

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-5, 2017

DOI: 10.21276/ijcesr.2017.4.5.4
22

IMPLEMENTATION OF A INTERFACE BRIDGE FOR AXI TO

OCP PROTOCOL
Nandipati Mounika, Jatroth Srinivas, M. Chandra Sheker

4.E.RAVINDER, 5.Dr.SARVANAN
nandipatimounika1806@gmail.com

Electronics and Communications Engineering
Ellenki College of Engineering,

Hyderabad, India

Abstract— Protocols are commonly used
today to connect IP blocks on structured
SoCs. Generally Protocol is the back-bone of
the SoC and its failure usually leads to a
non-functional chip. In present market,
various types of standard protocols are
available and are used in SoC which requires
a bridge to pass the information from one
type of protocol to other type of protocol
safely and without any data loss. Advanced
eXtensible Interface (AXI) and ON chip
protocol is widely used as the de facto
standard SoC bus. In this work, the bus
bridge was designed to interface these
protocols which plays a vital role in SoC
application such as it may lead to application
failure, if it doesn’t work properly. Initially
basic AXI 4.0 and OCP protocols are
modelled separately using VERILOG and
are simulated. Basically Bus Bridge should
convert command and data of AXI formats
to acceptable OCP formats. This conversion
does not ensure proper communication
unless the timings of each protocol were met.
Hence the interconnecting Bus Bridge
wrapper between Advanced eXtensible
Interface (AXI) and on chip was designed
with proper timing delay.
Keywords—SOC,AXI,OCP
 I INTRODUCTION
 There are many companies that develop core
IP for SoC products. The interfaces to these
cores can differ from company to company and
can sometimes be proprietary in nature. The
SoC developer then must expend time, effort,
and money to create “bridge” or “glue” logic
that allows all of the cores inside the SoC to

communicate properly with each other.
Incompatible interfaces are thus barriers to both
IP developers and SoC developers. SoC
integrated circuits envisioned by this
subcommittee span a wide breadth of
applications, target system costs, and levels of
performance and integration.
 Integrated circuits have entered the era of
System-on-a-Chip (SoC), which refers to
integrating all components of a computer or
other electronic system into a single chip. It
may contain digital, analog, mixed-signal, and
often radio-frequency functions – all on a single
chip substrate. With the increasing design size,
IP is an inevitable choice for SoC design. And
the widespread use of all kinds of IPs has
changed the nature of the design flow, making
On-Chip Buses (OCB) essential to the design.
 Of all OCBs existing in the market, the
AMBA bus system is widely used as the de
facto standard SoC bus. On March 8, 2010,
ARM announced availability of the AMBA 4.0
specifications. As the de facto standard SoC
bus, AMBA bus is widely used in the high-
performance SoC designs. The AMBA
specification defines an on-chip communication
standard for designing high-performance
embedded microcontrollers.

 ARM introduced the Advanced
Microcontroller Bus Architecture (AMBA) 4.0
specifications in March 2010, which includes
Advanced extensible Interface (AXI) 4.0 and
Open Core Protocol Specification 2.2 which is
configurable protocol interface. AMBA bus
protocol has become the de facto standard SoC
bus. That means more and more existing IPs

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-5, 2017

DOI: 10.21276/ijcesr.2017.4.5.4
23

must be able to communicate with AMBA 4.0
bus. Based on AMBA 4.0 bus and OCP bus,
This design is an Intellectual Property (IP) core
of AXI(Advanced extensible Interface) Lite to
OCP(Open Core Protocol) Bridge, which
translates the AXI4.0-lite transactions into OCP
transactions. The bridge provides interfaces
between the high-performance AXI bus and
high-performance OCP domain.
 The Advanced Microcontroller Bus
Architecture (AMBA) is used as the on-chip
bus in system-on-a-chip (SoC) designs. Since
its inception, the scope of AMBA has gone far
beyond microcontroller devices, and is now
widely used on a range of ASIC and SoC parts
including applications processors used in
modern portable mobile devices like smart
phones.
 The AMBA protocol is an open standard, on-
chip interconnect specification for the
connection and management of functional
blocks in a System-on-Chip (SoC). It facilitates
right-first-time development of multi-processor
designs with large numbers of controllers and
peripherals.
 SOC is a device which integrates all the
computer devices on to one chip, which runs
with desktop operating systems like windows,
Linux etc.
 The contrast with a microcontroller is one of
degree. Microcontrollers typically have under
100 KB of RAM (often just a few kilobytes)
and often really are single-chip-systems,
whereas the term SoC is typically used with
more powerful processors, capable of running
software such as the desktop versions
of Windows and Linux, which need external
memory chips (flash, RAM) to be useful, and
which are used with various external
peripherals. In short, for larger systems system
on a chip is hyperbole, indicating technical
direction more than reality: increasing chip
integration to reduce manufacturing costs and
to enable smaller systems. Many interesting
systems are too complex to fit on just one chip
built with a process optimized for just one of
the system's tasks.
 When it is not feasible to construct an SoC
for a particular application, an alternative is
a system in package (SiP) comprising a number
of chips in a single package. In large volumes,
SoC is believed to be more cost-effective than
SiP since it increases the yield of the

