to (ii)
develop novel tech- niques that
overcome the remaining performance
and scal- ability bottlenecks. We
implement these ideas as a system called
HRDBMS, a fully functional shared-
nothing distributed DBMS. HRDBMS’s
open source codebase (https://
github.com/IITDBGroup/HRDBMS)
currently consists of about 170,000 lines
of Java code.

Analysis of Bottlenecks and Principled
System Design. We identify and address
performance bottlenecks including non-
scalable communication, blocking
shuffle operations, and data locality not

being exploited. By choosing and
picking the most effective and scalable
techniques from MPP databases and big
data platforms, we can overcome many
of these bottlenecks. This results in a
new hybrid design which has both
characteristics from distributed relational
databases such as Greenplum as well as
big data platforms such as Spark as
discussed in Section I-A.

Novel Techniques. The principled
combination of previous ideas however
is not sufficient for achieving our goal.
We additionally make the following
technical contributions that improve the
state-of-the-art in distributed query
processing in several regards.

• Scalable communication patterns
for all operations: Approaches like
Dremel [32] reduce the number of neigh-
bors a node has to communicate with for
hierarchical op- erations such as
aggregation. However, to the best of our
knowledge, we are the first to enforce
this for operations with n-to-m
communication patterns such as a
shuffle. For that we apply a variation of
the binomial graph topology [4] to be
able to enforce a constant limit on the
number of neighbors a node has to
directly communicate with. Since shuffle
is a prevalent operation in distributed
query processing (e.g., it is used to
implement distributed

versions of group-by aggregation and
join), this translates into a significant
improvement in scalability (e.g., see the
discussion of our experimental results
for TPC-H query 19 in Section VII).

• Predicate-based Data Skipping:
Data skipping based on small
materialized aggregates [33] stores for
each page of a table the minimal and
maximal values for each of the table’s
attributes. This information is used
during query processing to skip a page if
based on the minimal and maximal

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-1, 2017

DOI: 10.21276/ijcesr.2017.4.1.8
60

attributes values of records stored on this
page, none of the records can fulfill the
selection conditions of the query. We
generalize this idea by caching at
runtime which pages contain rows
matching a query’s predicate and then
use this information to skip reading
pages for future queries with the same or
similar predicates. Since many
workloads follow the 80-20 rule, i.e.,
80% of the queries only access 20% of
data, it is quite effective to cache query-
specific information about relevant data.

Experimental Evaluation. We
experimentally evaluate our system on a
96 node cluster comparing against Hive,
Spark SQL, and Greenplum. Our results
demonstrate that HRDBMS provides
per-node performance competitive with
Greenplum and exhibits scalability
comparable with Hive and Spark SQL.
Furthermore, HRDBMS performs well if
data is significantly larger than the
available main memory.

The remainder of this paper is organized
as follows. We discuss related work in
Section II. Section III discusses the
system’s storage engine and indexing
capabilities. We intro- duce our
distributed execution engine in Section
IV. Section V covers HRDBMS’s cost-
based optimizer. Section VI covers
concurrency control and recovery. We
present experimental results in Section
VII and conclude in Section VIII.

II. RELATED WORK

HRDBMS builds upon the long history
of relational query processing as well as
on ideas from big data platforms. We did
present a preliminary version of the
system in [7], [8].

MPP Databases. MPP databases such
Greenplum, Netezza, and Teradata
distribute pipelined query processing
across nodes using a shared-nothing
architecture. MPP databases utilize local
disks on worker nodes for page-oriented
record storage and replication for fail-

over. A single master node handles
communication with clients and query
optimization. In general these systems
are high-performance, but are not
designed to scale to large clusters.
Several approaches pair MPP processing
with HDFS storage (e.g., HAWQ [13]).

SQL on Big Data Platforms. Hive [44] is
an SQL engine built on top of Hadoop.
While inheriting the scalability of its
host platform, the per-node performance
of Hive is severely restricted by the
excessive materialization of MapReduce
and lack of support for exploiting data
locality. Since MapReduce is largely
I/O-bound, compressed file formats like
ORC and Parquet can significantly
improve performance [19]. While these
techniques address some of the
bottlenecks of MapRe- duce, others,
such as limitations of the MapReduce
shufflemodel, are inherent to the
platform itself. Tez [39] improves
MapReduce by allowing multiple
mappers and reducers to be chained
together without writing temporary data
to HDFS and by reconfiguring dataflows
at runtime. Impala [25] deploys daemons
on HDFS data nodes which access the
data stored locally on a node to ensure
data locality and eliminate most of the
overhead of HDFS. Spark SQL [6] is an
SQL engine that is part of Spark. The
system features an extensible optimizer.
Even though most materialization is
eliminated by using Spark, shuffle
operations still write data to disk by de-
fault. Furthermore, the system has high
memory requirements. Dremel [32] is
designed for aggregation-heavy analytics
across large clusters. The system
performs well for aggregation queries
with small result sets because of its
serving-tree architecture. HRDBMS
applies a generalization of this idea by
dynamically organizing nodes in a
suitable topology to compute
aggregation, sort, and shuffle operations.
Apache Flink [10], [20] is a streaming
dataflow engine. Operators execute in
parallel and slower operators can
backpressure upstream operators to

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-1, 2017

DOI: 10.21276/ijcesr.2017.4.1.8
61

prevent unlimited growth of streams.

SQL on Key-value Stores. Recently,
several SQL front- ends for NoSQL
databases (key-value stores) such as
Cassan- dra [26] and ZHT [29], [30]
have been introduced. NoSQL databases
are typically designed for high-
throughput CRUD operations and cannot
efficiently process batch operations [38]
which is required for OLAP workloads.
However, there are key-value stores such
as BigTable [12] that are better suited as
storage backends for relational engines.
Spanner [15] is a database based on
BigTable with support for strongly
consis- tency. In Spanner, data is co-
located within the key-value store
backend based on a hierarchical nesting
of tables. However, not all workloads
can benefit from hierarchical co-
location. NewSQL. Another class of
systems target scalable processing of
OLTP workloads. These include
Spanner [15], VoltDB [43] (which is a
commercialization of the H-store [23]
research prototype), FoundationsDB,
Amazon Aurora, and many more. To
scale-out, these systems horizontally
partition tables across several nodes.
Transactions that only access data stored
on one node are handled locally while
transactions involving multiple nodes
use a distributed commit protocol such
as 2PC [35] or a consensus protocol like
Paxos [27] or Raft [37]. For example,
Spanner [15] applies Paxos to ensure
consistency among multiple replicas of a
table fragment and 2PC to coordinate
transactions that access more than one
fragment. While transaction processing
is not our main focus, HRDBMS
nonetheless supports serializable
transactions relying on a hierarchical
version of the 2PC protocol. However,
the per- formance of our current
implementation is relatively poor.

III. STORAGE

HRDBMS stores data on the local
filesystems of worker nodes. Tables may
be hash- or range-partitioned, or dupli-

cated across nodes. Within each node an
additional level of partitioning is applied
to spread data across the node’s disks.
The partitioning strategy for a table is
selected by the user at table creation
time. The coordinator nodes track how
table

data is distributed across workers and
use this information to enforce that data
is always read on the worker node(s)
where it resides. This is in contrast to
systems such as Hive or Spark SQL
where locality can only be stated as a
preference.

Block Storage. All index and table data
in HRDBMS is stored in pages of
configurable size (up to 64MB). Pages
are compressed using LZ4 [14] (fast
decompression).

