

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-1, 2017

DOI:10.21276/ijcesr.2017.4.1.2
9

AN EVALUATION OF OPEN SOURCE SERVERLESS CLOUD

COMPUTING FRAMEWORKS
PAMBALANAGESWARARAO 1, J RANJITH 2, EEDUNURI MURALIDHAR REDDY 3

4.THAMBI VINOD KUMAR, 5.K.VENKATA RAMANA
 Assistant Professor, Department of Computer Engineering, Ellenki college of Engineering and
Technonlogy, patelguda (vi), near BHEL ameenpur (m), Sangareddy Dist. Telangana 502319.

Abstract
Recent advancements in virtualization
and software architecture have led to
the new paradigm of
serverlesscomput- ing, which allows
developers to deploy applications as
stateless functions without worrying
about the underlying infrastructure.
Accordingly, a serverless platform
handles the lifecycle, exe- cution and
scaling of the actual functions; these
need to run only when invoked or
triggered by an event. Thus, the major
benefits of serverless computing are
low operational concerns and efficient
resource management and utilization.
Serverless computing is currently
offered by several public cloud service
providers. However, there are certain
limitations on the public cloud
platforms, such as vendor lock-in and
restrictions on the computation of the
functions. Open source serverless
frameworks are a promising solution
to avoid these limitations and bring
the power of serverless computing to
on-premise deployments. However,
these frameworks have not been
evaluated before. Thus, we carry out a
comprehensive feature comparison of
popular open source serverless
computing frameworks. We then
evaluate the performance of selected
frameworks: Fission, Kubeless and
OpenFaaS. Specifically, we
characterize the response time and
ratio of successfully received
responses under different loads and
provide insights into the design

choices of each framework.
Index Terms—serverless computing, function-
as-a-service, Kubeless, Fission, OpenFaaS,
performance evaluation

I. INTRODUCTION
Serverless computing is an emerging paradigm
wherein soft- ware applications are decomposed
into multiple independent stateless functions [1,
2]. Functions are only executed in re- sponse to
triggers (such as user interactions, messaging
events or database changes), and can be scaled
independently as they are completely stateless.
Hence, serverless computing is also sometimes
referred to as function-as-a-service (FaaS) [3].
In this approach, almost all operating concerns
are abstracted away from developers. In fact,
developers simply write code and deploy their
functions on a serverless platform [4]. The
platform then takes care of function execution,
storage, con- tainer infrastructure, networking,
and fault tolerance. Addition- ally, the
serverless platform takes care of scaling the
functions according to the actual demand.
Serverless computing has been identified as a
promising approach for several applications,
such as those for data analytics at the network
edge [5, 6], scientific computing [7] and mobile
computing [8].
In serverless computing, the infrastructure is
generally man- aged by a third-party service
provider or an operations team when using a
private cloud. Currently, all major cloud service
providers offer solutions for serverless
computing, namely, Amazon Web Services
(AWS) Lambda, Azure Functions, IBM

Cloud Functions and Google Cloud Functions.
However, these platforms require the functions
to be written in a certain way, resulting in

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-1, 2017

DOI:10.21276/ijcesr.2017.4.1.2
10

vendor lock-in [2, 9]. Moreover, developers
have to rely on the serverless provider’s release
cycle and additional services from the cloud
platform such as message queuing and data
storage. They also have to comply with
constraints on function code size, execution
duration and concurrency [10]. Open source
FaaS frameworks are a promising solution to
bring the power of serverless computing on-
premise. Such frameworks provide more
flexibility (for deploying applica- tions,
configuring the framework, etc.) and thereby
avoid vendor lock-in. For instance, open source
frameworks can be deployed both on the
edge/fog devices as well as on the public cloud
for distributed data analytics [5, 6]. In this
regard, a serverless framework should be easy
to set up, configure and manage; it should also
provide certain performance guarantees.
Although recent works have focused on
serverless platforms in the public cloud [10,
11], none has evaluated open source FaaS
frameworks. In contrast, this work provides a
comprehensive feature comparison of popular
open source serverless frame- works, namely,
Kubeless [12], OpenFaaS [13], Fission [14] and
Apache OpenWhisk [15]. Furthermore, it
evaluates the performance (in terms of response
time and ratio of successful responses) of these
frameworks under different workloads and
provides insights into the design choices behind
them. It finally examines the impact of auto
scaling on performance.

