

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-1, 2017

DOI: 10.21276/ijcesr.2017.4.1.11
95

EFFICIENT DISTRIBUTION AND PROCESSING OF DATA FOR

PARALLELIZING DATA MINING IN MOBILE CLOUDS
H.VenkataSubbaiah 1, MEDE CHITTI BABU 2, MATOORI KIRAN 3

4.CHANDRAKALA, 5. M.SIRISHA
1Assistant Professor, Department of Computer science &Engineering,

Ellenki college of Engineering and Technonlogy, patelguda (vi), near BHEL ameenpur (m),
Sangareddy Dist. Telangana 502319..

Abstract
We study different kinds of data
distributions for improving the
efficient, parallelized implementation
of data mining in mobile cloud
systems. Our formally-based
approach ensures the correctness of
the obtained parallel implementation.
We apply our approach to parallel
implementation of data min- ing
algorithms in systems where a cloud is
accessed via a mobile (wireless)
network. Our approach derives a
parallel implementation of a data
mining algorithm that performs as
much as possible computations at
local servers of a mobile network,
rather than transferring data for
processing to a high-performance
cluster in the cloud as it is done in the
current cloud systems based on
MapReduce. We implement our
approach by extending the Java-based
library DXelopes, and we illustrate
our re- sults with the popular data-
mining Normal Bayes classifier
training algorithm. Our experiments
on real-world data sets confirm that
our approach significantly reduces the
network traffic and the appli- cation
run time.

Keywords: mobile cloud, wireless
networks, parallel algorithms,
distributed algorithms, distributed

data mining, parallel data mining

1 Introduction

Mobile cloud computing systems unite a
high number of mobile smart devices
that produce large vol- umes of data with
cloud resources for processing these
data. The recent rise of mobile clouds is
due to the convenience of their use: no
need for cable installation, ease of
connection, etc. However, mobile
networks have several limitations, in
particular - reduced bandwidth.

Figure 1 presents a typical mobile cloud
computing architecture that comprises
the following three layers of hierarchy
[1] as shown in the figure:

• the mobile device includes
hardware devices that produce large
volume of data;the mobile network is
responsible for transferring data from the
mobile devices to the cloud for further
processing;the cloud provides services or
applications that integrate and/or analyze
the data received from the all the mobile
networks.

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-1, 2017

DOI: 10.21276/ijcesr.2017.4.1.11
96

Figure 1: Example of mobile cloud with: a) vertically distributed data; b) horizontally
distributed data

A system in Figure 1 receives data from
different mobile devices. The mobile
network connects these devices with a
cloud where data from mobile devices
are gathered and processed in a single
data warehouse [1]. There are two
different cases of how data are
distributed in a mobile cloud system:

Vertical distribution shown in Figure 1
a): data produced at different mobile
devices are distributed corresponding to
the same kind of objects or events (for
example, photo/video information,
health parameters in the same region
etc.).

Horizontal distribution shown in Figure
1 b): data are distributed according to the
mobile devices where they are produced
(for example, health parameters of
people located in different regions).

Today, computations on the cloud often
rely on scalable data processing systems
based on the MapReduce programming
model [2]. Modern MapReduce
frameworks, such as Apache Hadoop
[3], Apache Spark [4] etc., perform
distributed data processing using a data
warehouse, which is shown in both
Figures 1 a) and b).

The important drawback of gathering
data in a centralized data warehouse is
that this increases the total network
traffic. In case of mobile (wireless)

networks with limited bandwidth, it may
become especially critical. Fog
computing [5] is a possible solution to
this problem: data processing is moved
nearer to the mobile devices where data
are produced. However, the current Map
Reduce frameworks do not yet support
this idea.

Therefore, we aim at enabling
distributed data mining for mobile cloud
systems using the ideas of Fog
computing. Our approach is to
decompose a data mining algorithm,
such that its parts are executed locally at
the mobile devices (or nearby local
servers), without transferring the raw
data via the mobile network to a cloud.
We expect that this will reduce network
traffic in the mobile cloud system. We
demonstrate that such optimization of a
data mining algorithm strongly depends
on the type of data distribution. The
paper improves our previous work on
parallelizing data mining algorithms for
modern processors [6] and is an
extended version of the recent
conference contribution [7].

2 Related Work

Nowadays, there are several platforms
providing data mining services for cloud
computing, offered by leading IT
vendors: Azure Machine Learning [8]
from Microsoft, Amazon Machine
Learning [9], Cloud Machine Learning
platform [10] from Google, and Watson
Analytics [11] from IBM.

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-1, 2017

DOI: 10.21276/ijcesr.2017.4.1.11
97

The common feature of these data mining
frameworks is that they are based on the
MapReduce programming model [2]. This
model uses the abstraction inspired by the
functional primitives map and reduce that are
popular as patterns in parallel and functional
programming [12]. If these functions can be
executed in parallel on the servers of a mobile

cloud system then this brings potentially high
performance of data mining.

Figure 2 a) shows how a data mining algorithm
is usually executed when using the
MapReduce model: raw data from mobile
devices are gathered via the mobile network in
a single warehouse where they are then
processed.

Figure 2: Variants of data mining algorithms applied to distributed data: a) traditional MapReduce
pro- gramming model; b) suggested approach following Fog paradigm.

In case of using the MapReduce model in a
mobile cloud system, the mobile network is
responsible for connecting mobile devices
(such as smartphones) with a cloud. These
connections often negatively impact the
performance of data mining, because they:

• create an intensive traffic in the
network;

• increase the delay between data
production at devices and data processing;

• increase the risk of an unauthorised
access to personal data.

We aim at using the idea of Fog computing [5]
for overcoming these problems. In the Fog,
data are processed closer to their sources, thus
enabling low latency and context awareness.
Despite the popularity of Fog computing, there
are still no ready solutions for its
implementation in the context of data mining,
especially in a mobile cloud.

Figure 2 b) shows the idea of our approach to
data mining in accordance with the principles

of Fog computing: we try to execute
significant parts of a data mining algorithm at
devices, instead of transferring data to the
compute cluster and processing them there; the
cluster receives intermediate results after data
processing at mobile devices. Our approach
optimizes the structure of the parallelized data
mining algorithm according to the type of data
distribution: horizontal or vertical.

3 The Formal Functional Approach

We develop our approach to be general,
formally based, and covering a broad class of
data mining algorithms. We briefly describe
the approach below, with capital letters used
for data types and lower- case letters denoting
variables of these types and functions.

 Representation of Data Mining Algorithms

We view a data mining algorithm as a function
that takes a data set d ∈ D as input and creates
a mining model m ∈ M as output:

dma : D → M (1)

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-1, 2017

DOI: 10.21276/ijcesr.2017.4.1.11
98

A data set d D usually contains characteristics
(such as temperature, sound level, vibration,
pressure, etc.) of objects (e.g., people, vehicles,
etc.). We represent a data set as a 2-
dimensional array (data matrix), e.g., for z
objects that are described by p characteristics
[13]:

d = (x j.k)z,p

(2)

where x j.k is the value of kth characteristic of
the jth object. The set of values of kth column
is denoted as Tk(x j.kTk): Tk = vk.1, . . .vk.u .

A mining model comprises elements that
describe knowledge extracted by a data mining
algorithm

from a data set. These elements can be, e.g.,
classification or association rules, cluster
centers, decision tree nodes, etc. In (1), a data
mining algorithm creates a mining model,
without changing the input data. We represent
a mining model m ∈ M as an array of elements
ei, i = 0, . . . , u:

m = [e0, e1, . . . ,eu] (3)

Since algorithms are usually a sequence of
steps, we formally represent a data mining
algorithm as a sequential composition of
functions, as follows:

dma = fn ◦ fn−1 ◦ . . . ◦ f1 ◦ f0 (4)

where ◦ is the composition operator that is
applied from right to left.

In (4) function f0 : D → M takes a data set d ∈
D as an argument and returns a mining model
m0 ∈ M. The next functions ft,t = 1 . . . n take
the mining model mt−1 ∈ M created by the
previous function ft−1 and return the changed
mining model mt∈ M.

ft : M → M (5)

The functions ft,t = 1 . . . n of type (4) are
called Functional Mining Blocks (FMB). Some
steps of a data mining algorithm use data
matrix d to change the mining model m, i.e.,
they take the data matrix d as additional
argument d:

fdt : D → M → M (6)

To use these functions in the composition (4),
we exploit partial function application with the
fixed first argument: ft = fdt d. Thus d is
constant in the function ft.