Row and Column Storage. HRDBMS
supports both row and columnar tables.
The row-oriented table implementation
is standard: each page contains a header
with information about the rows stored
on that page and their schema; the rest of
the page contains data. Each row is
assigned a physical row ID (RID) that
consists of identifiers for the node, disk,
and page on which the row resides plus a
slot number identifying the row’s
position within the page. The user can
specify that a table should be clustered
on a list of attributes. Data is sorted
during loading to enforce the clustering.
DML operations do not respect the
clustering. However, HRDBMS
provides support for reorganizing tables
to restore clustering.

Columnar tables are implemented as a
row/columnar hybrid, similar to PAX
[2]. All columns of a table are stored in a
single file as a sequence of page sets. A
page set for a table with n columns
consists of n pages, each storing values
of one column. Each page in a page set
stores the same number of values which
simplifies reconstruction of rows. A

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-1, 2017

DOI: 10.21276/ijcesr.2017.4.1.8
62

na¨ıve implementation of the page-set
approach would underutilize pages since
the column with the largest values
determines the number of rows that can
be stored in a page set. We address this
problem by 1) using Huffman encoding
[22] of strings and LZ4 page
compression and 2) using a Linux sparse
file, i.e., free space on pages will
(almost) not occupy any space on disk.
The Linux sparse file approach allows us
to directly access a certain page in a file
without knowing the offsets of
compressed pages within the file.

Buffer Manager. All access to data and
index pages in HRDBMS is handled by
a node’s buffer manager. The buffer
manager has the ability to dynamically
grow and shrink the buffer pool as
needed. The buffer pool of a node is
partitioned into stripes - each managed
by a stripe manager (separate thread).
The assignment of pages to stripes is
determined by a hash of the page
number. The parallel nature of the buffer
manager is hidden from its clients
through a lightweight wrapper that
forwards requests to the stripe managers.
We use a variant of the standard clock
algorithm for page eviction. Our
implementation differs from the standard
clock algorithm in that table scans
periodically pre-declare the pages they
will request in the near future and these
pages will be prioritized by the clock
algorithm. This approach is particularly
effective if a large percentage of buffer
operations stems from concurrent table
scan operations as is common for OLAP
workloads.

Predicate-based Data Skipping. During a
table scan, HRDBMS keeps track of
which pages do not contain any rows
matching a predicate and records this
information in a predicate cache
associated with each individual page.
This is

maintained as a mapping cache : P →
{θi} from a page P toa set of
predicates θi. Subsequent table scan

operations with a predicate θ can then
skip each page P with θ cache(P).
Furthermore, if a predicate θ logically
implies one of the cached predicates for
a page P , say predicate θi, then it is
guaranteed that page P cannot contain
any rows matching the predicate and,
thus, can safely be skipped. Inserts in
HRDBMSare append-only and updates
are not executed in place. Thus,

as long as a page or page set is full, any
information we cache about it will be
valid until the table is reorganized.
Based on our experience with
HRDBMS, a 10TB database with 1000
previously executed queries running on
10 nodes would contain about 250MB of
predicate cache data per node. Predicate
caches are periodically persisted to disk
and loaded during database restarts.
Many databases implement a concept
known as min-max indexes where the
database tracks the minimum and
maximum value of a column on each
page [33]. Our method is a
generalization of min-max indexes.

Index Structures. HRDBMS supports
B+-trees and disk- resident skip lists.
Skip lists are fairly common in main-
memory databases (e.g., [17]) because
they can support non- blocking
concurrent access. We map skip lists to
disk as an append-only page file. Any
new node inserted into a skip list is
inserted to the current page and deletes
are logical. In spite of its simplicity, this
results in reasonable I/O performance for
traversing the index if data is mostly
inserted in batches.

External Data Sources. HRDBMS
features an extensible external table
framework which supports distributed
access to external data sources. A user-
defined external table type (UET) for a
distributed data source can expose the
horizontal partitioning of data to
HRDBMS and the system will distribute
scans of fragments of such a table across
worker nodes. As a proof-of-concept we
have implemented an external table type

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-1, 2017

DOI: 10.21276/ijcesr.2017.4.1.8
63

for reading CSV data from HDFS.

IV. EXECUTION ENGINE

HRDBMS features a distributed
dataflow engine with built- in support
for relational operators. Our engine is
inherently asynchronous and pipelines
operations within and across nodes and
processors. Per default, once data is read
from disk, all operations execute in main
memory, spilling to disk only where
necessary. The engine enforces data
locality - all table and intermediate data
is accessed locally on the node where it
resides. Importantly, HRDBMS’s
optimizer can place any operator on any
worker node.

Pipelined Execution. Pipelining is a
standard practice that avoids
unnecessary materialization of
intermediate results. Operators that need
to consume their whole input before
producing a result are called blocking.
HRDBMS tries to avoid blocking
operators, e.g., by choosing a non-
blocking implementation of an operator
or by splitting an operator into two
phases where only one of the phases is
blocking.

Enforcing Scalable Communication. A
critical scalability bottleneck of many
distributed SQL engines is that
operations such as shuffle may require
nodes to communicate with (n)
neighbors where n is the number of
nodes in the cluster.

For large cluster sizes, the amount of
resources occupied by opening and
monitoring such a large number of
sockets may already be a performance
bottleneck. We support two strategies for

enforcing a limit Nmax on the number of
network connections per node which we
refer to as tree- topology and n-to-m-
topology, respectively.

We distribute hierarchical computations
using a tree topol- ogy with a maximal
fan-out of Nmax 1 (see Figure 4(a)). An
example of a hierarchical operator is a
distributed merge sort, where each
merge phase can be processed by a
separate level in such a tree. Note that
this topology is similar to what has been
referred to as a serve-tree in [32]. In this
topology every node is only
communicating with its parent and
children. In addition to limiting the
amount of network connections, the tree-
topology also results in more evenly
balanced load.

The second strategy is applied for
operations that require n-to-m
communication, e.g., a shuffle. To
enforce the Nmax limit, we use some
nodes as intermediate communication
hubs which forward data from senders to
receivers. Our approach is based on the
binomial graph topology [4]. In this
topology, nodes are organized in a ring.
Particularly, a node has links to nodes if
the distance (on the ring) between the
source and the destination is a power of
2, e.g., 0, 1, 2, 4, and so on. This
topology has logarithmic diameter and
node degrees. We determine the base of
the powers based on the number of
nodes n and Nmax. The appropriate base
b is computed as b = n Nmax . Figure
4(a) shows such a topology.

Non-blocking, Hierarchical Shuffle. A
shuffle operation hash-partitions data
across nodes. In Hadoop, reducers
expect their input to be sorted by key.
Hadoop’s shuffle is a blocking operation
because of this sorting step. Since many
relational operator implementations such
as a partition hash join can be performed
on unsorted data, it is beneficial to make
the sort optional. HRDBMS implements
this idea as a non-blocking shuffle
operation that avoids writing data to

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-1, 2017

DOI: 10.21276/ijcesr.2017.4.1.8
64

disk. A potential drawback of a non-
blocking shuffle is the large number of
concurrent network connections that are
required - each node has a connection to
each other node involved in the shuffle.
We use our n-to-m topology to address
this drawback and refer to the resulting
operation as a hierarchical shuffle.