The rest of the article is organized as follows.
Section II de- scribes the considered
frameworks and analyzes their features. Section
III evaluates the performance of selected
frameworks. Section IV reviews the related
work. Finally, Section V pro- vides concluding
remarks as well directions for future work.

II. OPEN SOURCE SERVERLESS
COMPUTING FRAMEWORKS

This section describes four popular open source
serverless frameworks, namely, Fission,
Kubeless, OpenFaaS and Open- Whisk. We
chose frameworks with at least 3,000 GitHub
stars (a mark of appreciation from users). Table
I summarizes their features. All the considered
frameworks run each serverless function in a
separate Docker container to provide isolation.

OpenFaaS, Kubeless and Fission utilize a
container orchestra- tor to manage the
networking and lifecycle of the containers,
whereas OpenWhisk may be deployed with or
without an orchestrator. We present a short
summary of the frameworks, highlighting their
main components.

Fission is an open source serverless computing
framework built on top of Kubernetes and using
many Kubernetes-nativeconcepts [14]. The
framework executes a function inside an
environment that contains a webserver and a
dynamic language-specific loader required to
run the function [18]. An executor controls how
function pods are created and scaled. One of the
main advantages of Fission is that it can be
configured to run a pool of “warm” containers
so that requests are served with very low
latencies [41].

Kubeless is a Kubernetes-native serverless
framework [12]. It uses Custom Resource
Definitions (CRDs) [42] to extend the
Kubernetes API and create functions as custom
objects. This allows developers to use the native
Kubernetes APIs to interact with the functions
as if they were native Kubernetes objects. The
language runtime is packaged in a container
image. The Kubeless controller continuously
watches for changes to function objects and
takes necessary action. For instance, if a
function object is created, the controller creates
a pod for the function and cleans up resources
when the function object is deleted. A
function’s runtime is encapsulated in a
container image and Kubernetes configmaps1
are used to inject a function’s code in the
runtime.

OpenFaaS is an open source serverless
framework for Docker and Kubernetes [13].
The OpenFaaS CLI is used to develop and
deploy functions to OpenFaaS. Only the
functionand handler has to be supplied by the
developer, and the CLI handles the packaging
of the function into a Docker container. The
container comprises a function watchdog, i.e., a
webserver that acts as an entry point for
function calls within the framework. An API
gateway provides an external interface to the
functions, collects metrics and handles scaling
by interacting with the container orchestrator

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-1, 2017

DOI:10.21276/ijcesr.2017.4.1.2
11

plugin. OpenWhisk is an open source,serverless
computing frame- work initially developed by
IBM and later part of the Apache Incubator
project [15]. It is also the underlying technology
of the Cloud Functions FaaSproduct on IBM’s
public cloud. The OpenWhisk programming
model is based on three primitives: Action,

Trigger and Rule [8]. Actions are stateless
functions that execute code. Triggers are a class
of events that can originate from different
sources. Rules associate a trigger with an
action. The scalability of functions is directly
managed by the OpenWhisk controller.

Feature Kubeless OpenWhisk Fission OpenFaaS
Opensourcelicense Apache2.0[12] Apache2.0[15] Apache2.0[14] MIT[13]

Frameworkdevelopmen
tlanguage

Go Scala Go Go

Programminglanguag
essupported

Python,Node.js,Ruby,PH
P,Go,Java,.NETandcusto
mcontainers[16]

Javascript,
 Swift,P
ython,PHP,Java,Linux
 binaries
(includingGo)andcustomc
ontainers[17]

Python,Node.js,Ruby,Perl,
Go,Bash,.NET,PHPandcu
stomcon-tainers[18]

Python, C#, Go,
Node.js,Rubyandcustom
con-tainers[19]

Autoscalingmetric CPUutilization,QPSandc
ustommetrics[20]

QPS CPUutilization[21] CPU,QPSandcustommetri
cs[22]

Containerorc
hestrator

Kubernetes No
 orchestrator
required,Kubernetessuppo
rted[23]

Kubernetes KubernetesDocke
r

 Swarm
extendable

 toorche
strators[26]