In order to apply some function fdt to each
element of the data matrix, we invoke it in a
loop. We

introduce loops over columns and rows of the
data matrix for iterative processing of data. We
use an asterisk to refer to a whole row (e.g., d[
j,] refers to the jth row) or whole column (e.g.,
d[, k] refers to the kth column) in a data
matrix:

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-1, 2017

DOI: 10.21276/ijcesr.2017.4.1.11
99

• loopc applies fdt to the columns of d ∈
D, starting from index is till index ie:

loopc : I → I → (M → M) → D → M → M
 (7)

loopc is iefdt d m = (fdt d[∗, ie]) ◦•••◦ (fdt
d[∗, is]) m;

• loopr applies fdt to the rows of d ∈ D
starting from index is till index ie:

loopr : I → I → (M → M) → D → M → M (8)

loopr is iefdt d m = (fdt d[ie, ∗]) ◦•••◦ (fdt

d[is, ∗]) m; The first four arguments are fixed
to use loopc and loopr in the composition (4).

 Distributed data

Figure 3 represents a distributed storage: data matrix d is split between s devices:

d = d1 ∪•••∪ ds (9)

where data sub-matrix dh, h = 1..s is located at
hth device.

Figure 3: Traditional processing distribution of
data matrix: (a) vertical; (b) horizontal The
following two cases of data distribution are
possible:

Figure 3 a) shows the vertical distribution of
the data matrix. This case corresponds to the
example

in Figure 1 a);

Figure 3 b) presents the horizontal distribution
of the data matrix. This corresponds to the

example in Figure 1 b).

 Functions for data mining on distributed
memory

Traditionally, data processing is performed by
a data mining algorithm on a cloud as shown in
Figure 2 a). For this, all original data taken at
devices have to be transferred to the cloud,
which is the critical problem addressed in this
paper.

Our alternative to the traditional MapReduce
approach is to execute FMBs of type (6) on the
devices and transfer only mining models (as
result) created by them, rather than large
amounts of data as in the traditional
MapReduce. In addition, the functions that are
parts of the data mining algorithms will be
executed in parallel in our approach, i.e., we

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-1, 2017

DOI: 10.21276/ijcesr.2017.4.1.11
100

have parallel execution with distributed
memory.

We introduce higher-order function paralleld
that expresses the parallel execution of FMBs
on a distributed memory:

paralleld : [(M → M)] → M → M (10)

paralleld [fr, . . . , fs] m = join m forkd [fr, . . .
, fs] m,

where function forkd allows to invoke FMBs
in parallel:

forkd : [M → M] → M → [M] (11)

forkd [fr, . . . , fs] m = [fr (copy m),..., fs(copy
m)]

and function copy creates copies of the mining
model m in separate areas of the distributed
memory for parallel processing by FMBs:

copy : M → M, (12)

copy m = [m[0], m[1],..., m[v]].

Function join in (10) combines the mining

models built by parallel FMBs in separate
areas of distributed memory:

join : M → [M] → M (13)

join m [mr, . . . , ms] = [m′[0], . . . , m′[g], . . . ,
m′[v]],

where m′[g] = m[g], if mi[g] = m[g] for
all i = r . . . s

union m[g] [mr[g], . . . , ms[g]], otherwise

Here, function union merges elements of
different mining models with the same index to
a single mining model’s element:

union : E → [E] → E (14)

The implementation of function union depends
on the mining model’s elements.

Figure 4 shows the distributed execution of a
data mining algorithm using function paralleld
defined by (10). The definition of function
paralleld does not take into account the type of
data distribution. We show in the following
that this is important for the ultimate
performance.

Figure 4: Execution of a data mining algorithm on distributed data.

 Data Mining on Distributed Data

For iterative processing of rows and columns
of data matrix d, both loops loopc (7) and
loopr (8) are used as nested. There are two

possible orders of applying an FMB fdt to the
elements of data matrix d:

• by columns (i.e., in the following order:
x1.1, . . . , xz.1, x1.2, . . . , xz.2, . . .):

(loopc 1 p (loopr 1 z fdt)) d; (15)

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-1, 2017

DOI: 10.21276/ijcesr.2017.4.1.11
101

• by rows (i.e., in the following order:
x1.1, . . . , x1.p, x2.1, . . . , x2.p, . . .):

(loopr 1 z (loopc 1 p fdt)) d. (16)

For parallel processing of the distributed data
matrix (9), we decompose expressions (15) and
(16) in the FMBs that are executed on the
devices and process only submatrices stored in
them locally. For this, the loops are
decomposed as follows:

• for horizontal data distribution
(distribution of data matrix’s rows), the loop
loopr is decomposed;

• for vertical data distribution (distribution
of data matrix’s columns), the loop loopc is
decomposed. Function paralleld is used to
execute the FMBs of the composition
distributed on the devices. We further consider
how the number of functions paralleld depends
on the type of data distribution and the

order of nesting the loops (15) or (16).

We first consider the case when data matrix d
is distributed vertically (Figure 3 a)). In
expression (15), we decompose the outer loop
loopc:

(loopc 1 p (loopr 1 z fdt)) d = ((loopc r + 1 p
(loopr 1 z fdt)) ds) ◦••• ◦((loopc 1 g (loopr 1 z
fdt)) d1).

In this case, we use the single function paralled
to execute FMBs of the composition in a
parallel manner:

paralleld [(loopc 1 g (loopr 1 z fdt)), . . . ,
(loopc r + 1 p (loopr 1 z fdt))].

In expression (16), we decompose the inner
loop loopc:

(loopr 1 z (loopc 1 p fdt)) d = (loopr 1 z
(((loopc r + 1 p fdt) ds) ◦ • • • ◦ ((loopc 1 g fdt)
d1)).

Therefore, function paralleld is invoked m

times from the outer loop loopr:

(loopr 1 z paralleld[((loopc 1 g fdt) d1), . . . ,
((loopc r + 1 p fdt) ds)].

When data matrix d is distributed horizontally
(Figure 3 b)) in expression (15), we
decompose the inner loop loopr:

(loopc 1 p (loopr 1 m fdt)) d = loopc 1 p
(((loopr x + 1 z fdt) ds) ◦...◦ ((loopr 1 y fdt)
d1)).

As the result, function paralleld is invoked
from the outer loop p times:

(loopc 1 p paralleld[((loopr 1 y fdt) d1), . . . ,
((loopr x + 1 z fdt) ds)].

However, in expression (16) for horizontal
data distribution (Figure 3 b)), we decompose
the outer loop

loopr:

(loopr 1 z (loopc 1 p fdt)) d = ((loopr x + 1 z
(loopc 1 p fdt)) ds)◦••• ◦((loopr 1 y (loopc 1 p
fdt)) d1)),

so for parallel execution of FMBs in the
composition we can employ one function
paralleld: paralleld [((loopr 1 y (loopc 1 p fdt))
d1), . . . , (loopr x + 1 z (loopc 1 p fdt)) ds)].

Table 1 summarizes the number of invoking
function paralleld for different kinds of data
distributions

and order of nesting the loops (15) and (16).
Summarizing, we see that a non-optimal order
of nesting loops and the type of data
distribution increases the number of functions
paralleld. Each invocation of paralleld leads to
executing functions forkd and join. This
increases the total run time of the whole
algorithm, so it is important to reduce the
number of invocations of paralleld. This can be
achieved by adjusting the order of these loops
according to the type of data distribution, as
described in the next section.

