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Abstract 
We study different kinds of data 
distributions for improving the 
efficient, parallelized implementation 
of data mining in mobile cloud 
systems. Our formally-based 
approach ensures the correctness of 
the obtained parallel implementation. 
We apply our approach to parallel 
implementation of data min- ing 
algorithms in systems where a cloud is 
accessed via a mobile (wireless) 
network. Our approach derives a 
parallel implementation of a data 
mining algorithm that performs as 
much as possible computations at 
local servers of a mobile network, 
rather than transferring data for 
processing to a high-performance 
cluster in the cloud as it is done in the 
current cloud systems based on 
MapReduce. We implement our 
approach by extending the Java-based 
library DXelopes, and we illustrate 
our re- sults with the popular data-
mining Normal Bayes classifier 
training algorithm. Our experiments 
on real-world data sets confirm that 
our approach significantly reduces the 
network traffic and the appli- cation 
run time. 

Keywords: mobile cloud, wireless 
networks, parallel algorithms, 
distributed algorithms, distributed 

data mining, parallel data mining 

 

1 Introduction 

Mobile cloud computing systems unite a 
high number of mobile smart devices 
that produce large vol- umes of data with 
cloud resources for processing these 
data. The recent rise of mobile clouds is 
due to the convenience of their use: no 
need for cable installation, ease of 
connection, etc. However, mobile 
networks have several limitations, in 
particular - reduced bandwidth. 

Figure 1 presents a typical mobile cloud 
computing architecture that comprises 
the following three layers of hierarchy 
[1] as shown in the figure: 

• the mobile device includes 
hardware devices that produce large 
volume of data;the mobile network is 
responsible for transferring data from the 
mobile devices to the cloud for further 
processing;the cloud provides services or 
applications that integrate and/or analyze 
the data received from the all the mobile 
networks. 
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Figure 1: Example of mobile cloud with: a) vertically distributed data; b) horizontally 
distributed data 

 
A system in Figure 1 receives data from 
different mobile devices. The mobile 
network connects these devices with a 
cloud where data from mobile devices 
are gathered and processed in a single 
data warehouse [1]. There are two 
different cases of how data are 
distributed in a mobile cloud system: 

Vertical distribution shown in Figure 1 
a): data produced at different mobile 
devices are distributed corresponding to 
the same kind of objects or events (for 
example, photo/video information, 
health parameters in the same region 
etc.). 

Horizontal distribution shown in Figure 
1 b): data are distributed according to the 
mobile devices where they are produced 
(for example, health parameters of 
people located in different regions). 

Today, computations on the cloud often 
rely on scalable data processing systems 
based on the MapReduce programming 
model [2]. Modern MapReduce 
frameworks, such as Apache Hadoop 
[3], Apache Spark [4] etc., perform 
distributed data processing using a data 
warehouse, which is shown in both 
Figures 1 a) and b). 

The important drawback of gathering 
data in a centralized data warehouse is 
that this increases the total network 
traffic. In case of mobile (wireless) 

networks with limited bandwidth, it may 
become especially critical. Fog 
computing [5] is a possible solution to 
this problem: data processing is moved 
nearer to the mobile devices where data 
are produced. However, the current Map 
Reduce frameworks do not yet support 
this idea. 

Therefore, we aim at enabling 
distributed data mining for mobile cloud 
systems using the ideas of Fog 
computing. Our approach is to 
decompose a data mining algorithm, 
such that its parts are executed locally at 
the mobile devices (or nearby local 
servers), without transferring the raw 
data via the mobile network to a cloud. 
We expect that this will reduce network 
traffic in the mobile cloud system. We 
demonstrate that such optimization of a 
data mining algorithm strongly depends 
on the type of data distribution. The 
paper improves our previous work on 
parallelizing data mining algorithms for 
modern processors [6] and is an 
extended version of the recent 
conference contribution [7]. 

2 Related Work 

Nowadays, there are several platforms 
providing data mining services for cloud 
computing, offered by leading IT 
vendors: Azure Machine Learning [8] 
from Microsoft, Amazon Machine 
Learning [9], Cloud Machine Learning 
platform [10] from Google, and Watson 
Analytics [11] from IBM. 
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The common feature of these data mining 
frameworks is that they are based on the 
MapReduce programming model [2]. This 
model uses the abstraction inspired by the 
functional primitives map and reduce that are 
popular as patterns in parallel and functional 
programming [12]. If these functions can be 
executed in parallel on the servers of a mobile 

cloud system then this brings potentially high 
performance of data mining. 

Figure 2 a) shows how a data mining algorithm 
is usually executed when using the 
MapReduce model: raw data from mobile 
devices are gathered via the mobile network in 
a single warehouse where they are then 
processed. 

Figure 2: Variants of data mining algorithms applied to distributed data: a) traditional MapReduce 
pro- gramming model; b) suggested approach following Fog paradigm. 

In case of using the MapReduce model in a 
mobile cloud system, the mobile network is 
responsible for connecting mobile devices 
(such as smartphones) with a cloud. These 
connections often negatively impact the 
performance of data mining, because they: 

• create an intensive traffic in the 
network; 

• increase the delay between data 
production at devices and data processing; 

• increase the risk of an unauthorised 
access to personal data. 

We aim at using the idea of Fog computing [5] 
for overcoming these problems. In the Fog, 
data are processed closer to their sources, thus 
enabling low latency and context awareness. 
Despite the popularity of Fog computing, there 
are still no ready solutions for its 
implementation in the context of data mining, 
especially in a mobile cloud. 

Figure 2 b) shows the idea of our approach to 
data mining in accordance with the principles 

of Fog computing: we try to execute 
significant parts of a data mining algorithm at 
devices, instead of transferring data to the 
compute cluster and processing them there; the 
cluster receives intermediate results after data 
processing at mobile devices. Our approach 
optimizes the structure of the parallelized data 
mining algorithm according to the type of data 
distribution: horizontal or vertical. 

 

3 The Formal Functional Approach 

We develop our approach to be general, 
formally based, and covering a broad class of 
data mining algorithms. We briefly describe 
the approach below, with capital letters used 
for data types and lower- case letters denoting 
variables of these types and functions. 

 Representation of Data Mining Algorithms 

We view a data mining algorithm as a function 
that takes a data set d ∈ D as input and creates 
a mining model m ∈ M as output: 

dma : D → M (1) 
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A data set d D usually contains characteristics 
(such as temperature, sound level, vibration, 
pressure, etc.) of objects (e.g., people, vehicles, 
etc.). We represent a data set as a 2-
dimensional array (data matrix), e.g., for z 
objects that are described by p characteristics 
[13]: 

 

d = (x j.k)z,p 

 

(2) 

 

where x j.k is the value of kth characteristic of 
the jth object. The set of values of kth column 
is denoted as Tk(x j.kTk): Tk = vk.1, . . .vk.u . 

A mining model comprises elements that 
describe knowledge extracted by a data mining 
algorithm 

from a data set. These elements can be, e.g., 
classification or association rules, cluster 
centers, decision tree nodes, etc. In (1), a data 
mining algorithm creates a mining model, 
without changing the input data. We represent 
a mining model m ∈ M as an array of elements 
ei, i = 0, . . . , u: 

m = [e0, e1, . . . ,eu] (3) 

Since algorithms are usually a sequence of 
steps, we formally represent a data mining 
algorithm as a sequential composition of 
functions, as follows: 

dma = fn ◦ fn−1 ◦ . . . ◦ f1 ◦ f0 (4) 

where ◦ is the composition operator that is 
applied from right to left. 

