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Abstract 
Recent advancements in virtualization 
and software architecture have led to 
the new paradigm of 
serverlesscomput- ing, which allows 
developers to deploy applications as 
stateless functions without worrying 
about the underlying infrastructure. 
Accordingly, a serverless platform 
handles the lifecycle, exe- cution and 
scaling of the actual functions; these 
need to run only when invoked or 
triggered by an event. Thus, the major 
benefits of serverless computing are 
low operational concerns and efficient 
resource management and utilization. 
Serverless computing is currently 
offered by several public cloud service 
providers. However, there are certain 
limitations on the public cloud 
platforms, such as vendor lock-in and 
restrictions on the computation of the 
functions. Open source serverless 
frameworks are a promising solution 
to avoid these limitations and bring 
the power of serverless computing to 
on-premise deployments. However, 
these frameworks have not been 
evaluated before. Thus, we carry out a 
comprehensive feature comparison of 
popular open source serverless 
computing frameworks. We then 
evaluate the performance of selected 
frameworks: Fission, Kubeless and 
OpenFaaS. Specifically, we 
characterize the response time and 
ratio of successfully received 
responses under different loads and 
provide insights into the design 

choices of each framework. 
Index Terms—serverless computing, function-
as-a-service, Kubeless, Fission, OpenFaaS, 
performance evaluation 

I. INTRODUCTION 
Serverless computing is an emerging paradigm 
wherein soft- ware applications are decomposed 
into multiple independent stateless functions [1, 
2]. Functions are only executed in re- sponse to 
triggers (such as user interactions, messaging 
events or database changes), and can be scaled 
independently as they are completely stateless. 
Hence, serverless computing is also sometimes 
referred to as function-as-a-service (FaaS) [3]. 
In this approach, almost all operating concerns 
are abstracted away from developers. In fact, 
developers simply write code and deploy their 
functions on a serverless platform [4]. The 
platform then takes care of function execution, 
storage, con- tainer infrastructure, networking, 
and fault tolerance. Addition- ally, the 
serverless platform takes care of scaling the 
functions according to the actual demand. 
Serverless computing has been identified as a 
promising approach for several applications, 
such as those for data analytics at the network 
edge [5, 6], scientific computing [7] and mobile 
computing [8]. 
In serverless computing, the infrastructure is 
generally man- aged by a third-party service 
provider or an operations team when using a 
private cloud. Currently, all major cloud service 
providers offer solutions for serverless 
computing, namely, Amazon Web Services 
(AWS) Lambda, Azure Functions, IBM 

Cloud Functions and Google Cloud Functions. 
However, these platforms require the functions 
to be written in a certain way, resulting in 
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vendor lock-in [2, 9]. Moreover, developers 
have to rely on the serverless provider’s release 
cycle and additional services from the cloud 
platform such as message queuing and data 
storage. They also have to comply with 
constraints on function code size, execution 
duration and concurrency [10]. Open source 
FaaS frameworks are a promising solution to 
bring the power of serverless computing on-
premise. Such frameworks provide more 
flexibility (for deploying applica- tions, 
configuring the framework, etc.) and thereby 
avoid vendor lock-in. For instance, open source 
frameworks can be deployed both on the 
edge/fog devices as well as on the public cloud 
for distributed data analytics [5, 6]. In this 
regard, a serverless framework should be easy 
to set up, configure and manage; it should also 
provide certain performance guarantees. 
Although recent works have focused on 
serverless platforms in the public cloud [10, 
11], none has evaluated open source FaaS 
frameworks. In contrast, this work provides a 
comprehensive feature comparison of popular 
open source serverless frame- works, namely, 
Kubeless [12], OpenFaaS [13], Fission [14] and 
Apache OpenWhisk [15]. Furthermore, it 
evaluates the performance (in terms of response 
time and ratio of successful responses) of these 
frameworks under different workloads and 
provides insights into the design choices behind 
them. It finally examines the impact of auto 
scaling on performance. 

The rest of the article is organized as follows. 
Section II de- scribes the considered 
frameworks and analyzes their features. Section 
III evaluates the performance of selected 
frameworks. Section IV reviews the related 
work. Finally, Section V pro- vides concluding 
remarks as well directions for future work. 