Typeofdistribution Orderofnestingtheloops Numberofinvokingfunctionparalleld

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-1, 2017

DOI: 10.21276/ijcesr.2017.4.1.11
102

VerticalHorizontal (loopc1 p (loopr1 z fdt))
d(loopr1 z (loopc1 p fdt))
d(loopc1 p (loopr1 z fdt))
d(loopr1z(loopc1pfdt))d

1
z(thenumberofrowsindatamatrixd)

p(thenumberofcolumnsindatamatrixd)1

Table 1: Depending the number of functions paralleld from data distribution and nesting the loops

 Adaptation of Loops to the Type of Data
Distribution

Adjusting the execution order of the nested
loops loopr and loopc according to the type of
data distribu- tion can be achieved by
executing the loop interchange operation
which is often used in compilers [14]. It
changes the order of iteration variables in a
group of nested loops. For example, the
iteration variable used in the inner loop can be
moved to the outer loop and vice versa:

loopc 1 p (loopr 1 z fdt) = loopr 1 z (loopc 1 p
fdt)

In the simplest case, a single FMB fdt is
applied to each of the elements of the data
matrix d. In a more complex case, FMB called
from the outer loop can be a composition of
several FMBs and not all of them process data
matrix elements.

Let us look at the following example:

loopc 1 p (fdt−1 ◦ (loopr 1 z fdt) ◦ fdt+1).

Here, operation interchange cannot be applied,
because outer loop loopc invokes not only
inner loop loopr but also FMBs fdt−1 and
fdt+1. Therefore, it is necessary to perform the
loop fission operation prior to changing the
order. This operation is also widely used in
compilers [14]. It breaks down a loop to
several loops, each of which has the same
index boundaries but contains only a part of
initial loop’s body:

loopc 1 p (fdt−1 ◦(loopr 1 z fdt)◦ fdt+1) =
(loopc 1 p fdt−1)◦(loopc 1 p (loopr 1 z
fdt))◦(loopc 1 p fdt+1).

As a result, the operation interchange is
applied only to the second function of the
composition:

(loopc 1 p fdt−1) ◦ (loopc 1 p (loopr 1 z fdt)) ◦

(loopc 1 p fdt+1) = (loopc 1 p fdt−1) ◦ (loopr 1
z (loopc 1 p fdt)) ◦ (loopc 1 p fdt+1).

Applying at first the operation f ission and then
the operation interchange to the nested loops
loopc and loopr allows us to adjust the data
mining algorithm’s structure to the type of data
distribution in order to reduce the number of
invocations of the function paralleld and the
total run time of the algorithm.

Summarizing, a data mining algorithm is
parallelized for distributed execution on the
mobile devices in the cloud by following the
steps below:

1. represent the algorithm as a composition
(4) of functions ft, t=0..n and the mining model
as an array of elements (3);

2. adjustloopc and loopr loop calls
according to the type of data distribution using
transformations

fission and interchange:

(a) if the type of data distribution is
horizontal (vertical) then

i. if outer loop is not loopr (loopc) then

A. if inner FMB is a composition several
FMBs then execute operation f ission

B. execute operation interchange

3. convert the sequential execution of
FMBs, which can be performed in parallel
with distributed, into parallel execution by
paralleld function.

The next sections describe an example of such
transformation.

 Illustration for the Normal Bayes

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-1, 2017

DOI: 10.21276/ijcesr.2017.4.1.11
103

Classifier Training Algorithm

We use the Normal Bayes classifier (NBC)
training algorithm [15] as an example data
mining application to illustrate our approach.
We choose the NBC training algorithm
because it belongs to the Top 10 data mining
algorithms [16]. In the classification task, a
data set d is a set of objects, each of which
belongs to a known class, and each of which
has a known vector of attributes. The column
that defines class of object is called a
dependent attribute ap (for example, health
status of men). The columns with other
characteristics of the object are independent
attributes, (for example: temperature, pressure,
age, and etc.). The NBC training algorithm
based on applying Bayes’ theorem with the
”naive” assumption of independence between
every pair of attributes. The classic Bayes
method to approximate P(xj.k x j.p) for a
continuous variable x j.k is assuming that it
follows a known distribution for which
parameters can be estimated from the data.
Gaussian distribution (normal distribution) is
the most popular and most-used statistical
continuous distribution method. It has two
parameters: mean µ and variance σ 2. For each
of the class values vp.r∈Tp, we assume that:

P(xj.k = vk.q|xj.p = vp.r) = f (x j, µ, σ).

where f (x j, µ, σ) is the normal distribution
with mean µ and variance σ :

f (x j, µ, σ) = σ √2π e

(x−µ)2 2σ 2 .

The means µ and variances σ are estimated
from the values of d in rows for which x j.p =
vp.r simply through unbiased estimates:

µ 1 z 2

 1 z 2

= ∑ x j and σ

j=1

= z − 1 ∑(xj − µ) .

where z is the number of rows in d. The benefit
of the normal method is that it performs well if
the un- derlying distribution indeed follows a
normal distribution [15], is fast in both
learning and classification time and requires
little memory.

To optimize the algorithm, we apply the
following transformations:

σ 2 1 z 2 z 2 2

= z − 1 ∑(xj − µ)

= ∑ x j (z 1)µ

j=1

This optimization allows us to perform NBC
training algorithm for two phases:

1. calculate the sum and the sum of squares
within one iteration through matrix d to obtain
the total calculation for each class;

2. calculate µ and σ 2 for each class, which
are saved in mining model m and used to
calculate possibility of belonging of a new row
to one of the classes.

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-1, 2017

DOI: 10.21276/ijcesr.2017.4.1.11
104

Figure 5: The Normal Bayes classifier training algorithm: pseudocode.

Figure 5 shows a pseudocode of the NBC
training algorithm.

The average value µ and deviation σ
calculation functions do not have the
properties of list homo- morphism. Thus, the
average values and deviations calculated for
each distributed data sources dh set
individually cannot be correctly united (unable
to obtain result equal to calculation based on
the total data d).

Hence, the NBC training algorithm cannot be
executed completely for each of data sources
dh with the further joining of the results
because the joint result may be incorrect. As an
alternative to the com- plete execution of the
algorithm per each device, the algorithm can
be distributed between these devices. To do
this, we parallelize the NBC construction
algorithm using the described approach.
According to it, the algorithm is represented as
a composition of FMB.

The mining model for NBC training algorithm
comprises:

• mining model’s element m[0] is number
of classes (m[0] = |Tp|);

• mining model’s elements m[1],..., m[s]
are the sums of values (m[q] = a[d[j.p]][k], 1
≤ q ≤ s, s =

|Tp| • p);

• mining model’s elements m[s+1],...,
m[u] are the sums of square of values (m[g] =
b[d[j.p]][k], s <

g ≤ u, u = s + |Tp| • p);

• mining model’s elements m[u + 1], . . . ,
m[h] are the means (m[i] = µ[r], u < i ≤ h, h =
u + |Tp| • p);

• mining model’s elements m[h +1],...,
m[w] are the means (m[l] = σ 2[r], h < l ≤ w, w
= h +|Tp|• p). The NBC classifier can be
represented as a composition of the FMBs as
follows:

• fd1 is the loop for rows of data d (line 1
in the pseudocode):

fd1 d m = loopr 1 z fd2 d m;

• fd2 is the loop for columns of data d
(line 3 in the pseudocode):

fd2 d m = loopc 1 p fd4 ◦ fd3 d m;

• fd3 calculate sum of values for each
class (line 3 in the pseudocode):

fd3 d m = m[d[j.p] • k] = m[d[j.p] • k] + d[
j.k];

• fd4 calculate sum square values for each
class (line 4 in the pseudocode):

fd4 d m = m[s + d[j.p] • k] = m[s + d[j.p] • k]

1. forj=1...z//loopforeachvector
2. fork=1...p-1//loopforeachattribute
3. sv[d[j.p]][k]=sv[d[j.p]][k]+d[j.k];//calculatesumofvaluesforeachclass
4. ssv[d[j.p]][k]=ssv[d[j.p]][k]+d[j.k]2;//calculatesumofsquareofvaluesforeachclass
5. endfor;
6. endfor;
7. forr=1...c//loopforeachclasses
8. fork=1...p-1//loopforeachattribute
9 µ[r][k]=sv[r][k]/z;//calculatemean

11. endfor;
12. endfor;

10. σ2[r][k]=ssv[r][k]-(z-1)·sv[r][k]·sv[r][k];//calculatevariance

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-1, 2017

DOI: 10.21276/ijcesr.2017.4.1.11
105

+ d[j.k]2

f5 is the loop for classes (line 7 in the
pseudocode) applies a function f6 to list of
values some column from index is till index ie:

f5 m = loopv 1 m[0] f6 m loopv : I → I → (M
→ M) → M → M

loopv is ieft m = (f6 m[ie]) ◦ • • • ◦ (f6 m[is])

• f6 is the loop for columns (line 8 in the
pseudocode):

f6 m = loopc 1 p f8 ◦ f7 m;

• f7 calculate µ for each class (line 9 in
the pseudocode):

f7 m = m[u + r • k] = m[r • k]/z;

• f8 calculate σ 2 for each class (line 10 in
the pseudocode):

f8 m = m[h + r • k] = m[s + r • k] − (z − 1)•
m[r • k] • m[r • k].