Operator Implementations. HRDBMS
implements hash- based aggregation,
optionally using a shuffle to assign a
subset of the groups to each worker.
Alternatively, each nodes pre-
aggregates data available locally akin to
a combiner in MapRe- duce. If pre-
aggregation is used, then we use our tree
topology where each node further
aggregates the pre-aggregated results

Fig. 5: Initial plan for the query from
Example 1

received from its children. The same
concept applies to sorting. We use a
distributed implementation of an n-way
merge sort based on the tree topology.
Leaf nodes create sorted runs. Non- leaf
nodes merge runs into larger runs.
HRDBMS uses hash joins as long as at
least one conjunct in the join condition is
an equality comparison. Our hash join
implementation uses bloom filters built
over the join attributes of both inputs to
filter rows to reduce communication
(e.g., see [36]).

Operator Parallelism. HRDBMS uses
both intra- and inter- operator
parallelism to evaluate an execution plan
on a worker node. The degree of
parallelism for scan operators is deter-
mined based on the number of disks per
worker. Complex operations such as
joins and aggregations are executed in

separate threads with a degree of
parallelism that is adjusted
independently. For example, an in-
memory hash join has multiple threads
reading records from its input, and each
of these threads simultaneously probes
the hash table.

Spilling to Disk. All operator
implementations in HRDBMS have the
ability to spill data to disk as needed.
This decision is made at runtime based
on available memory and statistics
which predict the amount of memory
that will be required.

V. OPTIMIZER

HRDBMS has a cost-based optimizer
that uses statistics for cost estimation. To
reduce the size of the search space, we
split optimization into multiple phases
(e.g., join order is

Example 1. Consider the following
query over the TPC- H schema [16] that
computes how much money Canadian
customers have spent. Figure 5 shows
the initial operator tree produced by
HRDBMS’s parser.

SELECT sum(l_extendedprice)

FROM lineitem, orders, customer,
nation WHERE o_orderkey = l_orderkey

AND o_custkey = c_custkey

AND c_nationkey = n_nationkey AND
n_name = ’CANADA’

1. Global Optimization Phase.
HRDBMS takes advantage of decades of
research and development in relational
query optimization to build efficient
execution plans. As a first step,
conditional expressions are normalized

×

σoorderkey=lorderkey∧ocustkey=ccustkey∧cnationkey=nnationkey∧nname='CANADA'

Lineitem Orders Customer Nation

γsum(extendedprice)

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-1, 2017

DOI: 10.21276/ijcesr.2017.4.1.8
65

and attribute equivalence classes are
computed (e.g., equivalence classes are
later used in join reordering).
Afterwards, we apply stan- dard
heuristic transformations including
pushing down selec- tions [28] and
projections. HRDBMS always de-
correlates and un-nests nested subqueries
if possible. Currently, we support the
rewrites described by Kim [24]. We plan
to implement more advanced techniques
in the future (e.g., magic decorre- lation
as described by Seshadri et al. [41]).

Next we use statistics to apply cost-
based join enumeration (determining the
join order with the lowest cost) using a
variant of the so-called greedy join
enumeration algorithm [46] and choose
which physical operators to use (e.g.,
table vs. index scan). Currently, our cost
estimation module uses simple models
for operator implementations.
Parameters of these cost models are the
estimated cardinalities of an operator’s
inputs (and for some operators also the
estimated output cardinality). We
estimate intermediate result sizes using
standard tech- niques based on attribute-
level statistics.

Afterwards, we apply transformations
such as pushing group-by through joins.
Our group-by transformation is in-
spired by Wong et al. [48]. Since this
transformation is only

determined in the 1st phase independent
on how the query will be distributed
across nodes) and make extensive use of
heuristics. Optimization consists of the
following phases:

• 1. Global Optimization Phase -
Perform heuristic and cost-based
optimizations ignoring distribution.

• 2. Dataflow Conversion Phase -
Convert the query plan into a na¨ıve
distributed dataflow by ensuring data-
locality of table and index scans. This is
achieved by splitting scan operators into

one scan per fragment of a table and
placing the scan for each fragment on
the node where the fragment resides. At
this point all remaining operators of the
query are placed on a coordinator node.

• 3. Dataflow Optimization Phase -
Optimize the dataflow by re-distributing
operators from the coordinator to worker
nodes and distributing the execution of
individual operators across nodes.

In the following we describe each of
these phases in detail using the example
shown below.

sometimes beneficial, we make a cost-
based decision on when to apply it. In
the future, we will implement a wider
variety of such transformations.
Furthermore, we will investigate the use
of non-exhaustive search strategies
following an approach similar to cost-
based transformations [1].

Example 2. Reconsider the previous
example query. Fig- ure 6(a) shows a
plan for this query that may be generated
by the first phase of optimization. The
selection on n name has been pushed
through the crossproduct and the
crossproduct has been transformed into
joins using conjuncts from the
selection’s condition. The system has
decided to use a left-deep plan joining
tables nation and customer first, then
joining the result with the orders table
and afterwards the lineitem table.

2. Dataflow Conversion Phase. After
a global plan has been produced by
phase 1, the operator tree is converted
into a na¨ıve distributed dataflow by
splitting each table scan operator into
individual scan operators for the
fragments of the table. The scan operator
for a fragment is placed on the node
storing the

fragment to enforce data locality. For
tables that are replicated across the
cluster, we assign the scan to a random
worker. In this na¨ıve dataflow translation

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-1, 2017

DOI: 10.21276/ijcesr.2017.4.1.8
66

all other operators are placed on the
coordinator. Furthermore, union operators
executed on the coordinator are used to
merge the results of the fragment table
scans on the worker nodes. The optimizer
uses the selection conditions applied by
the query to prune scans of fragments that
are not needed to answer the query. For

instance, if a table is range partitioned
then we can exclude fragments for
inequality and equality comparisons (e.g.,
a < 5).

Example 3. Continuing with Example 2,
assume the query is executed on a cluster
with one coordinator and two workers
with one disk each. Table nation is
replicated across both workers, table
customer is hash-partitioned on c custkey,
table orders is hash-partitioned on o
custkey, and table lineitem is hash-
partitioned on attribute l orderkey. Fig-
ure 6(b) shows the dataflow graph
produced by Phase 2 for the running
example. We use R[i] to denote the
fragment of table R stored on node i.
Note that locality is enforced for scans,
but all remaining operators are placed on
the coordinator.

3. Dataflow Optimization Phase. In
the dataflow optimization phase, we
redistribute work from the coordinator to
worker nodes by replacing operators with
distributed implementations. We apply
tree or n-to-m topologies to enforce the
threshold Nmax of neighbors a node has
to communicate with. A major objective
in this phase is to take further advantage
of data locality and co-location - both
existing locality based on partitioned
table storage as well as data locality that
is the result of shuffle operations. By
striving to achieve locality we
automatically reduce the amount of
communication required and often reduce
the number of shuffle operations.