[24],
[25],
other

Functiontriggers http,event,schedule[27] http[28],event
schedule[30]

[29], http,event,schedule[31] http[32],event[33]

Messagequeuein
tegration

Kafka,NATS[34] Kafka[35] NATS,
 Azure

agequeue[31]

stor- NATS[33],Kafka[36]

Recommendedm
onitoringtool

Prometheus[37] statsd Istio[38] Prometheus[39]

CLIsupport Yes Yes Yes Yes
Industrysupport Bitnami IBM,Adobe,RedHat,Apac

he Software Foun-
dationamongothers

Platform9 VMWare[40]

GitHubstars 3,009[12] 3,303[15] 3,412[14] 10,608[13]
GitHubforks 273[12] 629[15] 277[14] 767[13]

GitHubcontributors 61[12] 120[15] 65[14] 68[13]

TABLE I: Overview of features

III. EVALUATION

We evaluate the performance of Fission,
Kubeless and OpenFaaS when deployed on a
Kubernetes cluster. We choose Kubernetes as it
is the only orchestrator supported by all the
considered frameworks. We do not include
OpenWhisk due to issues faced in setup and its
minimal dependence on Kubernetes for
orchestration tasks (the interested reader may
refer to [43] for a performance evaluation of
OpenWhisk).

A. Experimental setup

We run the experiments on Google Kubernetes
En- gine (GKE)2. The deployment on GKE is
similar to one on a custom Kubernetes cluster
deployed on virtualized instances. The
serverless framework interacts directly with the
Kuber- netes cluster manager. We use
Kubernetes version 1.10.4- gke.2 (the latest
version available at the time of writing) to set
up a cluster with three worker nodes. Each
worker node has 2 vCPUs, 7.5 GB RAM and
runs the Container- Optimized OS. The cluster
is setup in the europe-north1 region and all
nodes are located within the same zone to
minimize the network latency they experience.

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-1, 2017

DOI:10.21276/ijcesr.2017.4.1.2
12

Unless otherwise stated, we deployed each
framework with the default settings in the
respective installation guide. We set up Fission
version0.8.0 and use the newdeploy executor
[41] as it supports auto scaling of functions. We
use Kubeless version 1.0.0-alpha.6 and the
Nginx Ingress controller to provide routing to
the functions. The OpenFaaS installation
consists of the following components: gateway
(v0.7.9), faas-netes (v0.5.1), Prometheus
(v2.2.0), alert manager (v0.15.0-rc.0), queue
worker (v0.4.3) and faas-cli (v0.6.9). The HTTP
watchdog mode is used as this will be the
default mode of OpenFaaS in the future.

We use the Apache Benchmark (ab) tool3 to
generate HTTP requests that invoke the
functions deployed on each frame- work. We
run the ab tool on a virtual machine (VM)
located in the same zone as the Kubernetes
cluster, again, to minimize network latency. The
VM has 2 vCPUs, 7.5 GB RAM and runs
Debian GNU/Linux 9.4 (stretch) OS. We
configure the ab tool to send 10,000 requests
with different levels of concurrency (1, 5, 10,
20, 50 or 100 concurrent requests). The
concurrency level affects the number of
requests received simultaneously by the
framework. We carry out the experiments
according tothe independent replication method
with at least 5 iterations to achieve adequate
statistical significance.

B. Impact of concurrent users

First, we measure the average response time and
the ratio of successfully received responses
under different levels of concurrent requests.

Our aim is to isolate any performance issues
due to the architecture of the framework itself.
To this end, we write a simple function in Go
that takes a string as input and sends the same
string as the response. We choose this function
to have minimal overhead in terms of the
function logic and its dependencies. We deploy
the function on each framework and invoke it
through HTTP. We disable auto scaling and run
a fixed number of function replicas (1, 25 or 50)
in each experiment. By doing so, we avoid
possible increases in response times when
scaling out functions, i.e., when creating new
function pods/containers. We repeat each
experiment 10 times to improve the accuracy of
the results.