fabrication and because its packaging is
simpler.

 II. AXI(Advanced eXtensible
Interface)
 AXI is the high-performance bus in the
AMBA family. The architecture defines three
write channels and two read channels. The
write channels are address, write data, and
response. The read channels are address and
read data. The address channels include 32-bit
address buses, AWADDR and ARADDR, but
this could be extended in some
implementations. The write and read data buses
(WDATA and RDATA) may be defined under
the specification as any 2n number, from 8-bit
to 1024-bit. With the assumption that both the
address and data buses are 32-bit, and that the
data buses are 128-bit, the write address, write
data, and write response channels would require
56, 139, and 8 I/O, respectively. The read
address and read data channels would require
56 and 137 I/O, respectively. Thus, each 128-
bit AXI master has 396 I/O total. AXI
masters and slaves are connected together
through a central interconnect, which routes
master requests and write data to the proper
slave, and returning read data to the requesting
master. The interconnect also maintains
ordering based on tags if, for example, a single
master pipelines read requests to different
slaves.
 AXI uses a handshake between VALID and
READY signals. VALID is driven by the
source, and READY is driven by the
destination. Transfer of information, either
address and control or data, occurs when both
VALID and READY are sampled high. AXI,
the third generation of AMBA interface defined
in the AMBA 3 specification, is targeted at high
performance, high clock frequency system
designs and includes features which make it
very suitable for high speed sub-micrometer
interconnect.
1.)separate address/control and data phases
2.)support for unaligned data transfers using
byte strobes
3.)burst based transactions with only start
address issued
4.)issuing of multiple outstanding addresses
5.)Easy addition of register stages to provide
timing closure

http://en.wikipedia.org/wiki/System-on-a-chip
http://en.wikipedia.org/wiki/Application-specific_integrated_circuit
http://en.wikipedia.org/wiki/Smartphones
http://en.wikipedia.org/wiki/Smartphones
http://en.wikipedia.org/wiki/Smartphones
http://en.wikipedia.org/wiki/Microcontroller
http://en.wikipedia.org/wiki/Microsoft_Windows
http://en.wikipedia.org/wiki/Linux
http://en.wikipedia.org/wiki/System_in_package
http://en.wikipedia.org/wiki/Chip_carrier

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-5, 2017

DOI: 10.21276/ijcesr.2017.4.5.4
24

Table1 interface parameters for AXI-4 and
AXI-4 LITE
 Architecture: The AXI protocol is burst-
based. Every transaction has address and
control information on the address channel that
describes the nature of the data to be
transferred. The data is transferred between
master and slave using a write data channel to
the slave or a read data channel to the master.
In write transactions, in which all the data flows
from the master to the slave, the AXI protocol
has an additional write response channel to
allow the slave to signal to the master the
completion of the write transaction. The AXI
protocol enables: • address information to be
issued ahead of the actual data transfer
• support for multiple outstanding transactions
 • support for out-of-order completion of
transactions.