Push Operators from Coordinator to
Worker Nodes. We traverse the query
plan produced by phase 2 bottom-up to
distribute relational operators that are
currently placed on the coordinator to the
workers. Operators such as projection and
selection can be pushed to the worker
nodes directly. Equi- joins can be
performed using a parallel distributed
hash join as long as the data is partitioned
across workers based on the join keys (or
replicated across all workers
corresponding to a

broadcast join). At this stage we
introduce shuffle operations to ensure co-
location of join inputs. Likewise, sorting
can be distributed by sorting
independently at the workers followed by
a merge phase on the coordinator. Instead
of using a full sort, top-k queries (LIMIT
with ORDER BY) are implemented using
a local min-heap (assuming descending
sort order) on each worker that computes
the top-k rows on this worker. A newly
arriving element is compared with the
current minimum in the heap and only if
the element is larger than the current
minimun, then the minimum is removed
and the new element is inserted into the
heap. This guarantees that at any moment

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-1, 2017

DOI: 10.21276/ijcesr.2017.4.1.8
67

in time the heap stores the top-k elements
we have seen so far. A max-heap is used
at the coordinator (or another worker
node) to merge the results of the
individual top-k computations. There are
corresponding rules for parallelization of
all remaining relational operators. When
multiple options for distributing an
operator are available (e.g., aggregation)
we make a greedy cost-based decision
considering the cost of the complete plan
for both options (at this stage we use a
refined cost model that also incorporates
communication cost). For instance,
consider a query with an aggregation
followed by a sort. Once we have
determined which method to use for the
aggregation we would never revert this
decision.

Removing Unnecessary Shuffle Steps.
Next, we remove unnecessary shuffle
operations. For example, consider a query
where one operation requires that data is
hash-partitioned on a column a (all rows
with a = x are on the same worker node)
and another operation requires that data is
partitioned on columns a (first) and
column b (second). We can omit the
second shuffle operation since
guaranteeing that all tuples with the same
a attribute value are present on the same
worker automatically implies that all
tuples with common a and b attribute
values are present on the same worker.

Example 4. Continuing with Example 3,
the output of the final optimization phase
is shown in Figure 6(c). The optimizer
de- termines that the join between the
nation and customer tables can be
executed locally since the nation table is
replicated across both nodes. Since the
customer table is partitioned on c custkey
and the orders table is partitioned on o
custkeythe join between these two tables
can be executed locally too. Finally, since
lineitem is partitioned on l orderkey, the
result of the previous joins has to be
partitioned on o orderkey using a shuffle
to evaluate the final join. Since the final
aggregation does not use group-by, the
optimizer decides to split the aggregation

into a pre-aggregation at the worker
nodes and a final aggregation on the
coordinator.

VI. CONCURRENCY CONTROL

Unlike most databases built on-top Big
Data platforms, HRDBMS supports DML
operations and serializable transac- tions.
HRDBMS runs a lock manager,
transaction manager, and log manager on
every coordinator and worker node.
Additionally, each coordinator runs an
XA manager that is responsible for
coordinating commits using a hierarchical
two- phase commit (2PC) protocol. While
HRDBMS does support serializable
transactions and DML, this has not been
our main focus, and thus the performance
and scalability of OLTP has not been
thoroughly evaluated yet.

Lock Manager. HRDBMS achieves
serializability and weaker isolation levels
(such as repeatable read and read
committed) via page-level locks using
two lock-modes (shared and exclu- sive).
We use a standard SS2PL locking
protocol [9] (i.e., locks are held until
transactions commit) to ensure
serializability. The lock manager running
on a node is only responsible for granting
locks on that node. If a lock request fails
on a node (due to deadlock or timeout),
that lock manager will inform the XA
manager on the coordinator handling the
transaction. The XA manager will then
initiate a cluster-wide rollback of the
transaction. The lock managers currently
implement local deadlock detection via a
wait-for graph [31] and timeout to
prevent deadlocks with multiple nodes
involved. By default deadlock detection
runs once a minute.

XA Manager and Transaction Manager.
The XA man- ager on a coordinator acts
as the global transaction manager keeping
track of all active transactions that
initiated from that coordinator. For each
transaction it tracks which nodes are
involved in this transaction. If a
transaction T is to be committed or rolled
back, the XA manager initiates a two-

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-1, 2017

DOI: 10.21276/ijcesr.2017.4.1.8
68

phase commit (2PC) process. HRDBMS
uses a hierarchical 2PC protocol similar
to the one used in System R* [35], i.e., all
2PC communication is based on our tree
topology. The advantage of our tree
topology is that messages can be quickly
broadcasted to a large number of nodes,
and that responses are aggregated before
they are returned to the coordinator. This
effectively reduces the amount of work
and network communication at the
coordinator. First, a PREPARE message
is sent to all nodes involved in the
transaction. Each node prepares the
commit (or signals abort) and waits for a
response from all nodes to which it
forwarded the prepare message (its
children in the tree topology). If the
prepare processing on a node is
successful and it receives positive
responses from all of its children, then it
returns a positive response to its parent.
Only if all responses are positive, the
coordinator sends a COMMIT message to
all involved nodes. When a node

receives a PREPARE, COMMIT, or
ROLLBACK message, the transaction
manager on that node that processes the
necessary actions. This includes 1)
requesting the buffer manager to unpin
pages, 2) requesting the lock manager to
release locks, and 3) requesting the log
manager to persist entries to the write-
ahead log.

Log Manager. Each node has a log
manager that manages the write-ahead
log (WAL) on that node. In the case of
worker nodes, the WAL is tracking
changes to user data. For the coordinator
nodes, the WAL is tracking changes to
the system metadata tables. The log
managers on the coordinator nodes also
manage an additional log called the XA
log. This log stores PREPARE,
COMMIT, and ROLLBACK records as
required by the 2PC protocol. The XA
log is used to deal with worker node
failures. When a worker node restarts, it
attempts recovery from its own WAL. In

some cases this log may not have enough
information to determine the global state
of a transaction. For example, if the last
message that a worker received before it
crashed was a PREPARE message for a
transaction T , then it does not know if
the consensus was to commit or rollback
transaction T . The PREPARE record
stored in the worker’s WAL stores which
coordinator is responsible. The worker
contacts this coordinator to determine
whether it should commit or rollback the
transaction. While HRDBMS does not
yet implement recovery for permanent
node failures, it can recover the database
state after a failed node (worker or
coordinator) is brought back online.

Synchronization of Coordinator
Metadata. In a deployment of HRDBMS
with multiple coordinator nodes, the
system metadata tables must be kept in
sync across the coordinators. To achieve
this, all insert, update, and delete
statements that access metadata tables
have to finish successfully on all
coordinators in order to be considered
successful. This means that a transaction
changing metadata is not allowed to
commit unless its DML operations have
completed successfully on every
coordinator. This is achieved using the
2PC protocol described above where the
coordinator receiving a DDL state- ment
coordinates the protocol.

VII. EXPERIMENTS

Setup & Workloads. We ran the TPC-H
benchmark [16] query workload over a
1TB instance (SF1000) on setups rang-
ing from 8 to 96 nodes. All tests were run
on the Cooley cluster at Argonne
National Laboratory. Each node has two
Intel Haswell E5-2620 v3 processors, for
a total of 12 cores and 384GB RAM. The
nodes are connected via FDR Infiniband.
All data, including temporary data, was
placed on the GPFS filesystem [40] that
these nodes share. All of the databases
that we tested are designed to operate
with local filesystems. Since the system
we had access to only has a shared

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-1, 2017

DOI: 10.21276/ijcesr.2017.4.1.8
69

filesystem, we had to make sure that the
shared filesystem was not a bottleneck in
our experiments. We did extensive testing
to determine appropriate sizing, i.e., as
how many local disks should the GPFS
filesystem be represented as on each
node. We determined that we could allow
each node to mimic 2local disks for data
storage and 2 local disks for temporary
data using the GPFS filesystem, and that
this could be scaled to 96 nodes in the
Cooley environment without becoming a
bottleneck. Since in our setup, data is
distributed quite evenly across nodes, I/O
operations also were quite evenly
distributed. That is, the use of GPFS was

not hiding load balancing issues. The
main purpose of our evaluation is to
compare the scalability and per-node
performance of our system over a typical
OLAP workload against main memory
and disk- resident SQL engines built on
top of Big Data platforms as well as
against an MPP database system. We
chose to test with Hive V1.2.1, Spark
SQL V1.6.0, and Greenplum V4.3.99.
Since we also wanted to evaluate system
performance when the size of data
exceeds available main memory, we
restricted each node to use 24GB of
RAM.