In (4) function f0 : D → M takes a data set d ∈ 
D as an argument and returns a mining model 
m0 ∈ M. The next functions ft,t = 1 . . . n take 
the mining model mt−1 ∈ M created by the 
previous function ft−1 and return the changed 
mining model mt∈ M. 

ft : M → M (5) 

The functions ft,t = 1 . . . n of type (4) are 
called Functional Mining Blocks (FMB). Some 
steps of a data mining algorithm use data 
matrix d to change the mining model m, i.e., 
they take the data matrix d as additional 
argument d: 

fdt : D → M → M (6) 

To use these functions in the composition (4), 
we exploit partial function application with the 
fixed first argument: ft = fdt d. Thus d is 
constant in the function ft. 

In order to apply some function fdt to each 
element of the data matrix, we invoke it in a 
loop. We 

introduce loops over columns and rows of the 
data matrix for iterative processing of data. We 
use an asterisk to refer to a whole row (e.g., d[ 
j, ] refers to the jth row) or whole column (e.g., 
d[ , k] refers to the kth column) in a data 
matrix: 
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• loopc applies fdt to the columns of d ∈ 
D, starting from index is till index ie: 

loopc : I → I → (M → M) → D → M → M
 (7) 

loopc is iefdt d m = ( fdt d[∗, ie]) ◦•••◦ ( fdt 
d[∗, is]) m; 

• loopr applies fdt to the rows of d ∈ D 
starting from index is till index ie: 

loopr : I → I → (M → M) → D → M → M (8) 

loopr is iefdt d m = ( fdt d[ie, ∗]) ◦•••◦ ( fdt 

d[is, ∗]) m; The first four arguments are fixed 
to use loopc and loopr in the composition (4). 

 

 Distributed data 

 

Figure 3 represents a distributed storage: data matrix d is split between s devices: 

 

d = d1 ∪•••∪ ds (9) 

where data sub-matrix dh, h = 1..s is located at 
hth device. 

Figure 3: Traditional processing distribution of 
data matrix: (a) vertical; (b) horizontal The 
following two cases of data distribution are 
possible: 

Figure 3 a) shows the vertical distribution of 
the data matrix. This case corresponds to the 
example 

in Figure 1 a); 

 

Figure 3 b) presents the horizontal distribution 
of the data matrix. This corresponds to the 

example in Figure 1 b). 

 

 Functions for data mining on distributed 
memory 

Traditionally, data processing is performed by 
a data mining algorithm on a cloud as shown in 
Figure 2 a). For this, all original data taken at 
devices have to be transferred to the cloud, 
which is the critical problem addressed in this 
paper. 

Our alternative to the traditional MapReduce 
approach is to execute FMBs of type (6) on the 
devices and transfer only mining models (as 
result) created by them, rather than large 
amounts of data as in the traditional 
MapReduce. In addition, the functions that are 
parts of the data mining algorithms will be 
executed in parallel in our approach, i.e., we 
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have parallel execution with distributed 
memory. 

We introduce higher-order function paralleld 
that expresses the parallel execution of FMBs 
on a distributed memory: 

 

paralleld : [(M → M)] → M → M (10) 

paralleld [ fr, . . . , fs] m = join m forkd [ fr, . . . 
, fs] m, 

where function forkd allows to invoke FMBs 
in parallel: 

forkd : [M → M] → M → [M] (11) 

forkd [ fr, . . . , fs] m = [ fr (copy m),..., fs(copy 
m)] 

and function copy creates copies of the mining 
model m in separate areas of the distributed 
memory for parallel processing by FMBs: 

 

copy : M → M, (12) 

copy m = [m[0], m[1],..., m[v]]. 

Function join in (10) combines the mining 

models built by parallel FMBs in separate 
areas of distributed memory: 

 

join : M → [M] → M (13) 

join m [mr, . . . , ms] = [m′[0], . . . , m′[g], . . . , 
m′[v]], 

where m′[g] = m[g], if mi[g] = m[g] for 
all i = r . . . s 

union m[g] [mr[g], . . . , ms[g]], otherwise 

Here, function union merges elements of 
different mining models with the same index to 
a single mining model’s element: 

union : E → [E] → E (14) 

The implementation of function union depends 
on the mining model’s elements. 

Figure 4 shows the distributed execution of a 
data mining algorithm using function paralleld 
defined by (10). The definition of function 
paralleld does not take into account the type of 
data distribution. We show in the following 
that this is important for the ultimate 
performance. 

Figure 4: Execution of a data mining algorithm on distributed data. 

 

 

 Data Mining on Distributed Data 

For iterative processing of rows and columns 
of data matrix d, both loops loopc (7) and 
loopr (8) are used as nested. There are two 

possible orders of applying an FMB fdt to the 
elements of data matrix d: 

• by columns (i.e., in the following order: 
x1.1, . . . , xz.1, x1.2, . . . , xz.2, . . . ): 

(loopc 1 p (loopr 1 z fdt)) d; (15) 
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• by rows (i.e., in the following order: 
x1.1, . . . , x1.p, x2.1, . . . , x2.p, . . . ): 

(loopr 1 z (loopc 1 p fdt)) d. (16) 

For parallel processing of the distributed data 
matrix (9), we decompose expressions (15) and 
(16) in the FMBs that are executed on the 
devices and process only submatrices stored in 
them locally. For this, the loops are 
decomposed as follows: 

• for horizontal data distribution 
(distribution of data matrix’s rows), the loop 
loopr is decomposed; 

• for vertical data distribution (distribution 
of data matrix’s columns), the loop loopc is 
decomposed. Function paralleld is used to 
execute the FMBs of the composition 
distributed on the devices. We further consider 
how the number of functions paralleld depends 
on the type of data distribution and the 

order of nesting the loops (15) or (16). 

We first consider the case when data matrix d 
is distributed vertically (Figure 3 a)). In 
expression (15), we decompose the outer loop 
loopc: 

(loopc 1 p (loopr 1 z fdt)) d = ((loopc r + 1 p 
(loopr 1 z fdt)) ds) ◦••• ◦((loopc 1 g (loopr 1 z 
fdt)) d1). 

In this case, we use the single function paralled 
to execute FMBs of the composition in a 
parallel manner: 

paralleld [(loopc 1 g (loopr 1 z fdt)), . . . , 
(loopc r + 1 p (loopr 1 z fdt))]. 

In expression (16), we decompose the inner 
loop loopc: 

(loopr 1 z (loopc 1 p fdt)) d = (loopr 1 z 
(((loopc r + 1 p fdt) ds) ◦ • • • ◦ ((loopc 1 g fdt) 
d1)). 

Therefore, function paralleld is invoked m 

times from the outer loop loopr: 

(loopr 1 z paralleld[((loopc 1 g fdt) d1), . . . , 
((loopc r + 1 p fdt) ds)]. 

When data matrix d is distributed horizontally 
(Figure 3 b)) in expression (15), we 
decompose the inner loop loopr: 

(loopc 1 p (loopr 1 m fdt)) d = loopc 1 p 
(((loopr x + 1 z fdt) ds) ◦...◦ ((loopr 1 y fdt) 
d1)). 

As the result, function paralleld is invoked 
from the outer loop p times: 

(loopc 1 p paralleld[((loopr 1 y fdt) d1), . . . , 
((loopr x + 1 z fdt) ds)]. 