Fig1. channel architecture of reads

Fig2 channel architecture of writes
Channel definition:- Each of the five
independent channels consists of a set of
information signals and uses a two-way VALID
and READY handshake mechanism. The

information source uses the VALID signal to
show when valid data or control information is
available on the channel. The destination uses
the READY signal to show when it can accept
the data. Both the read data channel and the
write data channel also include a LAST signal
to indicate when the transfer of the final data
item within a transaction takes place.
Read and write address channels:
Read and write transactions each have their
own address channel. The appropriate address
channel carries all of the required address and
control information for a transaction. The AXI
protocol supports the following mechanisms:
 • variable-length bursts, from 1 to 16 data
transfers per burst
 • bursts with a transfer size of 8-1024 bits
• wrapping, incrementing, and non-
incrementing bursts
 • atomic operations, using exclusive or locked
accesses
• system-level caching and buffering control.
Read data channel: The read data channel
conveys both the read data and any read
response information from the slave back to the
master. The read data channel includes:
• the data bus, which can be 8, 16, 32, 64, 128,
256, 512, or 1024 bits wide
• a read response indicating the completion
status of the read transaction.
Write data channel: The write data channel
conveys the write data from the master to the
slave and includes:
 • the data bus, which can be 8, 16, 32, 64, 128,
256, 512, or 1024 bits wide
 • one byte lane strobe for every eight data bits,
indicating which bytes of the data bus are valid.
Write data channel information is always
treated as buffered, so that the master can
perform write transactions without slave
acknowledgement of previous write
transactions.
Write response channel: The write response
channel provides a way for the slave to respond
to write transactions. All write transactions use
completion signaling. The completion signal
occurs once for each burst, not for each
individual data transfer within the burst.
Interface and inter connects:

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-5, 2017

DOI: 10.21276/ijcesr.2017.4.5.4
25

Fig3.interface interconnect.
The AXI protocol provides a single interface
definition for describing interfaces:
• between a master and the interconnect
 • between a slave and the interconnect
• between a master and a slave. The interface
definition enables a variety of different
interconnect implementations. The interconnect
between devices is equivalent to another device
with symmetrical master and slave ports to
which real master and slave devices can be
connected. Most systems use one of three
interconnect approaches:
 • shared address and data buses
 • shared address buses and multiple data buses
• multilayer, with multiple address and data
buses. In most systems, the address channel
bandwidth requirement is significantly less than
the data channel bandwidth requirement. Such
systems can achieve a good balance between
system performance and interconnect
complexity by using a shared address bus with
multiple data buses to enable parallel data
transfers.

 III OPEN CORE PROTOCOL
Point-to-Point Synchronous Interface:
To simplify timing analysis, physical design,
and general comprehension, the OCP is
composed of uni-directional signals driven with
respect to, and sampled by the rising edge of
the OCP clock. The OCP is fully synchronous
(with the exception of reset) and contains no
multi-cycle timing paths with respect to the
OCP clock. All signals other than the clock
signal are strictly point-to-point.
Bus Independence:
A core utilizing the OCP can be interfaced to
any bus. A test of any busindependent interface
is to connect a master to a slave without an
intervening on-chip bus. This test not only
drives the specification towards a fully
symmetric interface but helps to clarify other
issues. For instance, device selection techniques
vary greatly among on-chip buses. Some use
address decoders. Others generate independent
device select signals (analogous to a board level
chip select). This complexity should be hidden

from IP cores, especially since in the directly-
connected case there is no decode/selection
logic. OCP-compliant slaves receive device
selection information integrated into the basic
command field.

Arbitration schemes vary widely. Since there is
virtually no arbitration in the directly-connected
case, arbitration for any shared resource is the
sole responsibility of the logic on the bus side
of the OCP. This permits OCPcompliant
masters to pass a command field across the
OCP that the bus interface logic converts into
an arbitration request sequence.
Commands:
There are two basic commands, Read and Write
and five command extensions. The
WriteNonPost and Broadcast commands have
semantics that are similar to the Write
command. A WriteNonPost explicitly instructs
the slave not to post a write. For the Broadcast
command, the master indicates that it is
attempting to write to several or all remote
target devices that are connected on the other
side of the slave. As such, Broadcast is
typically useful only for slaves that are in turn a
master on another communication medium (
such as an attached bus).

The other command extensions, Read
Exclusive, Read Linked and Write Conditional,
are used for synchronization between system
initiators. Read Exclusive is paired with Write
or Write Non Post, and has blocking semantics.
Read Linked, used in conjunction with Write
Conditional has non-blocking (lazy) semantics.
These synchronization primitives correspond to
those available natively in the instruction sets
of different processors.
Address/Data
Wide widths, characteristic of shared on-chip
address and data buses, make tuning the OCP
address and data widths essential for area-
efficient implementation. Only those address
bits that are significant to the IP core should
cross the OCP to the slave. The OCP address
space is flat and composed of 8-bit bytes
(octets).