TPC-H. For our evaluation we use the
TPC-H benchmark at the 1TB scale. The
benchmark consists of 22 complex
decision support queries. We ran 21 of
the 22 queries, skipping the one that
involved an outer join as outer joins have
not been implemented in HRDBMS yet.

As mentioned before, we ran the
benchmark on Hive, Spark SQL,
Greenplum, and HRDBMS. Figure 7a
shows the total elapsed time (wall clock
time) for all TPC-H queries for each
system when scaling from 8 to 96 nodes
(log-log scale). Note that no result is

shown for Greenplum at 8 nodes because
the system ran out of memory for some of
the queries. Figure 7b shows the speedup
for each system relative to performance at
8 nodes. For computing the speedup, we
used the elapsed time of the 19 queries
that did finish at 8 nodes on Greenplum.

Figure 7c shows stepwise speed-up for all
systems (bottom) and stepwise speed-up
as a percentage of linear speed-up on top
(e.g, doubling the number of nodes
decreases the runtime by 50%). Figure 8
shows individual query runtimes for 8
(top) and 96 nodes (bottom).

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-1, 2017

DOI: 10.21276/ijcesr.2017.4.1.8
70

In general, Spark SQL is several times
faster than Hive in our evaluation,
HRDBMS is several times faster than
Spark SQL, and Greenplum is 15% - 30%
faster than HRDBMS. The performance
gains over Spark are due to our non-
blocking shuffle without materialization,
scalable n-to-m topology for shuffles,
predicate-based data skipping, and
enforced data locality which allows us to
often avoid shuffles for joins (and other
operations). At 8 nodes, the performance
for Spark SQL is much worse compared
to the other cluster sizes. This is due to
the fact that Spark uses excessive
amounts of memory which results in high
JVM garbage collection overhead. The
poor performance of Spark SQL at 8
nodes artificially inflates its speedup
results. Thus, we also show step-wise
speed-up in Figure 7(c). While Spark
SQL exhibits decent speedup, HRDBMS
did even better. At the other end of the
cluster size spectrum, we observe that
Greenplum runs into scalability issues at
64 nodes and had significant problems
scaling to 96 nodes. The other databases,
HRDBMS included, scaled well to 96
nodes. In fact at 96 nodes, HRDBMS
outperformed Greenplum by 3%.

Per Query Comparison with Greenplum.
Since Greenplum was most competitive
in terms of performance, we take a closer
look at the performance of individual
queries comparing against this system.
Query 1 exhibits similar runtime on

#Nodes Greenplum(runtime) (speed-up) HRDBMS(runtime) (speed-up)

8 OOM 2,580

16 856 1.00 1,499 1.00

32 395 2.17 731 2.05

64 351 2.44 319 4.70

96 433 1.98 194 7.73

Fig. 9: TPC-H query Q18 runtime (sec)
and speed-up relative to 16 nodes (in
parentheses) for Greenplum and
HRDBMS.

to newer versions of the tested systems,
we repeated the 8 node experiments
utilizing the full memory of the nodes

(384GB) using Hive 2.1.0 (Hadoop 2.7.3)
on Tez 0.8.4, Spark 2.0.1 (Hadoop 2.7.3),
and Greenplum (V4.3.99). The total
runtimes for each system are shown
below. Spark SQL runtime is improved
by 40%, HRDBMS by 12%, and all
queries finished successfully with
Greenplum. We observed a 3.7x speedup
for Hive on Tez compared to Hive.
However, HRDBMS still outperforms
Hive on Tez by a factor of 2.9.

HRDBMS and Greenplum at both 8
nodes and 96 nodes. This indicates that
both systems have similar table scan
performance and aggregation
performance. Note that we use columnar
tables for both systems. HRDBMS
performs much better than Greenplum for
queries 6, 14, 15, and 20. This is due to
predicate-based data skipping.
Greenplum outperforms HRDBMS on
queries 2, 11, and 21 which involve
correlated subqueries. Both Greenplum
and HRDBMS unnest and decor- relate
these subqueries, however there is an
opportunity in these queries for reuse of
intermediate results which HRDBMS
does not currently exploit. Greenplum
outperforms HRDBMS on query 19.
Query 19 involves a complex predicate
that becomes massive when converted
into conjunctive normal form. Greenplum
reorders the conjunctions after the con-
version such that tuples are eliminated as
early as possible. HRDBMS currently
does not apply this optimization. Query
22 is an aggregation over a single table.
The query contains two nested subqueries
- one is a correlated NOT EXISTS while
the other one is an uncorrelated scalar
subquery (it returns a single value).
Greenplum outperforms HRDBMS on
this query, because it caches the result of
the scalar subquery while, as mentioned
above, HRDBMS does not yet support
caching of intermediate results.

Figure 9 shows the runtime and speed-up
for query 18. Up to 32 nodes, Greenplum
outperforms HRDBMS. For higher
number of nodes HRDBMS outperforms
Greenplum. At 96 nodes, HRDBMS

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-1, 2017

DOI: 10.21276/ijcesr.2017.4.1.8
71

significantly outperforms Greenplum on
this query. This query involves (semi-
)joins producing large intermediate
results, and an aggregation with 1.5
billion groups (for the 1TB instance).
HRDBMS benefits from our n-to-m
topology and from implementing the
group-by using a shuffle.

3TB TPC-H Instance. In this experiment,
we increased the size of the dataset to
3TB on 8 nodes. For this configuration
the data is about 15 times larger than
memory prior to com- pression. Given
that Greenplum failed with out-of-
memory errors for two queries at the 1TB
scale at 8 nodes, it is not surprising that
the same queries (Q9 and Q18) also failed
at 3TB. In addition, Spark SQL failed
with out-of-memory errors for the same
queries at 3TB. We assume that Hive
would have been able to complete all of
the queries successfully, but based on our
results for the 1TB TPC-H instance, we
estimate that runtime of the entire
benchmark would have taken close to 9
days to complete for the 3TB instance.
HRDBMS, on the other hand, completed
all 21 queries successfully taking 2.85x

longer than the runtime for 1TB (for a
total of ∼12 hours).