However, in expression (16) for horizontal 
data distribution (Figure 3 b)), we decompose 
the outer loop 

loopr: 

(loopr 1 z (loopc 1 p fdt)) d = ((loopr x + 1 z 
(loopc 1 p fdt)) ds)◦••• ◦((loopr 1 y (loopc 1 p 
fdt)) d1)), 

so for parallel execution of FMBs in the 
composition we can employ one function 
paralleld: paralleld [((loopr 1 y (loopc 1 p fdt)) 
d1), . . . , (loopr x + 1 z (loopc 1 p fdt)) ds)]. 

Table 1 summarizes the number of invoking 
function paralleld for different kinds of data 
distributions 

and order of nesting the loops (15) and (16). 
Summarizing, we see that a non-optimal order 
of nesting loops and the type of data 
distribution increases the number of functions 
paralleld. Each invocation of paralleld leads to 
executing functions forkd and join. This 
increases the total run time of the whole 
algorithm, so it is important to reduce the 
number of invocations of paralleld. This can be 
achieved by adjusting the order of these loops 
according to the type of data distribution, as 
described in the next section. 

Typeofdistribution Orderofnestingtheloops Numberofinvokingfunctionparalleld 



 
INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR) 

 
ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-1, 2017 

DOI: 10.21276/ijcesr.2017.4.1.11 
102 

VerticalHorizontal (loopc1 p (loopr1 z fdt)) 
d(loopr1 z (loopc1 p fdt)) 
d(loopc1 p (loopr1 z fdt)) 
d(loopr1z(loopc1pfdt))d 

1 
z(thenumberofrowsindatamatrixd) 

p(thenumberofcolumnsindatamatrixd)1 

Table 1: Depending the number of functions paralleld from data distribution and nesting the loops 

 Adaptation of Loops to the Type of Data 
Distribution 

Adjusting the execution order of the nested 
loops loopr and loopc according to the type of 
data distribu- tion can be achieved by 
executing the loop interchange operation 
which is often used in compilers [14]. It 
changes the order of iteration variables in a 
group of nested loops. For example, the 
iteration variable used in the inner loop can be 
moved to the outer loop and vice versa: 

loopc 1 p (loopr 1 z fdt) = loopr 1 z (loopc 1 p 
fdt) 

In the simplest case, a single FMB fdt is 
applied to each of the elements of the data 
matrix d. In a more complex case, FMB called 
from the outer loop can be a composition of 
several FMBs and not all of them process data 
matrix elements. 

Let us look at the following example: 

loopc 1 p ( fdt−1 ◦ (loopr 1 z fdt) ◦ fdt+1). 

Here, operation interchange cannot be applied, 
because outer loop loopc invokes not only 
inner loop loopr but also FMBs fdt−1 and 
fdt+1. Therefore, it is necessary to perform the 
loop fission operation prior to changing the 
order. This operation is also widely used in 
compilers [14]. It breaks down a loop to 
several loops, each of which has the same 
index boundaries but contains only a part of 
initial loop’s body: 

loopc 1 p ( fdt−1 ◦(loopr 1 z fdt)◦ fdt+1) = 
(loopc 1 p fdt−1)◦(loopc 1 p (loopr 1 z 
fdt))◦(loopc 1 p fdt+1). 

As a result, the operation interchange is 
applied only to the second function of the 
composition: 

(loopc 1 p fdt−1) ◦ (loopc 1 p (loopr 1 z fdt)) ◦ 

(loopc 1 p fdt+1) = (loopc 1 p fdt−1) ◦ (loopr 1 
z (loopc 1 p fdt)) ◦ (loopc 1 p fdt+1). 

Applying at first the operation f ission and then 
the operation interchange to the nested loops 
loopc and loopr allows us to adjust the data 
mining algorithm’s structure to the type of data 
distribution in order to reduce the number of 
invocations of the function paralleld and the 
total run time of the algorithm. 

Summarizing, a data mining algorithm is 
parallelized for distributed execution on the 
mobile devices in the cloud by following the 
steps below: 

1. represent the algorithm as a composition 
(4) of functions ft, t=0..n and the mining model 
as an array of elements (3); 

2. adjustloopc and loopr loop calls 
according to the type of data distribution using 
transformations 

fission and interchange: 

(a) if the type of data distribution is 
horizontal (vertical) then 

 

i. if outer loop is not loopr (loopc) then 

A. if inner FMB is a composition several 
FMBs then execute operation f ission 

B. execute operation interchange 

3. convert the sequential execution of 
FMBs, which can be performed in parallel 
with distributed, into parallel execution by 
paralleld function. 

The next sections describe an example of such 
transformation. 

 

 Illustration for the Normal Bayes 
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Classifier Training Algorithm 

We use the Normal Bayes classifier (NBC) 
training algorithm [15] as an example data 
mining application to illustrate our approach. 
We choose the NBC training algorithm 
because it belongs to the Top 10 data mining 
algorithms [16]. In the classification task, a 
data set d is a set of objects, each of which 
belongs to a known class, and each of which 
has a known vector of attributes. The column 
that defines class of object is called a 
dependent attribute ap (for example, health 
status of men). The columns with other 
characteristics of the object are independent 
attributes, (for example: temperature, pressure, 
age, and etc.). The NBC training algorithm 
based on applying Bayes’ theorem with the 
”naive” assumption of independence between 
every pair of attributes. The classic Bayes 
method to approximate P(xj.k x j.p) for a 
continuous variable x j.k is assuming that it 
follows a known distribution for which 
parameters can be estimated from the data. 
Gaussian distribution (normal distribution) is 
the most popular and most-used statistical 
continuous distribution method. It has two 
parameters: mean µ and variance σ 2. For each 
of the class values vp.r∈Tp, we assume that: 

P(xj.k = vk.q|xj.p = vp.r) = f (x j, µ, σ ). 

where f (x j, µ, σ ) is the normal distribution 
with mean µ and variance σ : 

 

f (x j, µ, σ ) = σ √2π e 

 

(x−µ)2 2σ 2 . 

 

The means µ and variances σ are estimated 
from the values of d in rows for which x j.p = 
vp.r simply through unbiased estimates: 

 

µ 1 z 2 

 

   1   z 2 

 

= ∑ x j and σ 

j=1 

 

= z − 1 ∑(xj − µ) . 

 

where z is the number of rows in d. The benefit 
of the normal method is that it performs well if 
the un- derlying distribution indeed follows a 
normal distribution [15], is fast in both 
learning and classification time and requires 
little memory. 

To optimize the algorithm, we apply the 
following transformations: 

σ 2 1   z 2 z 2 2 

 

= z − 1 ∑(xj − µ) 

 

= ∑ x j (z 1)µ 

j=1 

 

This optimization allows us to perform NBC 
training algorithm for two phases: 

1. calculate the sum and the sum of squares 
within one iteration through matrix d to obtain 
the total calculation for each class; 

2. calculate µ and σ 2 for each class, which 
are saved in mining model m and used to 
calculate possibility of belonging of a new row 
to one of the classes. 
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Figure 5: The Normal Bayes classifier training algorithm: pseudocode. 

 

Figure 5 shows a pseudocode of the NBC 
training algorithm. 

The average value µ and deviation σ 
calculation functions do not have the 
properties of list homo- morphism. Thus, the 
average values and deviations calculated for 
each distributed data sources dh set 
individually cannot be correctly united (unable 
to obtain result equal to calculation based on 
the total data d). 