Thus, we can represent the NBC training
algorithm as the following composition of
functions:

NBC = f5 ◦ fd1 ◦ f0 = (loopv 1 m[0] (f6)) ◦
(loopr 1 z (fd2)) ◦ f0 = (17)

(loopv 1 m[0] (loopc 1 p (f8 ◦ f7))) ◦ (loopr 1 z
(loopc 1 p (fd4 ◦ fd3) d)) ◦ f0

 Parallelization of the Normal Bayes
Classifier Training Algorithm

After representing the NBC training algorithm
as a composition of functions (17), in the
second step we verify the corresponding outer
loop and the type of data distribution. In
expression (17), the outer loop is loopr. It
corresponds to the horizontal data distribution,

therefore no transformations are needed.

In the final step, we transform the sequential
form of the NBC training algorithm into a
parallel form for distributed memory by
inserting function paralleld. However, to use
function paralleld, we need to define function
union (14) for mining model’s elements of the
NBC training algorithm. These elements are
sums of values and of square of values,
therefore function union must sum up the
values which are calculated in parallel in
distributed memory:

union : E → [E] → E (18)

union m[q] [m1[q], . . . , mr[q]] = m[q] +
m1[q] + • • • + mr[q]

Thus, function paralleld can be applied to loop
loopr in expression (17) to execute it in
parallel on the servers for horizontally
distributed data:

NBCHPar = (loopv 1 m[0] (loopc 1 p f8 ◦
f7))◦(paralleld [loopr 1 z (loopc 1 p fd4 ◦ fd3
d)])◦ f0 (19)

Figure 6 shows deploying the FMBs of
composition (19) on servers. We distribute
loop loopr between the servers in according
with distribution of data matrix d, i.e. on each
server loop loopr process all rows only locally
submatrix. For example, in the first device all
rows of submatrix d1 is processed by loop
loopr 1 y (loopc 1 p fd4 fd3 d). For this, the
initial mining model m0 is copied and sent
from the cloud to all devices. The computed
mining models m4 are collected from all
devices and are combined by function join into
mining model m5 which is the final result of
the NBC training algorithm.

Figure 6: Distributed execution of the NBC training algorithm for horizontally distributed data.

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-1, 2017

DOI: 10.21276/ijcesr.2017.4.1.11
106

For processing vertically distributed data, we
transform expression (17), because outer loop
loopc does not agree with the type of data
distribution. The outer loop comprises single
FMB fd2, therefore executing f ission is not
needed. However, we apply operation
interchange to change the order of nested loops
loopr and loopc:

loopr 1 z (loopc 1 p f d4 ◦ f d3 d) = loopc 1 p
(loopr 1 z f d4 ◦ f d3 d).

As the result, NBC training algorithm for
vertically distributed data can be represented
as the following composition of functions:

NBC′ = (loopv 1 m[0] (loopc 1 p f8 ◦ f7)) ◦
(loopc 1 p (loopr 1 z fd4 ◦ fd3 d)) ◦ f0.
 (20)

Function union (18) can also be used to
combine the elements of mining models built
by FMBs on devices. Thus function paralleld
can be applied to the loop loopc of expression
(20) in order to execute it in parallel on the
devices with distributed memory for vertically
distributed data:

NBCVPar = (loopv 1 m[0] (loopc 1 p f8 ◦

f7))◦(paralleld [loopc 1 p (loopr 1 z fd4 ◦ fd3
d)])◦ f0. (21) Figure 7 shows the deployment
of the FMBs of composition (21) on the
servers. Here, we distribute loop

loopc and loop loopr between them in
according with the distribution of data matrix
d. The loop loopc is executed on servers with
submatrix d1 that contains only pth depended
attribute. The loop loopc is distributed between
the other servers where it processes all
columns of local submatrices. The interaction
between the cloud and the devices is organized
similarly to the case with the horizontally
distributed data (Figure 6).

As a result, we derived two parallel versions of
the NBC training algorithm: one for the data
mining of the horizontally and one for
vertically distributed data.

4 Experiments and Results

We implement the two parallel NBC training
algorithms (19) and (21) in the Java-based
library DXelopes [17]. With them, we perform
the experiments described in the following.

Figure 7: Distributed execution of the NBC training algorithm for vertically distributed data.

In our experiments, we use the real-world data
set ”Predict Outcome of Pregnancy” from the
Kaggle Datasets [18]. This data set contains
data from the Annual Health Survey: Woman
Schedule. The data set contains 68 independent
attributes related to birth, including: birth

history; type of medical attention at delivery;
details of maternal health care
(antenatal/natal/postnatal, immunization of
children, etc.), and one dependent attribute that
contains information about the outcome of
pregnancy: live birth/still- birth/abortion. The
data set comes as a file in CVS format of 2 Gb
in size.

Table 2: Distributed data sets

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-1, 2017

DOI: 10.21276/ijcesr.2017.4.1.11
107

Typeofdistribution Numberv

ices
of de- Numberofrows Numberc

olumns
of Sizeofdataset(

Mb)

Horizontal 4 3402670 68 500
Vertical 4 14461451 17 500

Horizontal 2 6805350 68 1000
Vertical 2 14461451 34 1000

Singledataset 1 14461451 68 2000

Table 2 shows how the data are partitioned in
our experiments. The data set is split into 2 and
then into 4 parts and distributed between two
and then between four devices,
correspondingly. In each of the cases, the data
set is distributed both horizontally and
vertically. A non-divided data set (for a single
device) is used for comparison. Each devices
has the following configuration: CPU Intel
Xenon, 2.90 GHz, 4 Gb. The cloud is equipped
with a CPU Intel Xeon (12 physical cores),
2.90 GHz, 4 Gb. To imitate communication
channel limitation between devices and cloud,
we use channel throttling with level 75Mbps,
that matches 4G wireless systems.

Figure 8 shows the network traffic and figure 9
shows the run time for horizontally (Figure 8
a) and Figure 9 a)) and vertically (Figure 8 b)
and Figure 9 b)) distributed data. We compare
the two variants of the distributed NBC
training algorithm adapted to horizontally
(NBCHPar) and vertically (NBCVPar)
distributed data with traditional approach when
data are gathered into cloud.

The traditional approach with gathering data
generates larger traffic (more 10 times),
because for it all data are transferred by
network. When processing distributed data in
our approach without gathering data, only
processing mining models are transferred over
the network. We observe that increasing the

number of devices leads to increasing the
volume of network traffic, because a higher
number of results are being sent over the
network.

We observe that the run time in our approach
is lower than with traditional approach. These
resultscan be explained by processing a
smaller volume of data on each devices in
parallel and also by a smaller network traffic.
Also we can view that run time of NBCHPar is
lower than of NBCVPar for horizontally
distributed data and the run time of NBCVPar
is lower than of NBCHPar for vertically
distributed data. This is explained by the non-
corresponding structure of the algorithm and
the type of data distribution, that increases the
over-head of distributed execution (number of
functions paralleld). We observe that the
difference between both variants is larger for
vertically than for horizontally distributed data.
This can be explained by larger numbers of
rows than columns, so the number of
invocations of functions copy and join in
NBCHPar for vertically distributed data is very
large. We also observe that the distinction
between the two variants is reduced with a
smaller number of devices. These results can
also be explained by the decreased number of
invocations of functions copy and join for the
distributed execution of the algorithm on a
smaller number of devices.

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-1, 2017

DOI: 10.21276/ijcesr.2017.4.1.11
108

Figure 8: Network traffic of executing NBC training algorithm for: a) horizontally distributed data;
b) vertically distributed data.