II. OPEN   SOURCE   SERVERLESS   
COMPUTING   FRAMEWORKS 

This section describes four popular open source 
serverless frameworks, namely, Fission, 
Kubeless, OpenFaaS and Open- Whisk. We 
chose frameworks with at least 3,000 GitHub 
stars (a mark of appreciation from users). Table 
I summarizes their features. All the considered 
frameworks run each serverless function in a 
separate Docker container to provide isolation. 

OpenFaaS, Kubeless and Fission utilize a 
container orchestra- tor to manage the 
networking and lifecycle of the containers, 
whereas OpenWhisk may be deployed with or 
without an orchestrator. We present a short 
summary of the frameworks, highlighting their 
main components. 

Fission is an open source serverless computing 
framework built on top of Kubernetes and using 
many Kubernetes-nativeconcepts [14]. The 
framework executes a function inside an 
environment that contains a webserver and a 
dynamic language-specific loader required to 
run the function [18]. An executor controls how 
function pods are created and scaled. One of the 
main advantages of Fission is that it can be 
configured to run a pool of “warm” containers 
so that requests are served with very low 
latencies [41]. 

Kubeless is a Kubernetes-native serverless 
framework [12]. It uses Custom Resource 
Definitions (CRDs) [42] to extend the 
Kubernetes API and create functions as custom 
objects. This allows developers to use the native 
Kubernetes APIs to interact with the functions 
as if they were native Kubernetes objects. The 
language runtime is packaged in a container 
image. The Kubeless controller continuously 
watches for changes to function objects and 
takes necessary action. For instance, if a 
function object is created, the controller creates 
a pod for the function and cleans up resources 
when the function object is deleted. A 
function’s runtime is encapsulated in a 
container image and Kubernetes configmaps1 
are used to inject a function’s code in the 
runtime. 

OpenFaaS is an open source serverless 
framework for Docker and Kubernetes [13]. 
The OpenFaaS CLI is used to develop and 
deploy functions to OpenFaaS. Only the 
functionand handler has to be supplied by the 
developer, and the CLI handles the packaging 
of the function into a Docker container. The 
container comprises a function watchdog, i.e., a 
webserver that acts as an entry point for 
function calls within the framework. An API 
gateway provides an external interface to the 
functions, collects metrics and handles scaling 
by interacting with the container orchestrator 
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plugin. OpenWhisk is an open source,serverless 
computing frame- work initially developed by 
IBM and later part of the Apache Incubator 
project [15]. It is also the underlying technology 
of the Cloud Functions FaaSproduct on IBM’s 
public cloud. The OpenWhisk programming 
model is based on three primitives: Action, 

Trigger and Rule [8]. Actions are stateless 
functions that execute code. Triggers are a class 
of events that can originate from different 
sources. Rules associate a trigger with an 
action. The scalability of functions is directly 
managed by the OpenWhisk controller. 

 

Feature Kubeless OpenWhisk Fission OpenFaaS 
Opensourcelicense Apache2.0[12] Apache2.0[15] Apache2.0[14] MIT[13] 

Frameworkdevelopmen
tlanguage 

Go Scala Go Go 

Programminglanguag
essupported 

Python,Node.js,Ruby,PH
P,Go,Java,.NETandcusto
mcontainers[16] 

Javascript, 
 Swift,P
ython,PHP,Java,Linux
 binaries
(includingGo)andcustomc
ontainers[17] 

Python,Node.js,Ruby,Perl,
Go,Bash,.NET,PHPandcu
stomcon-tainers[18] 

Python, C#, Go, 
Node.js,Rubyandcustom
con-tainers[19] 

Autoscalingmetric CPUutilization,QPSandc
ustommetrics[20] 

QPS CPUutilization[21] CPU,QPSandcustommetri
cs[22] 

Containerorc
hestrator 

Kubernetes No
 orchestrator
required,Kubernetessuppo
rted[23] 

Kubernetes KubernetesDocke
r

 Swarm
extendable

 toorche
strators[26] 

[24], 
[25], 
other 

Functiontriggers http,event,schedule[27] http[28],event 
schedule[30] 

[29], http,event,schedule[31] http[32],event[33] 

Messagequeuein
tegration 

Kafka,NATS[34] Kafka[35] NATS,
 Azure

agequeue[31] 

stor- NATS[33],Kafka[36] 

Recommendedm
onitoringtool 

Prometheus[37] statsd Istio[38] Prometheus[39] 