Hence, the NBC training algorithm cannot be 
executed completely for each of data sources 
dh with the further joining of the results 
because the joint result may be incorrect. As an 
alternative to the com- plete execution of the 
algorithm per each device, the algorithm can 
be distributed between these devices. To do 
this, we parallelize the NBC construction 
algorithm using the described approach. 
According to it, the algorithm is represented as 
a composition of FMB. 

The mining model for NBC training algorithm 
comprises: 

• mining model’s element m[0] is number 
of classes (m[0] = |Tp|); 

• mining model’s elements m[1],..., m[s] 
are the sums of values (m[q] = a[d[ j.p]][k], 1 
≤ q ≤ s, s = 

|Tp| • p); 

• mining model’s elements m[s+1],..., 
m[u] are the sums of square of values (m[g] = 
b[d[ j.p]][k], s < 

g ≤ u, u = s + |Tp| • p); 

• mining model’s elements m[u + 1], . . . , 
m[h] are the means (m[i] = µ[r], u < i ≤ h, h = 
u + |Tp| • p); 

• mining model’s elements m[h +1],..., 
m[w] are the means (m[l] = σ 2[r], h < l ≤ w, w 
= h +|Tp|• p). The NBC classifier can be 
represented as a composition of the FMBs as 
follows: 

• fd1 is the loop for rows of data d (line 1 
in the pseudocode): 

fd1 d m = loopr 1 z fd2 d m; 

• fd2 is the loop for columns of data d 
(line 3 in the pseudocode): 

fd2 d m = loopc 1 p fd4 ◦ fd3 d m; 

 

• fd3 calculate sum of values for each 
class (line 3 in the pseudocode): 

fd3 d m = m[d[ j.p] • k] = m[d[ j.p] • k] + d[ 
j.k]; 

• fd4 calculate sum square values for each 
class (line 4 in the pseudocode): 

fd4 d m = m[s + d[ j.p] • k] = m[s + d[ j.p] • k] 

1. forj=1...z//loopforeachvector 
2. fork=1...p-1//loopforeachattribute 
3. sv[d[j.p]][k]=sv[d[j.p]][k]+d[j.k];//calculatesumofvaluesforeachclass 
4. ssv[d[j.p]][k]=ssv[d[j.p]][k]+d[j.k]2;//calculatesumofsquareofvaluesforeachclass 
5. endfor; 
6. endfor; 
7. forr=1...c//loopforeachclasses 
8. fork=1...p-1//loopforeachattribute 
9  µ[r][k]=sv[r][k]/z;//calculatemean 

11. endfor; 
12. endfor; 

10. σ2[r][k]=ssv[r][k]-(z-1)·sv[r][k]·sv[r][k];//calculatevariance 
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+ d[ j.k]2 

f5 is the loop for classes (line 7 in the 
pseudocode) applies a function f6 to list of 
values some column from index is till index ie: 

f5 m = loopv 1 m[0] f6 m loopv : I → I → (M 
→ M) → M → M 

loopv is ieft m = ( f6 m[ie]) ◦ • • • ◦ ( f6 m[is]) 

• f6 is the loop for columns (line 8 in the 
pseudocode): 

f6 m = loopc 1 p f8 ◦ f7 m; 

• f7 calculate µ for each class (line 9 in 
the pseudocode): 

f7 m = m[u + r • k] = m[r • k]/z; 

• f8 calculate σ 2 for each class (line 10 in 
the pseudocode): 

f8 m = m[h + r • k] = m[s + r • k] − (z − 1)• 
m[r • k] • m[r • k]. 

Thus, we can represent the NBC training 
algorithm as the following composition of 
functions: 

NBC = f5 ◦ fd1 ◦ f0 = (loopv 1 m[0] ( f6)) ◦ 
(loopr 1 z ( fd2)) ◦ f0 = (17) 

(loopv 1 m[0] (loopc 1 p ( f8 ◦ f7))) ◦ (loopr 1 z 
(loopc 1 p ( fd4 ◦ fd3) d)) ◦ f0 

 Parallelization of the Normal Bayes 
Classifier Training Algorithm 

After representing the NBC training algorithm 
as a composition of functions (17), in the 
second step we verify the corresponding outer 
loop and the type of data distribution. In 
expression (17), the outer loop is loopr. It 
corresponds to the horizontal data distribution, 

therefore no transformations are needed. 

In the final step, we transform the sequential 
form of the NBC training algorithm into a 
parallel form for distributed memory by 
inserting function paralleld. However, to use 
function paralleld, we need to define function 
union (14) for mining model’s elements of the 
NBC training algorithm. These elements are 
sums of values and of square of values, 
therefore function union must sum up the 
values which are calculated in parallel in 
distributed memory: 

union : E → [E] → E (18) 

union m[q] [m1[q], . . . , mr[q]] = m[q] + 
m1[q] + • • • + mr[q] 

Thus, function paralleld can be applied to loop 
loopr in expression (17) to execute it in 
parallel on the servers for horizontally 
distributed data: 

NBCHPar = (loopv 1 m[0] (loopc 1 p f8 ◦ 
f7))◦(paralleld [loopr 1 z (loopc 1 p fd4 ◦ fd3 
d)])◦ f0 (19) 

 

Figure 6 shows deploying the FMBs of 
composition (19) on servers. We distribute 
loop loopr between the servers in according 
with distribution of data matrix d, i.e. on each 
server loop loopr process all rows only locally 
submatrix. For example, in the first device all 
rows of submatrix d1 is processed by loop 
loopr 1 y (loopc 1 p fd4 fd3 d). For this, the 
initial mining model m0 is copied and sent 
from the cloud to all devices. The computed 
mining models m4 are collected from all 
devices and are combined by function join into 
mining model m5 which is the final result of 
the NBC training algorithm. 

 

Figure 6: Distributed execution of the NBC training algorithm for horizontally distributed data. 



 
INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR) 

 
ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-1, 2017 

DOI: 10.21276/ijcesr.2017.4.1.11 
106 

For processing vertically distributed data, we 
transform expression (17), because outer loop 
loopc does not agree with the type of data 
distribution. The outer loop comprises single 
FMB fd2, therefore executing f ission is not 
needed. However, we apply operation 
interchange to change the order of nested loops 
loopr and loopc: 

loopr 1 z (loopc 1 p f d4 ◦ f d3 d) = loopc 1 p 
(loopr 1 z f d4 ◦ f d3 d). 

As the result, NBC training algorithm for 
vertically distributed data can be represented 
as the following composition of functions: 

NBC′ = (loopv 1 m[0] (loopc 1 p f8 ◦ f7)) ◦ 
(loopc 1 p (loopr 1 z fd4 ◦ fd3 d)) ◦ f0.
 (20) 

Function union (18) can also be used to 
combine the elements of mining models built 
by FMBs on devices. Thus function paralleld 
can be applied to the loop loopc of expression 
(20) in order to execute it in parallel on the 
devices with distributed memory for vertically 
distributed data: 

NBCVPar = (loopv 1 m[0] (loopc 1 p f8 ◦ 

f7))◦(paralleld [loopc 1 p (loopr 1 z fd4 ◦ fd3 
d)])◦ f0. (21) Figure 7 shows the deployment 
of the FMBs of composition (21) on the 
servers. Here, we distribute loop 

loopc and loop loopr between them in 
according with the distribution of data matrix 
d. The loop loopc is executed on servers with 
submatrix d1 that contains only pth depended 
attribute. The loop loopc is distributed between 
the other servers where it processes all 
columns of local submatrices. The interaction 
between the cloud and the devices is organized 
similarly to the case with the horizontally 
distributed data (Figure 6). 