Current System Versions. To test how
HRDBMS compares

 HiveonTez SparkSQL Greenplum HRDBMS

Runtime(sec) 39,228 86,227 10,186 13,621

Summary. These results demonstrate that
we were able to meet our main goal in
developing HRDBMS. We have devel-
oped a distributed query execution engine
capable of per-node performance on par
with a traditional MPP relational database
and with scalability on par with systems
such as Hive and Spark SQL up to scales
of 96 nodes.
I. CONCLUSIONS AND FUTURE
WORK
We present HRDBMS, a shared-nothing
distributed database aimed to achieve
good per-node performance as well as

scalability. HRDBMS achieves this goal
though a careful com- bination of
traditional query processing techniques
with tech- to be able to recover from the
complete loss of a node or disk and
support iterative dataflows for machine
learning and complex analytics.
REFERENCES
[1] Rafi Ahmed, Allison Lee, Andrew
Witkowski, Dinesh Das, Hong Su,
Mohamed Zait, and Thierry Cruanes.
Cost-based query transformation in
Oracle. In VLDB, pages 1026–1036,
2006.
[2] Anastassia Ailamaki, David J
DeWitt, and Mark D Hill. Data page
layouts for relational databases on deep
memory hierarchies. VLDB Journal,
11(3):198–215, 2002.
[3] Mohammed Al-Kateb, Paul
Sinclair, Grace Au, and Carrie Ballinger.
Hybrid row-column partitioning in
Teradata®. PVLDB, 9(13):1353– 1364,
2016.
[4] Thara Angskun, George Bosilca,
and Jack Dongarra. Binomial graph: A
scalable and fault-tolerant logical
network topology. In ISPA, pages 471–
482, 2007.
[5] Lyublena Antova, Amr El-Helw,
Mohamed A Soliman, Zhongxian Gu,
Michalis Petropoulos, and Florian Waas.
Optimizing queries over partitioned
tables in MPP systems. In SIGMOD,
pages 373–384, 2014.
[6] Michael Armbrust, Reynold S.
Xin, Cheng Lian, Yin Huai, Davies Liu,
Joseph K. Bradley, Xiangrui Meng,
Tomer Kaftan, Michael J. Franklin, Ali
Ghodsi, and Matei Zaharia. Spark SQL:
relational data processing in Spark. In
SIGMOD, pages 1383–1394, 2015.
[7] Jason Arnold, Boris Glavic, and
Ioan Raicu. HRDBMS: A NewSQL
database for analytics. In CLUSTER,
pages 519–520, 2015.
[8] Jason Arnold, Boris Glavic, and
Ioan Raicu. HRDBMS: Combin- ing the
best of modern and traditional relational
databases. CoRR, abs/1901.08666, 2018.
[9] Philip A. Bernstein, Vassos
Hadzilacos, and Nathan Goodman. Con-

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-1, 2017

DOI: 10.21276/ijcesr.2017.4.1.8
72

currency Control and Recovery in
Database Systems. Addison-Wesley,
1987.
[10] Paris Carbone, Stephan Ewen, Seif
Haridi, Asterios Katsifodimos, Volker
Markl, and Kostas Tzoumas. Apache
Flink: Stream and batch processing in a
single engine. Data Eng. Bull., page 28,
2015.
[11] Bill Chambers and Matei Zaharia.
Spark: The definitive guide big data
processing made simple. 2018.
[12] Fay Chang, Jeffrey Dean, Sanjay
Ghemawat, Wilson C. Hsieh, Deb- orah
A. Wallach, Mike Burrows, Tushar
Chandra, Andrew Fikes, and Robert E.
Gruber. Bigtable: A distributed storage
system for structured data. TOC,
26(2):4:1–4:26, June 2008.
[13] Lei Chang, Zhanwei Wang, Tao
Ma, Lirong Jian, Lili Ma, Alon Goldshuv,
Luke Lonergan, Jeffrey Cohen, Caleb
Welton, Gavin Sherry, et al. HAWQ: a
massively parallel processing SQL engine
in Hadoop. In SIGMOD, pages 1223–
1234, 2014.
[14] Yann Collet. LZ4:
Extremely fast compression
algorithm.code.google.com. Accessed:
2013, Jan 1.
[15] James C. Corbett, Jeffrey Dean,
Michael Epstein, et al. Spanner: Google’s
globally-distributed database. In OSDI,
pages 261–264, 2012.
[16] Transaction Processing
Performance Council. TPC-H benchmark
spec- ification.
http://www.tcp.org/hspec.html, 2008.
[17] Tyler Crain, Vincent Gramoli, and
Michel Raynal. No hot spot non-
blocking skip list. In ICDCS, pages 196–
205, 2013.
[18] Jeffrey Dean and Sanjay
Ghemawat. MapReduce: Simplified data
processing on large clusters. In OSDI,
pages 137–150, 2004.
[19] Avrilia Floratou, Umar Farooq
Minhas, and Fatma Ozcan. SQL- on-
Hadoop: Full circle back to shared-
nothing database architectures. PVLDB,
7(12), 2014.

[20] Diego Garc´ıa-Gil, Sergio
Ram´ırez-Gallego, Salvador Garc´ıa, and
Fran- cisco Herrera. A comparison on
scalability for batch big data processing
on Apache Spark and Apache Flink. Big
Data Analytics, 2(1):1, 2017.
[21] Benjamin Hindman, Andy
Konwinski, Matei Zaharia, Ali Ghodsi,
Anthony D Joseph, Randy H Katz, Scott
Shenker, and Ion Stoica. Mesos: A
platform for fine-grained resource sharing
in the data center. In NSDI, volume 11,
pages 22–22, 2011.
[22] David A Huffman et al. A method
for the construction of minimum-
redundancy codes. PIRE, 40(9):1098–
1101, 1952.
[23] Robert Kallman, Hideaki Kimura,
Jonathan Natkins, Andrew Pavlo, Alex
Rasin, Stanley B. Zdonik, Evan P. C.
Jones, Samuel Madden, Michael
Stonebraker, Yang Zhang, John Hugg,
and Daniel J. Abadi. H-store: a high-
performance, distributed main memory
transaction pro- cessing system. PVLDB,
1(2):1496–1499, 2008.

[24] Won Kim. On optimizing an SQL-
like nested query. TODS, 7(3):443– 469,
1982.

[25] Marcel Kornacker, Alexander
Behm, Victor Bittorf, Taras Bobrovytsky,
Casey Ching, Alan Choi, Justin Erickson,
Martin Grund, Daniel Hecht, Matthew
Jacobs, et al. Impala: A modern, open-
source SQL engine for Hadoop. In CIDR,
2015.
[26] Avinash Lakshman and Prashant
Malik. Cassandra: A decentralized
structured storage system. SIGOPS,
44(2):35–40, 2010.
[27] Leslie Lamport. Fast paxos.
Distributed Computing, 19(2):79–103,
2006.
[28] Alon Y Levy, Inderpal Singh
Mumick, and Yehoshua Sagiv. Query
optimization by predicate move-around.
In VLDB, pages 96–107, 1994.
[29] Tonglin Li, Xiaobing Zhou, Kevin
Brandstatter, Dongfang Zhao, Ke Wang,
Anupam Rajendran, Zhao Zhang, and
Ioan Raicu. Zht: A light-weight reliable