Figure 9: Runtime of executing NBC training algorithm for: a) horizontally distributed data; b)
vertically distributed data.

5 Conclusion

In this paper, we improve the parallelization
and implementation of data mining algorithms
in modern mobile cloud systems. Our approach
formally transforms a high-level functional
representation of a data mining algorithm into
a parallel implementation that performs as
much as possible computations at local nodes,
rather than transferring data for processing at a
central compute cluster as it is done in the
current systems based on MapReduce. We
study different kinds of data distributions
between the servers of mobile networks and
we adapt the structure of the algorithm
correspondingly. Thereby our parallel
implementation of data mining avoids the main
disadvantages of MapReduce in the context of
mobile cloud: increased total processing time,
high network traffic, and a risk of unauthorized
access to the data.

We develop a functional formalism as a formal
base of our approach: it enables formally
ensuring the correctness of the formal program
transformations and of the obtained parallel
implementation. The compiler-level
transformations interchange and fission adapt
the structure of a data mining algorithm to the
type of data distribution.

We implement our approach in the Java-based
data mining library DXelopes, and we
illustrate the approach with the popular data-
mining NBC training algorithm.

Our experiments on real-world data set from
the Kaggle collection confirm that the flexible
adaptation of the distributed implementation of
the NBC training algorithm to the type of data
distribution by using our approach
significantly reduces the net-work traffic and
the application run time.

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-1, 2017

DOI: 10.21276/ijcesr.2017.4.1.11
109

Acknowledgments

This work was supported by RFBR according
to the research project N 19-07-00784, and by
the German Ministry of Education and
Research (BMBF) in the framework of project
HPC2SE at the University of Muenster.

References

[1] H. T. Dinh and e. a. Chongo Lee, “A
survey of mobile cloud computing:
architecture, applications, and approaches,”
Wireless Communications and Mobile
Computing, vol. 13, no. 18, pp. 1587–1611,
October 2011.

[2] J. Dean and S. Ghemawat, “MapReduce:
Simplified data processing on large clusters,”
in Proc. of the 6th Symposium on Operating
System Design and Implementation
(OSDI’04), San Francisco, California, USA.
USENIX, December 2004, pp. 137–150.

[3] “Apache hadoop,”
http://hadoop.apache.org [Online; Accessed on
March 25, 2020], Apache, 2020.

[4] “Apache spark.” http://spark.apache.org
[Online; Accessed on March 25, 2020],
Apache, 2020.

[5] FlavioBonomi and Rodolfo Milito, “Fog
Computing and its Role in the Internet of
Things,” in Proc. of the 1st SIGCOMM
Workshop on Mobile Cloud Computing
(MCC’12), Helsinki, Finland. ACM, August
2012, pp. 13–16.

[6] K. Ivan, S. Andrey, T. Evgeni, and G.
Sergei, “A formally based parallelization of
data mining algorithms for multi-core
systems,” The Journal of Supercomputing, vol.
75, no. 12, p. 7909–7920, July 2018.

[7] K. Ivan, S. Andrey, and G. Sergei,
“Improving data mining for differently
distributed data in iot systems,” in Proc. of the
2019 International Symposium on Intelligent
and Distributed Computing (IDC’19),
Petersburg, Russia, ser. Studies in
Computational Intelligence, vol. 868. Springer,
Cham, October 2019, pp. 75–85.

[8] G. C. J., “Introduction to machine
le‘arning on microsoft azure,”
https://azure.microsoft.com/en-gb/
documentation/articles/machine-learning-
what-is-machine-learning [Online; Accessed
on March 25, 2020], June 2019.

[9] B. J., “Amazon machine learning –
make data-driven decisions at scale.”
https://aws.amazon.com/blogs/ aws/amazon-
machine-learning-make-data-driven-decisions-
at-scale [Online; Accessed on March 25,
2020], April 2015.

[10] “Google cloud machine learning at
scale,”
https://cloud.google.com/products/machine-
learning [Online; Ac- cessed on March 25,
2020], Google.

[11] L. A. and et al., “Question analysis:
How watson reads a clue.” IBM Journal of
Research and Development, vol. 56, no. 3.4,
pp. 2:1–2:14, April 2012.

[12] G. Sergei and C. Murray, Parallel
Skeletons.In: Padua D. (eds).
Springer,Boston, MA, 2011.

[13] H. T., T. R., and F. J., The elements of
statistical learning: Data Mining, Inference,
and Prediction. Springer- Verlag New York,
2001.

[14] A. R. and K. K., Optimizing Compilers
for Modern Architectures. Morgan
Kaufmann, October 2001.

[15] C. Georg and B. R. L., Statistical
Inference. Cengage Learning Publisher, June
2001.

[16] X. Wu and V. Kumar, “Top 10
algorithms in data mining,” Knowledge and
Information Systems, vol. 14, pp. 1–37,
December 2007.
[17] “Prudsysxelopes.” Prudsys, 2019,
https://de.wikipedia.org/wiki/XELOPES.
[18] “Kaggle. dataset: Predict
 outcome of pregnancy.”
 https://prudsys.de/en/knowledge/technol
ogy/ prudsys-xelopes/ [Online; Accessed on
March 25, 2020], Prudsys, June 2019.