As a result, we derived two parallel versions of 
the NBC training algorithm: one for the data 
mining of the horizontally and one for 
vertically distributed data. 

 

4 Experiments and Results 

We implement the two parallel NBC training 
algorithms (19) and (21) in the Java-based 
library DXelopes [17]. With them, we perform 
the experiments described in the following. 

 

Figure 7: Distributed execution of the NBC training algorithm for vertically distributed data. 

 

In our experiments, we use the real-world data 
set ”Predict Outcome of Pregnancy” from the 
Kaggle Datasets [18]. This data set contains 
data from the Annual Health Survey: Woman 
Schedule. The data set contains 68 independent 
attributes related to birth, including: birth 

history; type of medical attention at delivery; 
details of maternal health care 
(antenatal/natal/postnatal, immunization of 
children, etc.), and one dependent attribute that 
contains information about the outcome of 
pregnancy: live birth/still- birth/abortion. The 
data set comes as a file in CVS format of 2 Gb 
in size. 

Table 2: Distributed data sets 
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Typeofdistribution Numberv

ices 
of de- Numberofrows Numberc

olumns 
of Sizeofdataset(

Mb) 

Horizontal 4   3402670 68  500 
Vertical 4   14461451 17  500 

Horizontal 2   6805350 68  1000 
Vertical 2   14461451 34  1000 

Singledataset 1   14461451 68  2000 

Table 2 shows how the data are partitioned in 
our experiments. The data set is split into 2 and 
then into 4 parts and distributed between two 
and then between four devices, 
correspondingly. In each of the cases, the data 
set is distributed both horizontally and 
vertically. A non-divided data set (for a single 
device) is used for comparison. Each devices 
has the following configuration: CPU Intel 
Xenon, 2.90 GHz, 4 Gb. The cloud is equipped 
with a CPU Intel Xeon (12 physical cores), 
2.90 GHz, 4 Gb. To imitate communication 
channel limitation between devices and cloud, 
we use channel throttling with level 75Mbps, 
that matches 4G wireless systems. 

Figure 8 shows the network traffic and figure 9 
shows the run time for horizontally (Figure 8 
a) and Figure 9 a)) and vertically (Figure 8 b) 
and Figure 9 b)) distributed data. We compare 
the two variants of the distributed NBC 
training algorithm adapted to horizontally 
(NBCHPar) and vertically (NBCVPar) 
distributed data with traditional approach when 
data are gathered into cloud. 

The traditional approach with gathering data 
generates larger traffic (more 10 times), 
because for it all data are transferred by 
network. When processing distributed data in 
our approach without gathering data, only 
processing mining models are transferred over 
the network. We observe that increasing the 

number of devices leads to increasing the 
volume of network traffic, because a higher 
number of results are being sent over the 
network. 

We observe that the run time in our approach 
is lower than with traditional approach. These 
resultscan be explained by processing a 
smaller volume of data on each devices in 
parallel and also by a smaller network traffic. 
Also we can view that run time of NBCHPar is 
lower than of NBCVPar for horizontally 
distributed data and the run time of NBCVPar 
is lower than of NBCHPar for vertically 
distributed data. This is explained by the non-
corresponding structure of the algorithm and 
the type of data distribution, that increases the 
over-head of distributed execution (number of 
functions paralleld). We observe that the 
difference between both variants is larger for 
vertically than for horizontally distributed data. 
This can be explained by larger numbers of 
rows than columns, so the number of 
invocations of functions copy and join in 
NBCHPar for vertically distributed data is very 
large. We also observe that the distinction 
between the two variants is reduced with a 
smaller number of devices. These results can 
also be explained by the decreased number of 
invocations of functions copy and join for the 
distributed execution of the algorithm on a 
smaller number of devices. 
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Figure 8: Network traffic of executing NBC training algorithm for: a) horizontally distributed data; 
b) vertically distributed data. 

Figure 9: Runtime of executing NBC training algorithm for: a) horizontally distributed data; b) 
vertically distributed data. 

5 Conclusion 

In this paper, we improve the parallelization 
and implementation of data mining algorithms 
in modern mobile cloud systems. Our approach 
formally transforms a high-level functional 
representation of a data mining algorithm into 
a parallel implementation that performs as 
much as possible computations at local nodes, 
rather than transferring data for processing at a 
central compute cluster as it is done in the 
current systems based on MapReduce. We 
study different kinds of data distributions 
between the servers of mobile networks and 
we adapt the structure of the algorithm 
correspondingly. Thereby our parallel 
implementation of data mining avoids the main 
disadvantages of MapReduce in the context of 
mobile cloud: increased total processing time, 
high network traffic, and a risk of unauthorized 
access to the data. 

We develop a functional formalism as a formal 
base of our approach: it enables formally 
ensuring the correctness of the formal program 
transformations and of the obtained parallel 
implementation. The compiler-level 
transformations interchange and fission adapt 
the structure of a data mining algorithm to the 
type of data distribution. 

We implement our approach in the Java-based 
data mining library DXelopes, and we 
illustrate the approach with the popular data-
mining NBC training algorithm. 