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-1, 2017

DOI: 10.21276/ijcesr.2017.4.1.8
73

persistent dynamic scalable zero-hop
distributed hash table. In IPDPS, 2013.
[30] Tonglin Li, Xiaobing Zhou, Ke
Wang, Dongfang Zhao, Iman Sadooghi,
Zhao Zhang, and Ioan Raicu. A
convergence of key-value storage
systems from clouds to supercomputers.
Concurrency and Computation: Practice
and Experience, 28(1):44–69, 2015.
[31] Philip P Macri. Deadlock detection
and resolution in a CODASYL based data
management system. In SIGMOD, pages
45–49, 1976.
[32] Sergey Melnik, Andrey Gubarev,
Jing Jing Long, Geoffrey Romer, Shiva
Shivakumar, Matt Tolton, and Theo
Vassilakis. Dremel: Interactive analysis
of web-scale datasets. PVLDB, 3(1):330–
339, 2010.
[33] Guido Moerkotte. Small
Materialized Aggregates: A light weight
index structure for data warehousing. In
VLDB, pages 476–487, 1998.
[34] C Mohan, Don Haderle, Bruce
Lindsay, Hamid Pirahesh, and Peter
Schwarz. ARIES: a transaction recovery
method supporting fine- granularity
locking and partial rollbacks using write-
ahead logging. TODS, 17(1):94–162,
1992.
[35] C Mohan, Bruce Lindsay, and Ron
Obermarck. Transaction management in
the R* distributed database management
system. TODS, 11(4):378– 396, 1986.
[36] James K. Mullin. Optimal
semijoins for distributed database
systems.IEEE Transactions on Software
Engineering, 16(5):558–560, 1990.
[37] Diego Ongaro and John K.
Ousterhout. In search of an
understandable consensus algorithm. In
Garth Gibson and Nickolai Zeldovich,
editors, USENIX ATC, pages 305–319.
USENIX Association, 2014.
[38] Julian Rith, Philipp S Lehmayr,
and Klaus Meyer-Wegener. Speaking in
tongues: SQL access to NoSQL systems.
In SAC, pages 855–857, 2014.

[39] Bikas Saha, Hitesh Shah, Siddharth
Seth, Gopal Vijayaraghavan, Arun
Murthy, and Carlo Curino. Apache Tez:
A unifying framework for modeling and
building data processing applications. In
SIGMOD, pages 1357–1369, 2015.
[40] Frank B Schmuck and Roger L
Haskin. GPFS: A shared-disk file system
for large computing clusters. In FAST,
volume 2, pages 231–244, 2002.
[41] P. Seshadri, H. Pirahesh, and
T.Y.C. Leung. Complex Query Decorre-
lation. In ICDE, pages 450–458, 1996.
[42] Ion Stoica and et al. The berkeley
data analysis system (BDAS): An open
source platform for big data analytics.
Technical report, University of
California, Berkeley, 2017.
[43] Michael Stonebraker and Ariel
Weisberg. The VoltDB main memory
DBMS. IEEE Data Eng. Bull., 36(2):21–
27, 2013.
[44] Ashish Thusoo, Joydeep Sen
Sarma, Namit Jain, Zheng Shao, Prasad
Chakka, Suresh Anthony, Hao Liu, Pete
Wyckoff, and Raghotham Murthy. Hive -
A 1626–1629, 2009.
[45] Vinod Kumar Vavilapalli and et al.
Apache Hadoop YARN: Yet another
resource negotiator. In SoCC, page 5,
2013.

[46] Eugene Wong and Karel Youssefi.
Decomposition - a strategy for query
processing. TODS, 1(3):223–241, 1976.
[47] Reynold S. Xin, Josh Rosen, Matei
Zaharia, Michael J. Franklin, Scott
Shenker, and Ion Stoica. Shark: SQL and
rich analytics at scale. In SIGMOD,
pages 13–24, 2013.
[48] Weipeng P Yan, Per-Bike Larson,
et al. Eager aggregation and lazy
aggregation. In VLDB, volume 95, pages
345–357, 1995.
[49] Matei Zaharia, Mosharaf
Chowdhury, Michael J. Franklin, Scott
Shenker, and Ion Stoica. Spark: Cluster
computing with working sets. In
HotCloud, 2010.

.