	Abstract
	We study different kinds of data distributions for improving the efficient, parallelized implementation of data mining in mobile cloud systems. Our formally-based approach ensures the correctness of the obtained parallel implementation. We apply our a...
	Keywords: mobile cloud, wireless networks, parallel algorithms, distributed algorithms, distributed data mining, parallel data mining
	1 Introduction
	Mobile cloud computing systems unite a high number of mobile smart devices that produce large vol- umes of data with cloud resources for processing these data. The recent rise of mobile clouds is due to the convenience of their use: no need for cable ...
	Figure 1 presents a typical mobile cloud computing architecture that comprises the following three layers of hierarchy [1] as shown in the figure:
	• the mobile device includes hardware devices that produce large volume of data;the mobile network is responsible for transferring data from the mobile devices to the cloud for further processing;the cloud provides services or applications that integr...
	/
	Figure 1: Example of mobile cloud with: a) vertically distributed data; b) horizontally distributed data
	A system in Figure 1 receives data from different mobile devices. The mobile network connects these devices with a cloud where data from mobile devices are gathered and processed in a single data warehouse [1]. There are two different cases of how dat...
	Vertical distribution shown in Figure 1 a): data produced at different mobile devices are distributed corresponding to the same kind of objects or events (for example, photo/video information, health parameters in the same region etc.).
	Horizontal distribution shown in Figure 1 b): data are distributed according to the mobile devices where they are produced (for example, health parameters of people located in different regions).
	Today, computations on the cloud often rely on scalable data processing systems based on the MapReduce programming model [2]. Modern MapReduce frameworks, such as Apache Hadoop [3], Apache Spark [4] etc., perform distributed data processing using a da...
	The important drawback of gathering data in a centralized data warehouse is that this increases the total network traffic. In case of mobile (wireless) networks with limited bandwidth, it may become especially critical. Fog computing [5] is a possible...
	Therefore, we aim at enabling distributed data mining for mobile cloud systems using the ideas of Fog computing. Our approach is to decompose a data mining algorithm, such that its parts are executed locally at the mobile devices (or nearby local serv...
	2 Related Work
	Nowadays, there are several platforms providing data mining services for cloud computing, offered by leading IT vendors: Azure Machine Learning [8] from Microsoft, Amazon Machine Learning [9], Cloud Machine Learning platform [10] from Google, and Wats...
	The common feature of these data mining frameworks is that they are based on the MapReduce programming model [2]. This model uses the abstraction inspired by the functional primitives map and reduce that are popular as patterns in parallel and functio...
	/Figure 2 a) shows how a data mining algorithm is usually executed when using the MapReduce model: raw data from mobile devices are gathered via the mobile network in a single warehouse where they are then processed.
	Figure 2: Variants of data mining algorithms applied to distributed data: a) traditional MapReduce pro- gramming model; b) suggested approach following Fog paradigm.
	In case of using the MapReduce model in a mobile cloud system, the mobile network is responsible for connecting mobile devices (such as smartphones) with a cloud. These connections often negatively impact the performance of data mining, because they:
	• create an intensive traffic in the network;
	• increase the delay between data production at devices and data processing;
	• increase the risk of an unauthorised access to personal data.
	We aim at using the idea of Fog computing [5] for overcoming these problems. In the Fog, data are processed closer to their sources, thus enabling low latency and context awareness. Despite the popularity of Fog computing, there are still no ready sol...
	Figure 2 b) shows the idea of our approach to data mining in accordance with the principles of Fog computing: we try to execute significant parts of a data mining algorithm at devices, instead of transferring data to the compute cluster and processing...
	3 The Formal Functional Approach
	We develop our approach to be general, formally based, and covering a broad class of data mining algorithms. We briefly describe the approach below, with capital letters used for data types and lower- case letters denoting variables of these types and...
	Representation of Data Mining Algorithms
	We view a data mining algorithm as a function that takes a data set d ∈ D as input and creates a mining model m ∈ M as output:
	dma : D → M (1)
	A data set d D usually contains characteristics (such as temperature, sound level, vibration, pressure, etc.) of objects (e.g., people, vehicles, etc.). We represent a data set as a 2-dimensional array (data matrix), e.g., for z objects that are descr...
	d = (x j.k)z,p
	(2)
	where x j.k is the value of kth characteristic of the jth object. The set of values of kth column is denoted as Tk(x j.kTk): Tk = vk.1, . . .vk.u .
	A mining model comprises elements that describe knowledge extracted by a data mining algorithm
	from a data set. These elements can be, e.g., classification or association rules, cluster centers, decision tree nodes, etc. In (1), a data mining algorithm creates a mining model, without changing the input data. We represent a mining model m ∈ M as...
	m = [e0, e1, . . . ,eu] (3)
	Since algorithms are usually a sequence of steps, we formally represent a data mining algorithm as a sequential composition of functions, as follows:
	dma = fn ◦ fn−1 ◦ . . . ◦ f1 ◦ f0 (4)
	where ◦ is the composition operator that is applied from right to left.
	In (4) function f0 : D → M takes a data set d ∈ D as an argument and returns a mining model m0 ∈ M. The next functions ft,t = 1 . . . n take the mining model mt−1 ∈ M created by the previous function ft−1 and return the changed mining model mt∈ M.
	ft : M → M (5)
	The functions ft,t = 1 . . . n of type (4) are called Functional Mining Blocks (FMB). Some steps of a data mining algorithm use data matrix d to change the mining model m, i.e., they take the data matrix d as additional argument d:
	fdt : D → M → M (6)
	To use these functions in the composition (4), we exploit partial function application with the fixed first argument: ft = fdt d. Thus d is constant in the function ft.
	In order to apply some function fdt to each element of the data matrix, we invoke it in a loop. We
	introduce loops over columns and rows of the data matrix for iterative processing of data. We use an asterisk to refer to a whole row (e.g., d[j,] refers to the jth row) or whole column (e.g., d[, k] refers to the kth column) in a data matrix:
	/• loopc applies fdt to the columns of d ∈ D, starting from index is till index ie:
	loopc : I → I → (M → M) → D → M → M (7)
	loopc is iefdt d m = (fdt d[∗, ie]) ◦•••◦ (fdt d[∗, is]) m;
	• loopr applies fdt to the rows of d ∈ D starting from index is till index ie:
	loopr : I → I → (M → M) → D → M → M (8)
	loopr is iefdt d m = (fdt d[ie, ∗]) ◦•••◦ (fdt d[is, ∗]) m; The first four arguments are fixed to use loopc and loopr in the composition (4).
	Distributed data
	Figure 3 represents a distributed storage: data matrix d is split between s devices:
	d = d1 ∪•••∪ ds (9)
	where data sub-matrix dh, h = 1..s is located at hth device.
	Figure 3: Traditional processing distribution of data matrix: (a) vertical; (b) horizontal The following two cases of data distribution are possible:
	Figure 3 a) shows the vertical distribution of the data matrix. This case corresponds to the example
	in Figure 1 a);
	Figure 3 b) presents the horizontal distribution of the data matrix. This corresponds to the example in Figure 1 b).
	Functions for data mining on distributed memory
	Traditionally, data processing is performed by a data mining algorithm on a cloud as shown in Figure 2 a). For this, all original data taken at devices have to be transferred to the cloud, which is the critical problem addressed in this paper.
	Our alternative to the traditional MapReduce approach is to execute FMBs of type (6) on the devices and transfer only mining models (as result) created by them, rather than large amounts of data as in the traditional MapReduce. In addition, the functi...
	We introduce higher-order function paralleld that expresses the parallel execution of FMBs on a distributed memory:
	paralleld : [(M → M)] → M → M (10)
	paralleld [fr, . . . , fs] m = join m forkd [fr, . . . , fs] m,
	where function forkd allows to invoke FMBs in parallel:
	forkd : [M → M] → M → [M] (11)
	forkd [fr, . . . , fs] m = [fr (copy m),..., fs(copy m)]
	and function copy creates copies of the mining model m in separate areas of the distributed memory for parallel processing by FMBs:
	copy : M → M, (12)
	copy m = [m[0], m[1],..., m[v]].
	Function join in (10) combines the mining models built by parallel FMBs in separate areas of distributed memory:
	join : M → [M] → M (13)