Our experiments on real-world data set from 
the Kaggle collection confirm that the flexible 
adaptation of the distributed implementation of 
the NBC training algorithm to the type of data 
distribution by using our approach 
significantly reduces the net-work traffic and 
the application run time. 
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	Abstract
	We study different kinds of data distributions for improving the efficient, parallelized implementation of data mining in mobile cloud systems. Our formally-based approach ensures the correctness of the obtained parallel implementation. We apply our a...
	Keywords: mobile cloud, wireless networks, parallel algorithms, distributed algorithms, distributed data mining, parallel data mining
	1 Introduction
	Mobile cloud computing systems unite a high number of mobile smart devices that produce large vol- umes of data with cloud resources for processing these data. The recent rise of mobile clouds is due to the convenience of their use: no need for cable ...
	Figure 1 presents a typical mobile cloud computing architecture that comprises the following three layers of hierarchy [1] as shown in the figure:
	• the mobile device includes hardware devices that produce large volume of data;the mobile network is responsible for transferring data from the mobile devices to the cloud for further processing;the cloud provides services or applications that integr...
	/
	Figure 1: Example of mobile cloud with: a) vertically distributed data; b) horizontally distributed data
	A system in Figure 1 receives data from different mobile devices. The mobile network connects these devices with a cloud where data from mobile devices are gathered and processed in a single data warehouse [1]. There are two different cases of how dat...
	Vertical distribution shown in Figure 1 a): data produced at different mobile devices are distributed corresponding to the same kind of objects or events (for example, photo/video information, health parameters in the same region etc.).
	Horizontal distribution shown in Figure 1 b): data are distributed according to the mobile devices where they are produced (for example, health parameters of people located in different regions).
	Today, computations on the cloud often rely on scalable data processing systems based on the MapReduce programming model [2]. Modern MapReduce frameworks, such as Apache Hadoop [3], Apache Spark [4] etc., perform distributed data processing using a da...
	The important drawback of gathering data in a centralized data warehouse is that this increases the total network traffic. In case of mobile (wireless) networks with limited bandwidth, it may become especially critical. Fog computing [5] is a possible...
	Therefore, we aim at enabling distributed data mining for mobile cloud systems using the ideas of Fog computing. Our approach is to decompose a data mining algorithm, such that its parts are executed locally at the mobile devices (or nearby local serv...
	2 Related Work
	Nowadays, there are several platforms providing data mining services for cloud computing, offered by leading IT vendors: Azure Machine Learning [8] from Microsoft, Amazon Machine Learning [9], Cloud Machine Learning platform [10] from Google, and Wats...
	The common feature of these data mining frameworks is that they are based on the MapReduce programming model [2]. This model uses the abstraction inspired by the functional primitives map and reduce that are popular as patterns in parallel and functio...
	/Figure 2 a) shows how a data mining algorithm is usually executed when using the MapReduce model: raw data from mobile devices are gathered via the mobile network in a single warehouse where they are then processed.
	Figure 2: Variants of data mining algorithms applied to distributed data: a) traditional MapReduce pro- gramming model; b) suggested approach following Fog paradigm.
	In case of using the MapReduce model in a mobile cloud system, the mobile network is responsible for connecting mobile devices (such as smartphones) with a cloud. These connections often negatively impact the performance of data mining, because they:
	• create an intensive traffic in the network;
	• increase the delay between data production at devices and data processing;
	• increase the risk of an unauthorised access to personal data.
	We aim at using the idea of Fog computing [5] for overcoming these problems. In the Fog, data are processed closer to their sources, thus enabling low latency and context awareness. Despite the popularity of Fog computing, there are still no ready sol...
	Figure 2 b) shows the idea of our approach to data mining in accordance with the principles of Fog computing: we try to execute significant parts of a data mining algorithm at devices, instead of transferring data to the compute cluster and processing...
	3 The Formal Functional Approach
	We develop our approach to be general, formally based, and covering a broad class of data mining algorithms. We briefly describe the approach below, with capital letters used for data types and lower- case letters denoting variables of these types and...
	Representation of Data Mining Algorithms
	We view a data mining algorithm as a function that takes a data set d ∈ D as input and creates a mining model m ∈ M as output:
	dma : D → M (1)
	A data set d D usually contains characteristics (such as temperature, sound level, vibration, pressure, etc.) of objects (e.g., people, vehicles, etc.). We represent a data set as a 2-dimensional array (data matrix), e.g., for z objects that are descr...
	d = (x j.k)z,p
	(2)
	where x j.k is the value of kth characteristic of the jth object. The set of values of kth column is denoted as Tk(x j.kTk): Tk = vk.1, . . .vk.u .
	A mining model comprises elements that describe knowledge extracted by a data mining algorithm
	from a data set. These elements can be, e.g., classification or association rules, cluster centers, decision tree nodes, etc. In (1), a data mining algorithm creates a mining model, without changing the input data. We represent a mining model m ∈ M as...
	m = [e0, e1, . . . ,eu] (3)
	Since algorithms are usually a sequence of steps, we formally represent a data mining algorithm as a sequential composition of functions, as follows:
	dma = fn ◦ fn−1 ◦ . . . ◦ f1 ◦ f0 (4)
	where ◦ is the composition operator that is applied from right to left.
	In (4) function f0 : D → M takes a data set d ∈ D as an argument and returns a mining model m0 ∈ M. The next functions ft,t = 1 . . . n take the mining model mt−1 ∈ M created by the previous function ft−1 and return the changed mining model mt∈ M.
	ft : M → M (5)
	The functions ft,t = 1 . . . n of type (4) are called Functional Mining Blocks (FMB). Some steps of a data mining algorithm use data matrix d to change the mining model m, i.e., they take the data matrix d as additional argument d:
	fdt : D → M → M (6)
	To use these functions in the composition (4), we exploit partial function application with the fixed first argument: ft = fdt d. Thus d is constant in the function ft.
	In order to apply some function fdt to each element of the data matrix, we invoke it in a loop. We
	introduce loops over columns and rows of the data matrix for iterative processing of data. We use an asterisk to refer to a whole row (e.g., d[ j, ] refers to the jth row) or whole column (e.g., d[ , k] refers to the kth column) in a data matrix:
	/• loopc applies fdt to the columns of d ∈ D, starting from index is till index ie:
	loopc : I → I → (M → M) → D → M → M (7)
	loopc is iefdt d m = ( fdt d[∗, ie]) ◦•••◦ ( fdt d[∗, is]) m;
	• loopr applies fdt to the rows of d ∈ D starting from index is till index ie:
	loopr : I → I → (M → M) → D → M → M (8)
	loopr is iefdt d m = ( fdt d[ie, ∗]) ◦•••◦ ( fdt d[is, ∗]) m; The first four arguments are fixed to use loopc and loopr in the composition (4).
	Distributed data
	Figure 3 represents a distributed storage: data matrix d is split between s devices:
	d = d1 ∪•••∪ ds (9)
	where data sub-matrix dh, h = 1..s is located at hth device.
	Figure 3: Traditional processing distribution of data matrix: (a) vertical; (b) horizontal The following two cases of data distribution are possible:
	Figure 3 a) shows the vertical distribution of the data matrix. This case corresponds to the example
	in Figure 1 a);
	Figure 3 b) presents the horizontal distribution of the data matrix. This corresponds to the example in Figure 1 b).