CLIsupport Yes Yes Yes Yes 
Industrysupport Bitnami IBM,Adobe,RedHat,Apac

he Software Foun-
dationamongothers 

Platform9 VMWare[40] 

GitHubstars 3,009[12] 3,303[15] 3,412[14] 10,608[13] 
GitHubforks 273[12] 629[15] 277[14] 767[13] 

GitHubcontributors 61[12] 120[15] 65[14] 68[13] 

 

TABLE I: Overview of features 

 

 

III. EVALUATION 

We evaluate the performance of Fission, 
Kubeless and OpenFaaS when deployed on a 
Kubernetes cluster. We choose Kubernetes as it 
is the only orchestrator supported by all the 
considered frameworks. We do not include 
OpenWhisk due to issues faced in setup and its 
minimal dependence on Kubernetes for 
orchestration tasks (the interested reader may 
refer to [43] for a performance evaluation of 
OpenWhisk). 

A. Experimental setup 

We run the experiments on Google Kubernetes   
En- gine (GKE)2. The deployment on GKE is 
similar to one on a custom Kubernetes cluster 
deployed on virtualized instances. The 
serverless framework interacts directly with the 
Kuber- netes cluster manager. We use 
Kubernetes version 1.10.4- gke.2 (the latest 
version available at the time of writing) to set 
up a cluster with three worker nodes. Each 
worker node has 2 vCPUs, 7.5 GB RAM and 
runs the Container- Optimized OS. The cluster 
is setup in the europe-north1 region and all 
nodes are located within the same zone to 
minimize the network latency they experience. 
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Unless otherwise stated, we deployed each 
framework with the default settings in the 
respective installation guide. We set up Fission 
version0.8.0 and use the newdeploy executor 
[41] as it supports auto scaling of functions. We 
use Kubeless version 1.0.0-alpha.6 and the 
Nginx Ingress controller to provide routing to 
the functions. The OpenFaaS installation 
consists of the following components: gateway 
(v0.7.9), faas-netes (v0.5.1), Prometheus 
(v2.2.0), alert manager (v0.15.0-rc.0), queue 
worker (v0.4.3) and faas-cli (v0.6.9). The HTTP 
watchdog mode is used as this will be the 
default mode of OpenFaaS in the future. 

We use the Apache Benchmark (ab) tool3 to 
generate HTTP requests that invoke the 
functions deployed on each frame- work. We 
run the ab tool on a virtual machine (VM) 
located in the same zone as the Kubernetes 
cluster, again, to minimize network latency. The 
VM has 2 vCPUs, 7.5 GB RAM and runs 
Debian GNU/Linux 9.4 (stretch) OS. We 
configure the ab tool to send 10,000 requests 
with different levels of concurrency (1, 5, 10, 
20, 50 or 100 concurrent requests). The 
concurrency level affects the number of 
requests received simultaneously by the 
framework. We carry out the experiments 
according tothe independent replication method 
with at least 5 iterations to achieve adequate 
statistical significance. 

B. Impact of concurrent users 

First, we measure the average response time and 
the ratio of successfully received responses 
under different levels of concurrent requests. 

Our aim is to isolate any performance issues 
due to the architecture of the framework itself. 
To this end, we write a simple function in Go 
that takes a string as input and sends the same 
string as the response. We choose this function 
to have minimal overhead in terms of the 
function logic and its dependencies. We deploy 
the function on each framework and invoke it 
through HTTP. We disable auto scaling and run 
a fixed number of function replicas (1, 25 or 50) 
in each experiment. By doing so, we avoid 
possible increases in response times when 
scaling out functions, i.e., when creating new 
function pods/containers. We repeat each 
experiment 10 times to improve the accuracy of 
the results. 

Figure 1 shows the median response time across 
all it- erations (i.e., 100,000 requests in total) 
for the different frameworks. The lowest 
median response time is achieved by Fission, 
with values around 2 ms in all scenarios. We 
observe that Kubeless and OpenFaaS maintain a 
response time below 80 ms across all scenarios. 
We also note that the response times do not 
show a significant change as the number of 
function replicas increases. In fact, functions 
deployed on Kubeless with 50 replicas for 100 
concurrent requests obtain a response time 
slightly higher (by around 10 ms) than that with 
fewer function replicas. This indicates that it is 
possible to serve all requests for such a simple 
function with just one replica. 