Figure 1 shows the median response time across
all it- erations (i.e., 100,000 requests in total)
for the different frameworks. The lowest
median response time is achieved by Fission,
with values around 2 ms in all scenarios. We
observe that Kubeless and OpenFaaS maintain a
response time below 80 ms across all scenarios.
We also note that the response times do not
show a significant change as the number of
function replicas increases. In fact, functions
deployed on Kubeless with 50 replicas for 100
concurrent requests obtain a response time
slightly higher (by around 10 ms) than that with
fewer function replicas. This indicates that it is
possible to serve all requests for such a simple
function with just one replica.

A closer examination of the results reveals that
the response times for Fission have a significant
number of outliers as the concurrency of

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-1, 2017

DOI:10.21276/ijcesr.2017.4.1.2
13

requests increases over 50. In this respect,
Figure 2 shows the response times (on log
scale) for 100 concurrent requests and one
function replica for the three frameworks.
OpenFaaS and Kubeless perform quite similarly

and all responses are received within 400 ms.
On the other hand, for Fission there are several
outliers: 1,336 responses take more than 1 s and
the longest response time goes up to 20 s. The
large number of outliers for Fission pushes its

average response time to 176 ms, whereas this
behavior is not seen for OpenFaaS (74 ms) or
Kubeless (79 ms). We also observe the same in
other experiments with lower concurrency of
requests and for higher number of function
replicas. Thus, the performance of Fission
deteriorates at high workloads regardless of the
number of function replicas. We attribute this to
the router component of Fission that forwards
all incoming HTTP requests to the appropriate
function. This component becomes a bottleneck
as the workload increases. On the other hand,
Kubeless relies on native Kubernetes
components as far as possible: it utilizes the
Kubernetes Ingress controller to route requests
and balance the load. This component is at a
more mature state, having been supported by
Kubernetes since version 1.1 (available in
2015).

Next, we examine the ratio of successful
responses for different levels of concurrency
and number of function replicas (Table II). The
table reports the success ratio over all ten
iterations of the experiment. As the functions
are invoked via HTTP, we consider any
response without a 2xx response code as a
failed request. We observe that Kubeless
obtains the best performance with a 100%

success ratio across all experiments, i.e., all
HTTP responses were successfully received.
Fission also manages to keep the success ratio
at above 99% even at higher levels of
concurrency. However, we observe that the
success ratio of OpenFaaS drops to 98% or
below when the number of concurrent requests
is 50 or more. Furthermore, the success ratio is
higher when only one function replica is
present. This trend was seen consistently across
multiple runs. We attribute this to the
architecture of OpenFaaS wherein every
function call has to go through multiple steps,
resulting in many different points of failure. For
instance, the HTTP requests and responses need
to be processed by the gateway, faas-netes and
the watchdog. Hence, the gateway and faas-
netes can become bottlenecks (due to design or
engineering issues) when the rate of incoming
requests is high.

C. Impact of auto scaling

We now examine the impact of auto scaling on
the re- sponse time and the ratio of successfully

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-1, 2017

DOI:10.21276/ijcesr.2017.4.1.2
14

received responses. We choose to scale
functions based on CPU utilization as Fission
supports only this scaling metric. Accordingly,
we consider a CPU-intensive function (in Go)
that multiplies a 1,000 by 1,000 matrix on each
invocation. This allows us to reach the CPU
utilization threshold faster than with the
previous function. We start each iteration of the
experiment with a single function replica and
set the threshold for CPU utilization at 50%.
This implies that a CPU utilization exceed- ing
50% should trigger the creation of more
function replicas. All frameworks use the
Kubernetes Horizontal Pod Autoscaler

components and its maturity. In fact, Kubeless
has a version 1.0-alpha release whereas the
other considered frameworks are at versions
below 1.0. Clearly, all frameworks are under
active development and are evolving rapidly.
Nevertheless, our work is a first important step
towards benchmarking the performance of
serverless frameworks. Moreover, we note that
some tuning is still required to achieve adequate
performance, although serverless frameworks
are expected to abstract away all scaling
concerns from the developers [9]. With a simple
“hello world” function,Kubeless and OpenFaaS
maintain a low median and average response
time below 80 ms. For more CPU-intensive
functions, such as in the auto scalingscaling
enabled for each serverless framework.(HPA)4
to perform scaling based on CPU utilization
[20–22]. We use the ab tool to send 10,000
requests with 10 concurrent users and repeat
each experiment 5 times.