	Abstract—The scalability of systems such as Hive and Spark SQL that are built on top of big data platforms have enabled query processing over very large data sets. However, the per- node performance of these systems is typically low compared to tradit...
	Index Terms—SQL, big data, distributed query processing
	I. INTRODUCTION
	The increasing scale of data to be processed for analytics has brought traditional DBMS that scale only to a few nodes to their limits. Massively Parallel Processing (MPP) databases provide better scale out by parallelizing query processing across pro...
	/
	Fig. 1: Anatomy of a HRDBMS cluster
	compares systems in terms of scalability (scale-out) and per- node performance. Databases without intra-query parallelism (e.g., Postgres) do not scale to large clusters and also have limited per-node performance for complex queries, because they do n...
	The goal of building HRDBMS (highly-scalable relational DBMS), the system we present in this work, is to build a DBMS with a per-node performance comparable to MPP databases as well as scalability comparable with Big Data platforms. Based on an analys...
	A. System Overview
	Cluster Organization. As shown in Figure 1, an HRDBMS cluster consists of coordinator and worker nodes. Coordinators store metadata, handle communication with clients, and are responsible for query optimization, transaction coordinationand cluster-wid...
	/
	Communication. A challenge faced by any distributed database system is that operations like shuffling require one node to communicate with a large number of nodes in the cluster. This is one of the primary scalability bottlenecks in MPP systems. The s...
	Storage and Locality. HRDBMS supports both row and columnar tables. Data is stored on the local disks of worker nodes using a page-oriented layout. Similar to MPP databases, tables are partitioned across nodes and disks based on a partitioning strateg...
	Execution Engine. A major contributor to the poor per- formance of Hive and other Hadoop-based approaches is excessive materialization. Even systems such as Spark SQL still materialize data during shuffle operations per default. Similar to MPP systems...
	Fault Tolerance. Fault tolerance in HRDBMS is currently limited to Aries-style recovery [34] based on write-ahead logs maintained on each node. Metadata is replicated across all coordinators and kept in-sync using the 2PC protocol [35].
	Resource management. Systems like YARN [45] andMesos [21] are frequently used to manage the resources in a cluster, e.g., to let multiple applications share the same cluster. We deliberately chose to let HRDBMS manage its own resources, beca...
	B. Contributions
	Our key contributions are two-fold: (i) we demonstrate how a principled combination of traditional query processing techniques with ideas from distributed dataflow engines can improve performance and scalability leading to a system that is more than t...
	Analysis of Bottlenecks and Principled System Design. We identify and address performance bottlenecks including non- scalable communication, blocking shuffle operations, and data locality not being exploited. By choosing and picking the most effective...
	Novel Techniques. The principled combination of previous ideas however is not sufficient for achieving our goal. We additionally make the following technical contributions that improve the state-of-the-art in distributed query processing in several re...
	• Scalable communication patterns for all operations: Approaches like Dremel [32] reduce the number of neigh- bors a node has to communicate with for hierarchical op- erations such as aggregation. However, to the best of our knowledge, we are the firs...
	versions of group-by aggregation and join), this translates into a significant improvement in scalability (e.g., see the discussion of our experimental results for TPC-H query 19 in Section VII).
	• Predicate-based Data Skipping: Data skipping based on small materialized aggregates [33] stores for each page of a table the minimal and maximal values for each of the table’s attributes. This information is used during query processing to skip a pa...
	Experimental Evaluation. We experimentally evaluate our system on a 96 node cluster comparing against Hive, Spark SQL, and Greenplum. Our results demonstrate that HRDBMS provides per-node performance competitive with Greenplum and exhibits scalability...
	The remainder of this paper is organized as follows. We discuss related work in Section II. Section III discusses the system’s storage engine and indexing capabilities. We intro- duce our distributed execution engine in Section IV. Section V covers HR...
	II. RELATED WORK
	HRDBMS builds upon the long history of relational query processing as well as on ideas from big data platforms. We did present a preliminary version of the system in [7], [8].
	MPP Databases. MPP databases such Greenplum, Netezza, and Teradata distribute pipelined query processing across nodes using a shared-nothing architecture. MPP databases utilize local disks on worker nodes for page-oriented record storage and replicati...
	SQL on Big Data Platforms. Hive [44] is an SQL engine built on top of Hadoop. While inheriting the scalability of its host platform, the per-node performance of Hive is severely restricted by the excessive materialization of MapReduce and lack of supp...
	SQL on Key-value Stores. Recently, several SQL front- ends for NoSQL databases (key-value stores) such as Cassan- dra [26] and ZHT [29], [30] have been introduced. NoSQL databases are typically designed for high-throughput CRUD operations and cannot e...
	III. STORAGE
	HRDBMS stores data on the local filesystems of worker nodes. Tables may be hash- or range-partitioned, or dupli- cated across nodes. Within each node an additional level of partitioning is applied to spread data across the node’s disks. The partitioni...
	data is distributed across workers and use this information to enforce that data is always read on the worker node(s) where it resides. This is in contrast to systems such as Hive or Spark SQL where locality can only be stated as a preference.
	Block Storage. All index and table data in HRDBMS is stored in pages of configurable size (up to 64MB). Pages are compressed using LZ4 [14] (fast decompression).
	Row and Column Storage. HRDBMS supports both row and columnar tables. The row-oriented table implementation is standard: each page contains a header with information about the rows stored on that page and their schema; the rest of the page contains da...
	Columnar tables are implemented as a row/columnar hybrid, similar to PAX [2]. All columns of a table are stored in a single file as a sequence of page sets. A page set for a table with n columns consists of n pages, each storing values of one column. ...
	Buffer Manager. All access to data and index pages in HRDBMS is handled by a node’s buffer manager. The buffer manager has the ability to dynamically grow and shrink the buffer pool as needed. The buffer pool of a node is partitioned into stripes - ea...
	Predicate-based Data Skipping. During a table scan, HRDBMS keeps track of which pages do not contain any rows matching a predicate and records this information in a predicate cache associated with each individual page. This is
	maintained as a mapping cache : P → {θi} from a page P toa set of predicates θi. Subsequent table scan operations with a predicate θ can then skip each page P with θ cache(P). Furthermore, if a predicate θ logically implies one of the cach...
	as long as a page or page set is full, any information we cache about it will be valid until the table is reorganized. Based on our experience with HRDBMS, a 10TB database with 1000 previously executed queries running on 10 nodes would contain about 2...
	Index Structures. HRDBMS supports B+-trees and disk- resident skip lists. Skip lists are fairly common in main- memory databases (e.g., [17]) because they can support non- blocking concurrent access. We map skip lists to disk as an append-only page fi...
	External Data Sources. HRDBMS features an extensible external table framework which supports distributed access to external data sources. A user-defined external table type (UET) for a distributed data source can expose the horizontal partitioning of ...
	/
	IV. EXECUTION ENGINE
	HRDBMS features a distributed dataflow engine with built- in support for relational operators. Our engine is inherently asynchronous and pipelines operations within and across nodes and processors. Per default, once data is read from disk, all operati...
	Pipelined Execution. Pipelining is a standard practice that avoids unnecessary materialization of intermediate results. Operators that need to consume their whole input before producing a result are called blocking. HRDBMS tries to avoid blocking oper...
	Enforcing Scalable Communication. A critical scalability bottleneck of many distributed SQL engines is that operations such as shuffle may require nodes to communicate with (n) neighbors where n is the number of nodes in the cluster.
	For large cluster sizes, the amount of resources occupied by opening and monitoring such a large number of sockets may already be a performance bottleneck. We support two strategies for enforcing a limit Nmax on the number of network connections per n...
	We distribute hierarchical computations using a tree topol- ogy with a maximal fan-out of Nmax 1 (see Figure 4(a)). An example of a hierarchical operator is a distributed merge sort, where each merge phase can be processed by a separate level in such ...
	The second strategy is applied for operations that require n-to-m communication, e.g., a shuffle. To enforce the Nmax limit, we use some nodes as intermediate communication hubs which forward data from senders to receivers. Our approach is based on th...
	Non-blocking, Hierarchical Shuffle. A shuffle operation hash-partitions data across nodes. In Hadoop, reducers expect their input to be sorted by key. Hadoop’s shuffle is a blocking operation because of this sorting step. Since many relational operato...
	Operator Implementations. HRDBMS implements hash- based aggregation, optionally using a shuffle to assign a subset of the groups to each worker. Alternatively, each nodes pre- aggregates data available locally akin to a combiner in MapRe- duce. If pre...
	Fig. 5: Initial plan for the query from Example 1
	received from its children. The same concept applies to sorting. We use a distributed implementation of an n-way merge sort based on the tree topology. Leaf nodes create sorted runs. Non- leaf nodes merge runs into larger runs. HRDBMS uses hash joins ...
	Operator Parallelism. HRDBMS uses both intra- and inter- operator parallelism to evaluate an execution plan on a worker node. The degree of parallelism for scan operators is deter- mined based on the number of disks per worker. Complex operations such...
	Spilling to Disk. All operator implementations in HRDBMS have the ability to spill data to disk as needed. This decision is made at runtime based on available memory and statistics which predict the amount of memory that will be required.
	V. OPTIMIZER
	HRDBMS has a cost-based optimizer that uses statistics for cost estimation. To reduce the size of the search space, we split optimization into multiple phases (e.g., join order is
	Example 1. Consider the following query over the TPC- H schema [16] that computes how much money Canadian customers have spent. Figure 5 shows the initial operator tree produced by HRDBMS’s parser.
	SELECT sum(l_extendedprice)
	FROM lineitem, orders, customer, nation WHERE o_orderkey = l_orderkey
	AND o_custkey = c_custkey
	AND c_nationkey = n_nationkey AND n_name = ’CANADA’
	1. Global Optimization Phase. HRDBMS takes advantage of decades of research and development in relational query optimization to build efficient execution plans. As a first step, conditional expressions are normalized and attribute equivalence classes ...
	Next we use statistics to apply cost-based join enumeration (determining the join order with the lowest cost) using a variant of the so-called greedy join enumeration algorithm [46] and choose which physical operators to use (e.g., table vs. index sca...
	Afterwards, we apply transformations such as pushing group-by through joins. Our group-by transformation is in- spired by Wong et al. [48]. Since this transformation is only
	determined in the 1st phase independent on how the query will be distributed across nodes) and make extensive use of heuristics. Optimization consists of the following phases:
	• 1. Global Optimization Phase - Perform heuristic and cost-based optimizations ignoring distribution.
	• 2. Dataflow Conversion Phase - Convert the query plan into a na¨ıve distributed dataflow by ensuring data-locality of table and index scans. This is achieved by splitting scan operators into one scan per fragment of a table and placing the scan for ...
	• 3. Dataflow Optimization Phase - Optimize the dataflow by re-distributing operators from the coordinator to worker nodes and distributing the execution of individual operators across nodes.
	In the following we describe each of these phases in detail using the example shown below.
	sometimes beneficial, we make a cost-based decision on when to apply it. In the future, we will implement a wider variety of such transformations. Furthermore, we will investigate the use of non-exhaustive search strategies following an approach simil...
	Example 2. Reconsider the previous example query. Fig- ure 6(a) shows a plan for this query that may be generated by the first phase of optimization. The selection on n name has been pushed through the crossproduct and the crossproduct has been transf...
	2. Dataflow Conversion Phase. After a global plan has been produced by phase 1, the operator tree is converted into a na¨ıve distributed dataflow by splitting each table scan operator into individual scan operators for the fragments of the table. The ...