	Functions for data mining on distributed memory
	Traditionally, data processing is performed by a data mining algorithm on a cloud as shown in Figure 2 a). For this, all original data taken at devices have to be transferred to the cloud, which is the critical problem addressed in this paper.
	Our alternative to the traditional MapReduce approach is to execute FMBs of type (6) on the devices and transfer only mining models (as result) created by them, rather than large amounts of data as in the traditional MapReduce. In addition, the functi...
	We introduce higher-order function paralleld that expresses the parallel execution of FMBs on a distributed memory:
	paralleld : [(M → M)] → M → M (10)
	paralleld [ fr, . . . , fs] m = join m forkd [ fr, . . . , fs] m,
	where function forkd allows to invoke FMBs in parallel:
	forkd : [M → M] → M → [M] (11)
	forkd [ fr, . . . , fs] m = [ fr (copy m),..., fs(copy m)]
	and function copy creates copies of the mining model m in separate areas of the distributed memory for parallel processing by FMBs:
	copy : M → M, (12)
	copy m = [m[0], m[1],..., m[v]].
	Function join in (10) combines the mining models built by parallel FMBs in separate areas of distributed memory:
	join : M → [M] → M (13)
	join m [mr, . . . , ms] = [m′[0], . . . , m′[g], . . . , m′[v]],
	where m′[g] = m[g], if mi[g] = m[g] for all i = r . . . s
	union m[g] [mr[g], . . . , ms[g]], otherwise
	Here, function union merges elements of different mining models with the same index to a single mining model’s element:
	union : E → [E] → E (14)
	The implementation of function union depends on the mining model’s elements.
	Figure 4 shows the distributed execution of a data mining algorithm using function paralleld defined by (10). The definition of function paralleld does not take into account the type of data distribution. We show in the following that this is importan...
	/Figure 4: Execution of a data mining algorithm on distributed data.
	Data Mining on Distributed Data
	For iterative processing of rows and columns of data matrix d, both loops loopc (7) and loopr (8) are used as nested. There are two possible orders of applying an FMB fdt to the elements of data matrix d:
	• by columns (i.e., in the following order: x1.1, . . . , xz.1, x1.2, . . . , xz.2, . . . ):
	(loopc 1 p (loopr 1 z fdt)) d; (15)
	• by rows (i.e., in the following order: x1.1, . . . , x1.p, x2.1, . . . , x2.p, . . . ):
	(loopr 1 z (loopc 1 p fdt)) d. (16)
	For parallel processing of the distributed data matrix (9), we decompose expressions (15) and (16) in the FMBs that are executed on the devices and process only submatrices stored in them locally. For this, the loops are decomposed as follows:
	• for horizontal data distribution (distribution of data matrix’s rows), the loop loopr is decomposed;
	• for vertical data distribution (distribution of data matrix’s columns), the loop loopc is decomposed. Function paralleld is used to execute the FMBs of the composition distributed on the devices. We further consider how the number of functions paral...
	order of nesting the loops (15) or (16).
	We first consider the case when data matrix d is distributed vertically (Figure 3 a)). In expression (15), we decompose the outer loop loopc:
	(loopc 1 p (loopr 1 z fdt)) d = ((loopc r + 1 p (loopr 1 z fdt)) ds) ◦••• ◦((loopc 1 g (loopr 1 z fdt)) d1).
	In this case, we use the single function paralled to execute FMBs of the composition in a parallel manner:
	paralleld [(loopc 1 g (loopr 1 z fdt)), . . . , (loopc r + 1 p (loopr 1 z fdt))].
	In expression (16), we decompose the inner loop loopc:
	(loopr 1 z (loopc 1 p fdt)) d = (loopr 1 z (((loopc r + 1 p fdt) ds) ◦ • • • ◦ ((loopc 1 g fdt) d1)).
	Therefore, function paralleld is invoked m times from the outer loop loopr:
	(loopr 1 z paralleld[((loopc 1 g fdt) d1), . . . , ((loopc r + 1 p fdt) ds)].
	When data matrix d is distributed horizontally (Figure 3 b)) in expression (15), we decompose the inner loop loopr:
	(loopc 1 p (loopr 1 m fdt)) d = loopc 1 p (((loopr x + 1 z fdt) ds) ◦...◦ ((loopr 1 y fdt) d1)).
	As the result, function paralleld is invoked from the outer loop p times:
	(loopc 1 p paralleld[((loopr 1 y fdt) d1), . . . , ((loopr x + 1 z fdt) ds)].
	However, in expression (16) for horizontal data distribution (Figure 3 b)), we decompose the outer loop
	loopr:
	(loopr 1 z (loopc 1 p fdt)) d = ((loopr x + 1 z (loopc 1 p fdt)) ds)◦••• ◦((loopr 1 y (loopc 1 p fdt)) d1)),
	so for parallel execution of FMBs in the composition we can employ one function paralleld: paralleld [((loopr 1 y (loopc 1 p fdt)) d1), . . . , (loopr x + 1 z (loopc 1 p fdt)) ds)].
	Table 1 summarizes the number of invoking function paralleld for different kinds of data distributions
	and order of nesting the loops (15) and (16). Summarizing, we see that a non-optimal order of nesting loops and the type of data distribution increases the number of functions paralleld. Each invocation of paralleld leads to executing functions forkd ...
	Table 1: Depending the number of functions paralleld from data distribution and nesting the loops
	Adaptation of Loops to the Type of Data Distribution
	Adjusting the execution order of the nested loops loopr and loopc according to the type of data distribu- tion can be achieved by executing the loop interchange operation which is often used in compilers [14]. It changes the order of iteration variabl...
	loopc 1 p (loopr 1 z fdt) = loopr 1 z (loopc 1 p fdt)
	In the simplest case, a single FMB fdt is applied to each of the elements of the data matrix d. In a more complex case, FMB called from the outer loop can be a composition of several FMBs and not all of them process data matrix elements.
	Let us look at the following example:
	loopc 1 p ( fdt−1 ◦ (loopr 1 z fdt) ◦ fdt+1).
	Here, operation interchange cannot be applied, because outer loop loopc invokes not only inner loop loopr but also FMBs fdt−1 and fdt+1. Therefore, it is necessary to perform the loop fission operation prior to changing the order. This operation is al...
	loopc 1 p ( fdt−1 ◦(loopr 1 z fdt)◦ fdt+1) = (loopc 1 p fdt−1)◦(loopc 1 p (loopr 1 z fdt))◦(loopc 1 p fdt+1).
	As a result, the operation interchange is applied only to the second function of the composition:
	(loopc 1 p fdt−1) ◦ (loopc 1 p (loopr 1 z fdt)) ◦ (loopc 1 p fdt+1) = (loopc 1 p fdt−1) ◦ (loopr 1 z (loopc 1 p fdt)) ◦ (loopc 1 p fdt+1).
	Applying at first the operation f ission and then the operation interchange to the nested loops loopc and loopr allows us to adjust the data mining algorithm’s structure to the type of data distribution in order to reduce the number of invocations of ...
	Summarizing, a data mining algorithm is parallelized for distributed execution on the mobile devices in the cloud by following the steps below:
	1. represent the algorithm as a composition (4) of functions ft, t=0..n and the mining model as an array of elements (3);
	2. adjustloopc and loopr loop calls according to the type of data distribution using transformations
	fission and interchange:
	(a) if the type of data distribution is horizontal (vertical) then
	i. if outer loop is not loopr (loopc) then
	A. if inner FMB is a composition several FMBs then execute operation f ission
	B. execute operation interchange
	3. convert the sequential execution of FMBs, which can be performed in parallel with distributed, into parallel execution by paralleld function.
	The next sections describe an example of such transformation.
	Illustration for the Normal Bayes Classifier Training Algorithm
	We use the Normal Bayes classifier (NBC) training algorithm [15] as an example data mining application to illustrate our approach. We choose the NBC training algorithm because it belongs to the Top 10 data mining algorithms [16]. In the classification...
	P(xj.k = vk.q|xj.p = vp.r) = f (x j, µ, σ ).
	where f (x j, µ, σ ) is the normal distribution with mean µ and variance σ :
	f (x j, µ, σ ) = σ √2π e
	(x−µ)2 2σ 2 .
	The means µ and variances σ are estimated from the values of d in rows for which x j.p = vp.r simply through unbiased estimates:
	µ 1 z 2
	1   z 2
	= ∑ x j and σ
	j=1
	= z − 1 ∑(xj − µ) .
	where z is the number of rows in d. The benefit of the normal method is that it performs well if the un- derlying distribution indeed follows a normal distribution [15], is fast in both learning and classification time and requires little memory.
	To optimize the algorithm, we apply the following transformations:
	σ 2 1   z 2 z 2 2
	= z − 1 ∑(xj − µ)
	= ∑ x j (z 1)µ
	j=1
	This optimization allows us to perform NBC training algorithm for two phases:
	1. calculate the sum and the sum of squares within one iteration through matrix d to obtain the total calculation for each class;
	2. calculate µ and σ 2 for each class, which are saved in mining model m and used to calculate possibility of belonging of a new row to one of the classes.
	Figure 5: The Normal Bayes classifier training algorithm: pseudocode.
	Figure 5 shows a pseudocode of the NBC training algorithm.
	The average value µ and deviation σ calculation functions do not have the properties of list homo- morphism. Thus, the average values and deviations calculated for each distributed data sources dh set individually cannot be correctly united (unable to...
	Hence, the NBC training algorithm cannot be executed completely for each of data sources dh with the further joining of the results because the joint result may be incorrect. As an alternative to the com- plete execution of the algorithm per each devi...
	The mining model for NBC training algorithm comprises:
	• mining model’s element m[0] is number of classes (m[0] = |Tp|);
	• mining model’s elements m[1],..., m[s] are the sums of values (m[q] = a[d[ j.p]][k], 1 ≤ q ≤ s, s =
	|Tp| • p);
	• mining model’s elements m[s+1],..., m[u] are the sums of square of values (m[g] = b[d[ j.p]][k], s <
	g ≤ u, u = s + |Tp| • p);
	• mining model’s elements m[u + 1], . . . , m[h] are the means (m[i] = µ[r], u < i ≤ h, h = u + |Tp| • p);
	• mining model’s elements m[h +1],..., m[w] are the means (m[l] = σ 2[r], h < l ≤ w, w = h +|Tp|• p). The NBC classifier can be represented as a composition of the FMBs as follows:
	• fd1 is the loop for rows of data d (line 1 in the pseudocode):
	fd1 d m = loopr 1 z fd2 d m;
	• fd2 is the loop for columns of data d (line 3 in the pseudocode):
	fd2 d m = loopc 1 p fd4 ◦ fd3 d m;
	• fd3 calculate sum of values for each class (line 3 in the pseudocode):
	fd3 d m = m[d[ j.p] • k] = m[d[ j.p] • k] + d[ j.k];
	• fd4 calculate sum square values for each class (line 4 in the pseudocode):
	fd4 d m = m[s + d[ j.p] • k] = m[s + d[ j.p] • k] + d[ j.k]2
	f5 is the loop for classes (line 7 in the pseudocode) applies a function f6 to list of values some column from index is till index ie:
	f5 m = loopv 1 m[0] f6 m loopv : I → I → (M → M) → M → M
	loopv is ieft m = ( f6 m[ie]) ◦ • • • ◦ ( f6 m[is])
	• f6 is the loop for columns (line 8 in the pseudocode):
	f6 m = loopc 1 p f8 ◦ f7 m;
	• f7 calculate µ for each class (line 9 in the pseudocode):
	f7 m = m[u + r • k] = m[r • k]/z;
	• f8 calculate σ 2 for each class (line 10 in the pseudocode):
	f8 m = m[h + r • k] = m[s + r • k] − (z − 1)• m[r • k] • m[r • k].
	Thus, we can represent the NBC training algorithm as the following composition of functions:
	NBC = f5 ◦ fd1 ◦ f0 = (loopv 1 m[0] ( f6)) ◦ (loopr 1 z ( fd2)) ◦ f0 = (17)
	(loopv 1 m[0] (loopc 1 p ( f8 ◦ f7))) ◦ (loopr 1 z (loopc 1 p ( fd4 ◦ fd3) d)) ◦ f0
	Parallelization of the Normal Bayes Classifier Training Algorithm
	/After representing the NBC training algorithm as a composition of functions (17), in the second step we verify the corresponding outer loop and the type of data distribution. In expression (17), the outer loop is loopr. It corresponds to the horizont...
	In the final step, we transform the sequential form of the NBC training algorithm into a parallel form for distributed memory by inserting function paralleld. However, to use function paralleld, we need to define function union (14) for mining model’s...
	union : E → [E] → E (18)
	union m[q] [m1[q], . . . , mr[q]] = m[q] + m1[q] + • • • + mr[q]
	Thus, function paralleld can be applied to loop loopr in expression (17) to execute it in parallel on the servers for horizontally distributed data:
	NBCHPar = (loopv 1 m[0] (loopc 1 p f8 ◦ f7))◦(paralleld [loopr 1 z (loopc 1 p fd4 ◦ fd3 d)])◦ f0 (19)
	Figure 6 shows deploying the FMBs of composition (19) on servers. We distribute loop loopr between the servers in according with distribution of data matrix d, i.e. on each server loop loopr process all rows only locally submatrix. For example, in the...
	Figure 6: Distributed execution of the NBC training algorithm for horizontally distributed data.
	For processing vertically distributed data, we transform expression (17), because outer loop loopc does not agree with the type of data distribution. The outer loop comprises single FMB fd2, therefore executing f ission is not needed. However, we appl...
	loopr 1 z (loopc 1 p f d4 ◦ f d3 d) = loopc 1 p (loopr 1 z f d4 ◦ f d3 d).
	As the result, NBC training algorithm for vertically distributed data can be represented as the following composition of functions:
	NBC′ = (loopv 1 m[0] (loopc 1 p f8 ◦ f7)) ◦ (loopc 1 p (loopr 1 z fd4 ◦ fd3 d)) ◦ f0. (20)
	Function union (18) can also be used to combine the elements of mining models built by FMBs on devices. Thus function paralleld can be applied to the loop loopc of expression (20) in order to execute it in parallel on the devices with distributed memo...
	NBCVPar = (loopv 1 m[0] (loopc 1 p f8 ◦ f7))◦(paralleld [loopc 1 p (loopr 1 z fd4 ◦ fd3 d)])◦ f0. (21) Figure 7 shows the deployment of the FMBs of composition (21) on the servers. Here, we distribute loop
	loopc and loop loopr between them in according with the distribution of data matrix d. The loop loopc is executed on servers with submatrix d1 that contains only pth depended attribute. The loop loopc is distributed between the other servers where it ...
	As a result, we derived two parallel versions of the NBC training algorithm: one for the data mining of the horizontally and one for vertically distributed data.
	4 Experiments and Results
	We implement the two parallel NBC training algorithms (19) and (21) in the Java-based library DXelopes [17]. With them, we perform the experiments described in the following.
	/
	Figure 7: Distributed execution of the NBC training algorithm for vertically distributed data.
	In our experiments, we use the real-world data set ”Predict Outcome of Pregnancy” from the Kaggle Datasets [18]. This data set contains data from the Annual Health Survey: Woman Schedule. The data set contains 68 independent attributes related to birt...
	Table 2: Distributed data sets
	Table 2 shows how the data are partitioned in our experiments. The data set is split into 2 and then into 4 parts and distributed between two and then between four devices, correspondingly. In each of the cases, the data set is distributed both horizo...
	Figure 8 shows the network traffic and figure 9 shows the run time for horizontally (Figure 8 a) and Figure 9 a)) and vertically (Figure 8 b) and Figure 9 b)) distributed data. We compare the two variants of the distributed NBC training algorithm adap...
	The traditional approach with gathering data generates larger traffic (more 10 times), because for it all data are transferred by network. When processing distributed data in our approach without gathering data, only processing mining models are trans...
	We observe that the run time in our approach is lower than with traditional approach. These resultscan be explained by processing a smaller volume of data on each devices in parallel and also by a smaller network traffic. Also we can view that run tim...
	/Figure 9: Runtime of executing NBC training algorithm for: a) horizontally distributed data; b) vertically distributed data.
	5 Conclusion
	In this paper, we improve the parallelization and implementation of data mining algorithms in modern mobile cloud systems. Our approach formally transforms a high-level functional representation of a data mining algorithm into a parallel implementatio...
	We develop a functional formalism as a formal base of our approach: it enables formally ensuring the correctness of the formal program transformations and of the obtained parallel implementation. The compiler-level transformations interchange and fiss...
	We implement our approach in the Java-based data mining library DXelopes, and we illustrate the approach with the popular data-mining NBC training algorithm.
	Our experiments on real-world data set from the Kaggle collection confirm that the flexible adaptation of the distributed implementation of the NBC training algorithm to the type of data distribution by using our approach significantly reduces the net...
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