All the frameworks leave the scaling decisions
to the Ku- bernetes HPA. However, we notice
that the ratio of successful responses and the
distribution of response times varies between

frameworks. Both Kubeless and OpenFaaS have
a 100% success ratio across all experiments,
whereas the success ratio for Fission is at
98.11%. Next, Figure 4 shows the distribution
of response times over all the experiment runs.
The median response time of OpenFaaS (1.1 s)
is higher than the other two frameworks.
Although Kubeless and Fission maintain a
lower median response time (288 ms), the
outliers reach a significantly higher value (up to
7 s). In fact, 50 responses (0.1%) took more
than 3 seconds for Kubeless, whereas the
occurrence of such outliers for other
frameworks is below 5.

Next, we examine the variation of response time
during a single iteration of the experiment.
Accordingly, Figure 3 reports the values
obtained by grouping all responses with a
granularity of one second: their median
response time as a solid line, as well as the
corresponding minimum and maximum values
as a gray band. In all cases, the median response
initially lies between 1 s to 1.5 s. Both Kubeless
and Fission are able to scale more replicas at
approximately after 100 s of the experiment and
thus, we see a reduced response time. However,
Kubeless is able to maintain the low response
time for a longer duration, whereas in the case
of Fission the response time increases again
after 260 s of the experiment run. OpenFaaS
triggers a scaling request only after 200 s
seconds of the experiment. We also note that
the total duration of the experiment takes longer
for OpenFaaS as the response time is quite high.
This is because the ab tool waits for a response
before sending more requests and the
experiment only completes when all 10,000
requests have been sent.

D. Discussion

Our experimental results show that Kubeless
has the most consistent performance across
different scenarios. We attribute this to its
simple architecture, the use of native
Kubernetes4https://kubernetes.io/docs/tasks/run
-application/horizontal-pod-
autoscale/experiments, the serverless
framework itself may need to be scaled as well
to avoid bottlenecks in individual components.

IV. RELATED WORK

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-1, 2017

DOI:10.21276/ijcesr.2017.4.1.2
15

Serverless computing is receiving increasing
attention in the academia [2, 7, 10, 43, 44].
Baldini et al. [2] summarize the general features
of serverless platforms and describe open
research problems in this area. Lynn et al. [10]
present a feature analysis of seven enterprise
serverless computing plat- forms, including
AWS Lambda, Microsoft Azure Functions,
Google Cloud Functions and OpenWhisk. Lee
et al. [11] evaluate the performance of public
serverless platforms by invoking CPU, memory
and disk-intensive functions. They find that
AWS Lambda outperforms other public cloud
solu- tions. Furthermore, the authors highlight
the cost-effectiveness of running functions on
serverless platforms as compared to running
them on traditional VMs. The authors also
present a feature comparison of the public
serverless platforms. Lloyd et al. [44]
investigate the performance of functions
deployed on AWS Lambda and Microsoft
Azure Functions. They focus on the impact of
infrastructure provisioning on public cloud
platforms and identify variations in the
functions’ performance depending on the state
(cold or warm) of the underlying VM or
container. McGrath and Brenner [45] develop a
prototype serverless platform implemented in
.NET and using Windows containers for
executing functions. The authors compare the
performance of their prototype platform to
AWS Lambda, Google Cloud Functions, Azure
Functions and OpenWhisk. Shillaker [43]
evaluates the response latency on OpenWhisk at
different levels of throughput and concurrent
functions. The author identifies research
directions for improving start up time in
serverless frameworks by replacing containers
with a new isolation mechanism in the runtime
itself. However, none of the works specifically
address open source serverless platforms
(Fission, Kubeless, OpenFaaS).

V. CONCLUSION
This article analyzed the status of open source
serverless computing frameworks. First, we
carried out a comprehensive feature comparison
of the most popular frameworks, Fission,
Kubeless, OpenFaaS and OpenWhisk. Based on
that, we found that OpenFaaS has the most
flexible architecture with support for multiple
container orchestrators and easy extendability.
Next, we evaluated the performance of Fission,

Kubeless andOpenFaaS deployed on a
Kubernetes cluster. Specifically, we
characterized the response time and success
ratio for functions deployed on these
frameworks. We found that Kubeless has the
most consistent performance across different
scenarios. How- ever, all frameworks are under
active development and changes are expected
before the alpha release of each framework. As
future work, we aim at analyzing the suitability
of serverless computing for resource-
constrained edge devices.