	join m [mr, . . . , ms] = [m′[0], . . . , m′[g], . . . , m′[v]],
	where m′[g] = m[g], if mi[g] = m[g] for all i = r . . . s
	union m[g] [mr[g], . . . , ms[g]], otherwise
	Here, function union merges elements of different mining models with the same index to a single mining model’s element:
	union : E → [E] → E (14)
	The implementation of function union depends on the mining model’s elements.
	Figure 4 shows the distributed execution of a data mining algorithm using function paralleld defined by (10). The definition of function paralleld does not take into account the type of data distribution. We show in the following that this is importan...
	/Figure 4: Execution of a data mining algorithm on distributed data.
	Data Mining on Distributed Data
	For iterative processing of rows and columns of data matrix d, both loops loopc (7) and loopr (8) are used as nested. There are two possible orders of applying an FMB fdt to the elements of data matrix d:
	• by columns (i.e., in the following order: x1.1, . . . , xz.1, x1.2, . . . , xz.2, . . .):
	(loopc 1 p (loopr 1 z fdt)) d; (15)
	• by rows (i.e., in the following order: x1.1, . . . , x1.p, x2.1, . . . , x2.p, . . .):
	(loopr 1 z (loopc 1 p fdt)) d. (16)
	For parallel processing of the distributed data matrix (9), we decompose expressions (15) and (16) in the FMBs that are executed on the devices and process only submatrices stored in them locally. For this, the loops are decomposed as follows:
	• for horizontal data distribution (distribution of data matrix’s rows), the loop loopr is decomposed;
	• for vertical data distribution (distribution of data matrix’s columns), the loop loopc is decomposed. Function paralleld is used to execute the FMBs of the composition distributed on the devices. We further consider how the number of functions paral...
	order of nesting the loops (15) or (16).
	We first consider the case when data matrix d is distributed vertically (Figure 3 a)). In expression (15), we decompose the outer loop loopc:
	(loopc 1 p (loopr 1 z fdt)) d = ((loopc r + 1 p (loopr 1 z fdt)) ds) ◦••• ◦((loopc 1 g (loopr 1 z fdt)) d1).
	In this case, we use the single function paralled to execute FMBs of the composition in a parallel manner:
	paralleld [(loopc 1 g (loopr 1 z fdt)), . . . , (loopc r + 1 p (loopr 1 z fdt))].
	In expression (16), we decompose the inner loop loopc:
	(loopr 1 z (loopc 1 p fdt)) d = (loopr 1 z (((loopc r + 1 p fdt) ds) ◦ • • • ◦ ((loopc 1 g fdt) d1)).
	Therefore, function paralleld is invoked m times from the outer loop loopr:
	(loopr 1 z paralleld[((loopc 1 g fdt) d1), . . . , ((loopc r + 1 p fdt) ds)].
	When data matrix d is distributed horizontally (Figure 3 b)) in expression (15), we decompose the inner loop loopr:
	(loopc 1 p (loopr 1 m fdt)) d = loopc 1 p (((loopr x + 1 z fdt) ds) ◦...◦ ((loopr 1 y fdt) d1)).
	As the result, function paralleld is invoked from the outer loop p times:
	(loopc 1 p paralleld[((loopr 1 y fdt) d1), . . . , ((loopr x + 1 z fdt) ds)].
	However, in expression (16) for horizontal data distribution (Figure 3 b)), we decompose the outer loop
	loopr:
	(loopr 1 z (loopc 1 p fdt)) d = ((loopr x + 1 z (loopc 1 p fdt)) ds)◦••• ◦((loopr 1 y (loopc 1 p fdt)) d1)),
	so for parallel execution of FMBs in the composition we can employ one function paralleld: paralleld [((loopr 1 y (loopc 1 p fdt)) d1), . . . , (loopr x + 1 z (loopc 1 p fdt)) ds)].
	Table 1 summarizes the number of invoking function paralleld for different kinds of data distributions
	and order of nesting the loops (15) and (16). Summarizing, we see that a non-optimal order of nesting loops and the type of data distribution increases the number of functions paralleld. Each invocation of paralleld leads to executing functions forkd ...
	Table 1: Depending the number of functions paralleld from data distribution and nesting the loops
	Adaptation of Loops to the Type of Data Distribution
	Adjusting the execution order of the nested loops loopr and loopc according to the type of data distribu- tion can be achieved by executing the loop interchange operation which is often used in compilers [14]. It changes the order of iteration variabl...
	loopc 1 p (loopr 1 z fdt) = loopr 1 z (loopc 1 p fdt)
	In the simplest case, a single FMB fdt is applied to each of the elements of the data matrix d. In a more complex case, FMB called from the outer loop can be a composition of several FMBs and not all of them process data matrix elements.
	Let us look at the following example:
	loopc 1 p (fdt−1 ◦ (loopr 1 z fdt) ◦ fdt+1).
	Here, operation interchange cannot be applied, because outer loop loopc invokes not only inner loop loopr but also FMBs fdt−1 and fdt+1. Therefore, it is necessary to perform the loop fission operation prior to changing the order. This operation is al...
	loopc 1 p (fdt−1 ◦(loopr 1 z fdt)◦ fdt+1) = (loopc 1 p fdt−1)◦(loopc 1 p (loopr 1 z fdt))◦(loopc 1 p fdt+1).
	As a result, the operation interchange is applied only to the second function of the composition:
	(loopc 1 p fdt−1) ◦ (loopc 1 p (loopr 1 z fdt)) ◦ (loopc 1 p fdt+1) = (loopc 1 p fdt−1) ◦ (loopr 1 z (loopc 1 p fdt)) ◦ (loopc 1 p fdt+1).
	Applying at first the operation f ission and then the operation interchange to the nested loops loopc and loopr allows us to adjust the data mining algorithm’s structure to the type of data distribution in order to reduce the number of invocations of ...
	Summarizing, a data mining algorithm is parallelized for distributed execution on the mobile devices in the cloud by following the steps below:
	1. represent the algorithm as a composition (4) of functions ft, t=0..n and the mining model as an array of elements (3);
	2. adjustloopc and loopr loop calls according to the type of data distribution using transformations
	fission and interchange:
	(a) if the type of data distribution is horizontal (vertical) then
	i. if outer loop is not loopr (loopc) then
	A. if inner FMB is a composition several FMBs then execute operation f ission
	B. execute operation interchange
	3. convert the sequential execution of FMBs, which can be performed in parallel with distributed, into parallel execution by paralleld function.
	The next sections describe an example of such transformation.
	Illustration for the Normal Bayes Classifier Training Algorithm
	We use the Normal Bayes classifier (NBC) training algorithm [15] as an example data mining application to illustrate our approach. We choose the NBC training algorithm because it belongs to the Top 10 data mining algorithms [16]. In the classification...
	P(xj.k = vk.q|xj.p = vp.r) = f (x j, µ, σ).
	where f (x j, µ, σ) is the normal distribution with mean µ and variance σ :
	f (x j, µ, σ) = σ √2π e
	(x−µ)2 2σ 2 .
	The means µ and variances σ are estimated from the values of d in rows for which x j.p = vp.r simply through unbiased estimates:
	µ 1 z 2
	1 z 2
	= ∑ x j and σ
	j=1
	= z − 1 ∑(xj − µ) .
	where z is the number of rows in d. The benefit of the normal method is that it performs well if the un- derlying distribution indeed follows a normal distribution [15], is fast in both learning and classification time and requires little memory.
	To optimize the algorithm, we apply the following transformations:
	σ 2 1 z 2 z 2 2
	= z − 1 ∑(xj − µ)
	= ∑ x j (z 1)µ
	j=1
	This optimization allows us to perform NBC training algorithm for two phases:
	1. calculate the sum and the sum of squares within one iteration through matrix d to obtain the total calculation for each class;
	2. calculate µ and σ 2 for each class, which are saved in mining model m and used to calculate possibility of belonging of a new row to one of the classes.
	Figure 5: The Normal Bayes classifier training algorithm: pseudocode.
	Figure 5 shows a pseudocode of the NBC training algorithm.
	The average value µ and deviation σ calculation functions do not have the properties of list homo- morphism. Thus, the average values and deviations calculated for each distributed data sources dh set individually cannot be correctly united (unable to...
	Hence, the NBC training algorithm cannot be executed completely for each of data sources dh with the further joining of the results because the joint result may be incorrect. As an alternative to the com- plete execution of the algorithm per each devi...
	The mining model for NBC training algorithm comprises:
	• mining model’s element m[0] is number of classes (m[0] = |Tp|);
	• mining model’s elements m[1],..., m[s] are the sums of values (m[q] = a[d[j.p]][k], 1 ≤ q ≤ s, s =
	|Tp| • p);
	• mining model’s elements m[s+1],..., m[u] are the sums of square of values (m[g] = b[d[j.p]][k], s <
	g ≤ u, u = s + |Tp| • p);
	• mining model’s elements m[u + 1], . . . , m[h] are the means (m[i] = µ[r], u < i ≤ h, h = u + |Tp| • p);
	• mining model’s elements m[h +1],..., m[w] are the means (m[l] = σ 2[r], h < l ≤ w, w = h +|Tp|• p). The NBC classifier can be represented as a composition of the FMBs as follows:
	• fd1 is the loop for rows of data d (line 1 in the pseudocode):
	fd1 d m = loopr 1 z fd2 d m;
	• fd2 is the loop for columns of data d (line 3 in the pseudocode):
	fd2 d m = loopc 1 p fd4 ◦ fd3 d m;
	• fd3 calculate sum of values for each class (line 3 in the pseudocode):
	fd3 d m = m[d[j.p] • k] = m[d[j.p] • k] + d[j.k];
	• fd4 calculate sum square values for each class (line 4 in the pseudocode):