A closer examination of the results reveals that 
the response times for Fission have a significant 
number of outliers as the concurrency of 
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requests increases over 50. In this respect, 
Figure 2 shows the response times (on log 
scale) for 100 concurrent requests and one 
function replica for the three frameworks. 
OpenFaaS and Kubeless perform quite similarly 

and all responses are received within 400 ms. 
On the other hand, for Fission there are several 
outliers: 1,336 responses take more than 1 s and 
the longest response time goes up to 20 s. The 
large number of outliers for Fission pushes its

average response time to 176 ms, whereas this 
behavior is not seen for OpenFaaS (74 ms) or 
Kubeless (79 ms). We also observe the same in 
other experiments with lower concurrency of 
requests and for higher number of function 
replicas. Thus, the performance of Fission 
deteriorates at high workloads regardless of the 
number of function replicas. We attribute this to 
the router component of Fission that forwards 
all incoming HTTP requests to the appropriate 
function. This component becomes a bottleneck 
as the workload increases. On the other hand, 
Kubeless relies on native Kubernetes 
components as far as possible: it utilizes the 
Kubernetes Ingress controller to route requests 
and balance the load. This component is at a 
more mature state, having been supported by 
Kubernetes since version 1.1 (available in 
2015). 

Next, we examine the ratio of successful 
responses for different levels of concurrency 
and number of function replicas (Table II). The 
table reports the success ratio over all ten 
iterations of the experiment. As the functions 
are invoked via HTTP, we consider any 
response without a 2xx response code as a 
failed request. We observe that Kubeless 
obtains the best performance with a 100% 

success ratio across all experiments, i.e., all 
HTTP responses were successfully received. 
Fission also manages to keep the success ratio 
at above 99% even at higher levels of 
concurrency. However, we observe that the 
success ratio of OpenFaaS drops to 98% or 
below when the number of concurrent requests 
is 50 or more. Furthermore, the success ratio is 
higher when only one function replica is 
present. This trend was seen consistently across 
multiple runs. We attribute this to the 
architecture of OpenFaaS wherein every 
function call has to go through multiple steps, 
resulting in many different points of failure. For 
instance, the HTTP requests and responses need 
to be processed by the gateway, faas-netes and 
the watchdog. Hence, the gateway and faas- 
netes can become bottlenecks (due to design or 
engineering issues) when the rate of incoming 
requests is high. 

 

 

C. Impact of auto scaling 

We now examine the impact of auto scaling on 
the re- sponse time and the ratio of successfully 
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received responses. We choose to scale 
functions based on CPU utilization as Fission 
supports only this scaling metric. Accordingly, 
we consider a CPU-intensive function (in Go) 
that multiplies a 1,000 by 1,000 matrix on each 
invocation. This allows us to reach the CPU 
utilization threshold faster than with the 
previous function. We start each iteration of the 
experiment with a single function replica and 
set the threshold for CPU utilization at 50%. 
This implies that a CPU utilization exceed- ing 
50% should trigger the creation of more 
function replicas. All frameworks use the 
Kubernetes Horizontal Pod Autoscaler 

 

components and its maturity. In fact, Kubeless 
has a version 1.0-alpha release whereas the 
other considered frameworks are at versions 
below 1.0. Clearly, all frameworks are under 
active development and are evolving rapidly. 
Nevertheless, our work is a first important step 
towards benchmarking the performance of 
serverless frameworks. Moreover, we note that 
some tuning is still required to achieve adequate 
performance, although serverless frameworks 
are expected to abstract away all scaling 
concerns from the developers [9]. With a simple 
“hello world” function,Kubeless and OpenFaaS 
maintain a low median and average response 
time below 80 ms. For more CPU-intensive 
functions, such as in the auto scalingscaling 
enabled for each serverless framework.(HPA)4 
to perform scaling based on CPU utilization 
[20–22]. We use the ab tool to send 10,000 
requests with 10 concurrent users and repeat 
each experiment 5 times. 