ACKNOWLEDGMENT
This work was partially supported by the
Academy of Finland grant number 299222.

REFERENCES
[1] G. Adzic and R. Chatley, “Serverless
computing: economic and architectural impact,”
in Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering. ACM,
2017, pp. 884–889.

[2] I. Baldini et al., “Serverless computing:
Current trends and open problems,” in Research
Advances in Cloud Computing. Springer, 2017,
pp. 1–20.

[3] A. Kanso and A. Youssef, “Serverless:
beyond the cloud,” in Proceedings of the 2nd
International Workshop on Serverless
Computing. ACM, 2017, pp. 6–10.

[4] B. Varghese and R. Buyya, “Next
generation cloud computing: New trends and
research directions,” Future Generation Com-
puter Systems, vol. 79, pp. 849–861, 2018.

[5] S. Nastic et al., “A serverless real-time
data analytics platform for edge computing,”
IEEE Internet Computing, vol. 21, no. 4, pp.
64–71, 2017.

[6] A. Glikson, S. Nastic, and S. Dustdar,
“Deviceless edge comput- ing: extending
serverless computing to the edge of the
network,” in Proceedings of the 10th ACM
International Systems and Storage Conference.
ACM, 2017, p. 28.

[7] E. Jonas, Q. Pu, S. Venkataraman, I.
Stoica, and B. Recht, “Occupy the cloud:
Distributed computing for the 99%,” in

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-1, 2017

DOI:10.21276/ijcesr.2017.4.1.2
16

Proceedings of the 2017 Symposium on Cloud
Computing. ACM, 2017, pp. 445–451.

[8] I. Baldini, P. Castro, P. Cheng, S. Fink,
V. Ishakian, N. Mitchell,

V. Muthusamy, R. Rabbah, and P. Suter,
“Cloud-native, event- based programming for
mobile applications,” in Proceedings of the
International Conference on Mobile Software
Engineering and Systems. ACM, 2016, pp.
287–288.

[9] A. Eivy, “Be wary of the economics of
“serverless” cloud computing,” IEEE Cloud
Computing, vol. 4, no. 2, pp. 6–12, 2017.

[10] T. Lynn, P. Rosati, A. Lejeune, and V.
Emeakaroha, “A prelimi- nary review of
enterprise serverless cloud computing (function-
as-a-service) platforms,” in Cloud Computing
Technology and Science (CloudCom), 2017
IEEE International Conference on. IEEE, 2017,
pp. 162–169.

[11] H. Lee, K. Satyam, and G. C. Fox,
“Evaluation of production serverless computing
environments,” in Proceedings of the 3rd
International Workshop on Serverless
Computing, 2018.

[12] “KubelessGitHub,”
https://github.com/kubeless/kubeless, (Ac-
cessed: 06/28/2018).

[13] “OpenFaaS: autoscaling,”
https://github.com/openfaas/faas, (Accessed:
06/30/2018).

[14] “Fission,”
https://github.com/fission/fission, (Accessed:
06/30/2018).

[15] “OpenWhisk,”
https://github.com/apache/incubator-openwhisk,
(Accessed: 06/30/2018).

[16] “Kubeless runtime variants,”
https://kubeless.io/docs/runtimes/, (Accessed:
03/18/2018).

[17] “Openwhisk actions,”
 https://github.com/apache/ incubator-
openwhisk/blob/master/docs/actions.md,
(Accessed: 06/27/2018).

[18] “Fission: Environments,”
https://docs.fission.io/0.8.0/concepts/
environments/, (Accessed: 06/30/2018).

[19] “OpenFaaS templates,”
https://docs.openfaas.com/cli/ templates/,
(Accessed: 06/30/2018).

[20] “Kubelessautoscaling,”
https://github.com/kubeless/kubeless/
blob/master/docs/autoscaling.md, (Accessed:
06/27/2018).

[21] “Fission: Executors,”
https://github.com/fission/fission/blob/
master/Documentation/docs-
site/content/concepts/executor.en. md,
(Accessed: 06/26/2018).