	fd4 d m = m[s + d[j.p] • k] = m[s + d[j.p] • k] + d[j.k]2
	f5 is the loop for classes (line 7 in the pseudocode) applies a function f6 to list of values some column from index is till index ie:
	f5 m = loopv 1 m[0] f6 m loopv : I → I → (M → M) → M → M
	loopv is ieft m = (f6 m[ie]) ◦ • • • ◦ (f6 m[is])
	• f6 is the loop for columns (line 8 in the pseudocode):
	f6 m = loopc 1 p f8 ◦ f7 m;
	• f7 calculate µ for each class (line 9 in the pseudocode):
	f7 m = m[u + r • k] = m[r • k]/z;
	• f8 calculate σ 2 for each class (line 10 in the pseudocode):
	f8 m = m[h + r • k] = m[s + r • k] − (z − 1)• m[r • k] • m[r • k].
	Thus, we can represent the NBC training algorithm as the following composition of functions:
	NBC = f5 ◦ fd1 ◦ f0 = (loopv 1 m[0] (f6)) ◦ (loopr 1 z (fd2)) ◦ f0 = (17)
	(loopv 1 m[0] (loopc 1 p (f8 ◦ f7))) ◦ (loopr 1 z (loopc 1 p (fd4 ◦ fd3) d)) ◦ f0
	Parallelization of the Normal Bayes Classifier Training Algorithm
	/After representing the NBC training algorithm as a composition of functions (17), in the second step we verify the corresponding outer loop and the type of data distribution. In expression (17), the outer loop is loopr. It corresponds to the horizont...
	In the final step, we transform the sequential form of the NBC training algorithm into a parallel form for distributed memory by inserting function paralleld. However, to use function paralleld, we need to define function union (14) for mining model’s...
	union : E → [E] → E (18)
	union m[q] [m1[q], . . . , mr[q]] = m[q] + m1[q] + • • • + mr[q]
	Thus, function paralleld can be applied to loop loopr in expression (17) to execute it in parallel on the servers for horizontally distributed data:
	NBCHPar = (loopv 1 m[0] (loopc 1 p f8 ◦ f7))◦(paralleld [loopr 1 z (loopc 1 p fd4 ◦ fd3 d)])◦ f0 (19)
	Figure 6 shows deploying the FMBs of composition (19) on servers. We distribute loop loopr between the servers in according with distribution of data matrix d, i.e. on each server loop loopr process all rows only locally submatrix. For example, in the...
	Figure 6: Distributed execution of the NBC training algorithm for horizontally distributed data.
	For processing vertically distributed data, we transform expression (17), because outer loop loopc does not agree with the type of data distribution. The outer loop comprises single FMB fd2, therefore executing f ission is not needed. However, we appl...
	loopr 1 z (loopc 1 p f d4 ◦ f d3 d) = loopc 1 p (loopr 1 z f d4 ◦ f d3 d).
	As the result, NBC training algorithm for vertically distributed data can be represented as the following composition of functions:
	NBC′ = (loopv 1 m[0] (loopc 1 p f8 ◦ f7)) ◦ (loopc 1 p (loopr 1 z fd4 ◦ fd3 d)) ◦ f0. (20)
	Function union (18) can also be used to combine the elements of mining models built by FMBs on devices. Thus function paralleld can be applied to the loop loopc of expression (20) in order to execute it in parallel on the devices with distributed memo...
	NBCVPar = (loopv 1 m[0] (loopc 1 p f8 ◦ f7))◦(paralleld [loopc 1 p (loopr 1 z fd4 ◦ fd3 d)])◦ f0. (21) Figure 7 shows the deployment of the FMBs of composition (21) on the servers. Here, we distribute loop
	loopc and loop loopr between them in according with the distribution of data matrix d. The loop loopc is executed on servers with submatrix d1 that contains only pth depended attribute. The loop loopc is distributed between the other servers where it ...
	As a result, we derived two parallel versions of the NBC training algorithm: one for the data mining of the horizontally and one for vertically distributed data.
	4 Experiments and Results
	We implement the two parallel NBC training algorithms (19) and (21) in the Java-based library DXelopes [17]. With them, we perform the experiments described in the following.
	/
	Figure 7: Distributed execution of the NBC training algorithm for vertically distributed data.
	In our experiments, we use the real-world data set ”Predict Outcome of Pregnancy” from the Kaggle Datasets [18]. This data set contains data from the Annual Health Survey: Woman Schedule. The data set contains 68 independent attributes related to birt...
	Table 2: Distributed data sets
	Table 2 shows how the data are partitioned in our experiments. The data set is split into 2 and then into 4 parts and distributed between two and then between four devices, correspondingly. In each of the cases, the data set is distributed both horizo...
	Figure 8 shows the network traffic and figure 9 shows the run time for horizontally (Figure 8 a) and Figure 9 a)) and vertically (Figure 8 b) and Figure 9 b)) distributed data. We compare the two variants of the distributed NBC training algorithm adap...
	The traditional approach with gathering data generates larger traffic (more 10 times), because for it all data are transferred by network. When processing distributed data in our approach without gathering data, only processing mining models are trans...
	We observe that the run time in our approach is lower than with traditional approach. These resultscan be explained by processing a smaller volume of data on each devices in parallel and also by a smaller network traffic. Also we can view that run tim...
	/Figure 9: Runtime of executing NBC training algorithm for: a) horizontally distributed data; b) vertically distributed data.
	5 Conclusion
	In this paper, we improve the parallelization and implementation of data mining algorithms in modern mobile cloud systems. Our approach formally transforms a high-level functional representation of a data mining algorithm into a parallel implementatio...
	We develop a functional formalism as a formal base of our approach: it enables formally ensuring the correctness of the formal program transformations and of the obtained parallel implementation. The compiler-level transformations interchange and fiss...
	We implement our approach in the Java-based data mining library DXelopes, and we illustrate the approach with the popular data-mining NBC training algorithm.
	Our experiments on real-world data set from the Kaggle collection confirm that the flexible adaptation of the distributed implementation of the NBC training algorithm to the type of data distribution by using our approach significantly reduces the net...
	Acknowledgments
	This work was supported by RFBR according to the research project N 19-07-00784, and by the German Ministry of Education and Research (BMBF) in the framework of project HPC2SE at the University of Muenster.
	References
	[1] H. T. Dinh and e. a. Chongo Lee, “A survey of mobile cloud computing: architecture, applications, and approaches,” Wireless Communications and Mobile Computing, vol. 13, no. 18, pp. 1587–1611, October 2011.
	[2] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on large clusters,” in Proc. of the 6th Symposium on Operating System Design and Implementation (OSDI’04), San Francisco, California, USA. USENIX, December 2004, pp. 137–150.
	[3] “Apache hadoop,” http://hadoop.apache.org [Online; Accessed on March 25, 2020], Apache, 2020.
	[4] “Apache spark.” http://spark.apache.org [Online; Accessed on March 25, 2020], Apache, 2020.
	[5] FlavioBonomi and Rodolfo Milito, “Fog Computing and its Role in the Internet of Things,” in Proc. of the 1st SIGCOMM Workshop on Mobile Cloud Computing (MCC’12), Helsinki, Finland. ACM, August 2012, pp. 13–16.
	[6] K. Ivan, S. Andrey, T. Evgeni, and G. Sergei, “A formally based parallelization of data mining algorithms for multi-core systems,” The Journal of Supercomputing, vol. 75, no. 12, p. 7909–7920, July 2018.
	[7] K. Ivan, S. Andrey, and G. Sergei, “Improving data mining for differently distributed data in iot systems,” in Proc. of the 2019 International Symposium on Intelligent and Distributed Computing (IDC’19), Petersburg, Russia, ser. Studies in Computa...
	[8] G. C. J., “Introduction to machine le‘arning on microsoft azure,” https://azure.microsoft.com/en-gb/ documentation/articles/machine-learning-what-is-machine-learning [Online; Accessed on March 25, 2020], June 2019.
	[9] B. J., “Amazon machine learning – make data-driven decisions at scale.” https://aws.amazon.com/blogs/ aws/amazon-machine-learning-make-data-driven-decisions-at-scale [Online; Accessed on March 25, 2020], April 2015.
	[10] “Google cloud machine learning at scale,” https://cloud.google.com/products/machine-learning [Online; Ac- cessed on March 25, 2020], Google.
	[11] L. A. and et al., “Question analysis: How watson reads a clue.” IBM Journal of Research and Development, vol. 56, no. 3.4, pp. 2:1–2:14, April 2012.
	[12] G. Sergei and C. Murray, Parallel Skeletons.In: Padua D. (eds). Springer,Boston, MA, 2011.
	[13] H. T., T. R., and F. J., The elements of statistical learning: Data Mining, Inference, and Prediction. Springer- Verlag New York, 2001.
	[14] A. R. and K. K., Optimizing Compilers for Modern Architectures. Morgan Kaufmann, October 2001.
	[15] C. Georg and B. R. L., Statistical Inference. Cengage Learning Publisher, June 2001.
	[16] X. Wu and V. Kumar, “Top 10 algorithms in data mining,” Knowledge and Information Systems, vol. 14, pp. 1–37, December 2007.
	[17] “Prudsysxelopes.” Prudsys, 2019, https://de.wikipedia.org/wiki/XELOPES.
	[18] “Kaggle. dataset: Predict outcome of pregnancy.” https://prudsys.de/en/knowledge/technology/ prudsys-xelopes/ [Online; Accessed on March 25, 2020], Prudsys, June 2019.