All the frameworks leave the scaling decisions 
to the Ku- bernetes HPA. However, we notice 
that the ratio of successful responses and the 
distribution of response times varies between 

frameworks. Both Kubeless and OpenFaaS have 
a 100% success ratio across all experiments, 
whereas the success ratio for Fission is at 
98.11%. Next, Figure 4 shows the distribution 
of response times over all the experiment runs. 
The median response time of OpenFaaS (1.1 s) 
is higher than the other two frameworks. 
Although Kubeless and Fission maintain a 
lower median response time (288 ms), the 
outliers reach a significantly higher value (up to 
7 s). In fact, 50 responses (0.1%) took more 
than 3 seconds for Kubeless, whereas the 
occurrence of such outliers for other 
frameworks is below 5. 

Next, we examine the variation of response time 
during a single iteration of the experiment. 
Accordingly, Figure 3 reports the values 
obtained by grouping all responses with a 
granularity of one second: their median 
response time as a solid line, as well as the 
corresponding minimum and maximum values 
as a gray band. In all cases, the median response 
initially lies between 1 s to 1.5 s. Both Kubeless 
and Fission are able to scale more replicas at 
approximately after 100 s of the experiment and 
thus, we see a reduced response time. However, 
Kubeless is able to maintain the low response 
time for a longer duration, whereas in the case 
of Fission the response time increases again 
after 260 s of the experiment run. OpenFaaS 
triggers a scaling request only after 200 s 
seconds of the experiment. We also note that 
the total duration of the experiment takes longer 
for OpenFaaS as the response time is quite high. 
This is because the ab tool waits for a response 
before sending more requests and the 
experiment only completes when all 10,000 
requests have been sent. 

D. Discussion 

Our experimental results show that Kubeless 
has the most consistent performance across 
different scenarios. We attribute this to its 
simple architecture, the use of native 
Kubernetes4https://kubernetes.io/docs/tasks/run
-application/horizontal-pod-
autoscale/experiments, the serverless 
framework itself may need to be scaled as well 
to avoid bottlenecks in individual components. 

IV. RELATED WORK 
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Serverless computing is receiving increasing 
attention in the academia [2, 7, 10, 43, 44]. 
Baldini et al. [2] summarize the general features 
of serverless platforms and describe open 
research problems in this area. Lynn et al. [10] 
present a feature analysis of seven enterprise 
serverless computing plat- forms, including 
AWS Lambda, Microsoft Azure Functions, 
Google Cloud Functions and OpenWhisk. Lee 
et al. [11] evaluate the performance of public 
serverless platforms by invoking CPU, memory 
and disk-intensive functions. They find that 
AWS Lambda outperforms other public cloud 
solu- tions. Furthermore, the authors highlight 
the cost-effectiveness of running functions on 
serverless platforms as compared to running 
them on traditional VMs. The authors also 
present a feature comparison of the public 
serverless platforms. Lloyd et al. [44] 
investigate the performance of functions 
deployed on AWS Lambda and Microsoft 
Azure Functions. They focus on the impact of 
infrastructure provisioning on public cloud 
platforms and identify variations in the 
functions’ performance depending on the state 
(cold or warm) of the underlying VM or 
container. McGrath and Brenner [45] develop a 
prototype serverless platform implemented in 
.NET and using Windows containers for 
executing functions. The authors compare the 
performance of their prototype platform to 
AWS Lambda, Google Cloud Functions, Azure 
Functions and OpenWhisk. Shillaker [43] 
evaluates the response latency on OpenWhisk at 
different levels of throughput and concurrent 
functions. The author identifies research 
directions for improving start up time in 
serverless frameworks by replacing containers 
with a new isolation mechanism in the runtime 
itself. However, none of the works specifically 
address open source serverless platforms 
(Fission, Kubeless, OpenFaaS). 

V. CONCLUSION 
This article analyzed the status of open source 
serverless computing frameworks. First, we 
carried out a comprehensive feature comparison 
of the most popular frameworks, Fission, 
Kubeless, OpenFaaS and OpenWhisk. Based on 
that, we found that OpenFaaS has the most 
flexible architecture with support for multiple 
container orchestrators and easy extendability. 
Next, we evaluated the performance of Fission, 

Kubeless andOpenFaaS deployed on a 
Kubernetes cluster. Specifically, we 
characterized the response time and success 
ratio for functions deployed on these 
frameworks. We found that Kubeless has the 
most consistent performance across different 
scenarios. How- ever, all frameworks are under 
active development and changes are expected 
before the alpha release of each framework. As 
future work, we aim at analyzing the suitability 
of serverless computing for resource-
constrained edge devices. 
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