[22] “OpenFaaS: autoscaling,”
 https://docs.openfaas.com/
architecture/autoscaling/, (Accessed:
06/29/2018).

[23] “OpenWhisk deployment on
 Kubernetes,” https:

//github.com/apache/incubator-openwhisk-
deploy-kube, (Accessed: 06/27/2018).

[24] “faas-netes,”
https://github.com/openfaas/faas-netes,
(Accessed: 06/29/2018).

[25] “faas-swarm,”
 https://github.com/openfaas/faas-swarm,
(Accessed: 06/29/2018).

[26] “faas-nomad,”
https://github.com/hashicorp/faas-nomad, (Ac-
cessed: 06/29/2018).

[27] “Kubeless architecture,”
http://kubeless.io/docs/architecture/, (Accessed:
03/18/2018).

[28] “Triggering IBM Cloud Functions on
HTTP REST API calls,”
https://github.com/apache/incubator-
openwhisk/blob/master/ docs/triggers rules.md,
(Accessed: 06/27/2018).

[29] “Openwhisk: creating triggers
 and rules,” https:

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-1, 2017

DOI:10.21276/ijcesr.2017.4.1.2
17

//github.com/apache/incubator-
openwhisk/blob/master/docs/ triggers rules.md,
(Accessed: 06/27/2018).

[30] “IBM Cloud Functions: your first action,
trigger and rule,” https:

//github.com/IBM/ibm-cloud-functions-action-
trigger-rule, (Accessed: 06/27/2018).

[31] “Fission: Trigger,”
https://docs.fission.io/0.8.0/concepts/trigger/,
(Accessed: 06/30/2018).

[32] “Openfaas watchdog,”
https://github.com/openfaas/faas/tree/
master/watchdog, (Accessed: 05/27/2018).

[33] “Queue worker for OpenFaaS - NATS
Streaming,” https://github.com/openfaas/nats-
queue-worker, (Accessed: 06/29/2018).

[34] “Kubeless autoscaling,”
 https://kubeless.io/docs/ pubsub-
functions/, (Accessed: 06/30/2018).

[35] “OpenWhisk package for
communication with Kafka or IBM
Message Hub,” https://github.com/apache/
incubator-openwhisk-package-kafka,
(Accessed: 06/27/2018).

[36] “OpenFaaS: Kafka connector,”
https://github.com/ openfaas-incubator/kafka-
connector, (Accessed: 06/29/2018).

[37] “Kubeless monitoring,”
https://kubeless.io/docs/monitoring/, (Accessed:
06/30/2018).

[38] “Fission: features,”
https://fission.io/features/, (Accessed:
06/30/2018).

[39] “OpenFaaS Workshop,”
https://github.com/openfaas/workshop,
(Accessed: 06/29/2018).

[40] “OpenFaaS community,”
https://github.com/openfaas/faas/blob/
master/community.md, (Accessed: 06/29/2018).

[41] “Fission: Environments,”
https://docs.fission.io/0.8.0/concepts/ executor/,
(Accessed: 06/30/2018).

[42] “Custom resources - kubernetes,”
https://kubernetes.io/docs/ concepts/extend-
kubernetes/api-extension/custom-resources/,
(Accessed: 06/27/2018).

[43] S. Shillaker, “A provider-friendly
serverless framework for latency-critical
applications,”
http://conferences.inf.ed.ac.uk/EuroDW2018/pa
pers/eurodw18-Shillaker.pdf, (Accessed:
06/30/2018).

[44] W. Lloyd, S. Ramesh, S. Chinthalapati,
L. Ly, and S. Pallickara, “Serverless computing:
An investigation of factors
influencingmicroservice performance,” in
Cloud Engineering (IC2E), 2018 IEEE
International Conference on. IEEE, 2018, pp.
159–169.

[45] G. McGrath and P. R. Brenner,
“Serverless computing: Design,
implementation, and performance,” in
Distributed Computing Systems Workshops
(ICDCSW), 2017 IEEE 37th International
Conference on. IEEE, 2017, pp. 405–410.

	Abstract
	Recent advancements in virtualization and software architecture have led to the new paradigm of serverlesscomput- ing, which allows developers to deploy applications as stateless functions without worrying about the underlying infrastructure. Accordin...