To increase transfer efficiencies, many IP cores
have data field widths significantly greater than
an octet. The OCP supports a configurable data
width to allow multiple bytes to be transferred

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-5, 2017

DOI: 10.21276/ijcesr.2017.4.5.4
26

simultaneously. The OCP refers to the chosen
data field width as the word size of the OCP.
The term word is used in the traditional
computer system context; that is, a word is the
natural transfer unit of the block. OCP supports
word sizes of power-of-two and nonpower-of-
two as would be needed for a 12-bit DSP core.
The OCP address is a byte address that is word
aligned.

Transfers of less than a full word of data are
supported by providing byte enable information
that specifies which octets are to be transferred.
Byte enables are linked to specific data bits
(byte lanes). Byte lanes are not associated with
particular byte addresses. This makes the OCP
endianneutral, able to support both big and
little-endian cores.
Pipelining:
The OCP allows pipelining of transfers. To
support this feature, the return of read data and
the provision of write data may be delayed after
the presentation of the associated request.
Response:
The OCP separates requests from responses. A
slave can accept a command request from a
master on one cycle and respond in a later
cycle. The division of request from response
permits pipelining. The OCP provides the
option of having responses for Write
commands, or completing them immediately
without an explicit response.
Burst:
To provide high transfer efficiency, burst
support is essential for many IP cores. The
extended OCP supports annotation of transfers
with burst information. Bursts can either
include addressing information for each
successive command (which simplifies the
requirements for address sequencing/burst
count processing in the slave), or include
addressing information only once for the entire
burst.
In-band Information:
Cores can pass core-specific information in-
band in company with the other information
being exchanged. In-band extensions exist for
requests and responses, as well as read and
write data. A typical use of in-band extensions
is to pass cacheable information or data parity
Tags:
Tags are available in the OCP interface to
control the ordering of responses. Without tags,

a slave must return responses in the order that
the requests were issued by the master.
Similarly, writes must be committed in order.
With the addition of tags, responses can be
returned out-of-order, and write data can be
committed out-of-order with respect to
requests, as long as the transactions target
different addresses. The tag links the response
back to the original request.

Tagging is useful when a master core such as a
processor can handle out-oforder return,
because it allows a slave core such as a DRAM
controller to service requests in the order that is
most convenient, rather than the order in which
requests were sent by the master.

Out-of-order request and response delivery can
also be enabled using multiple threads. The
major differences between threads and tags are
that threads can have independent flow control
for each thread and have no ordering rules for
transactions on different threads. Tags, on the
other hand, exist within a single thread and are
restricted to shared flow control. Tagged
transactions cannot be re-ordered with respect
to overlapping addresses. Implementing
independent flow control requires independent
buffering for each thread, leading to more
complex implementations. Tags enable lower
overhead implementations for out-of-order
return of responses at the expense of some
concurrency.
Threads and Connections:
To support concurrency and out-of-order
processing of transfers, the extended OCP
supports the notion of multiple threads.
Transactions within different threads have no
ordering requirements, and independent flow
control from one another. Within a single
thread of data flow, all OCP transfers must
remain ordered unless tags are in use. Transfers
within a single thread must remain ordered
unless tags are in use. The concepts of threads
and tags are hierarchical: each thread has its
own flow control, and ordering within a thread
either follows the request order strictly, or is
governed by tags.
While the notion of a thread is a local concept
between a master and a slave communicating
over an OCP, it is possible to globally pass
thread information from initiator to target using
connection identifiers. Connection information

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-5, 2017

DOI: 10.21276/ijcesr.2017.4.5.4
27

helps to identify the initiator and determine
priorities or access permissions at the target.
Interrupts, Errors, and other Sideband
Signaling:
While moving data between devices is a central
requirement of on-chip communication
systems, other types of communications are
also important.
Different types of control signaling are required
to coordinate data transfers (for instance, high-
level flow control) or signal system events
(such as interrupts). Dedicated point-to-point
data communication is sometimes required.
Many devices also require the ability to notify
the system of errors that may be unrelated to
address/data transfers.

The OCP refers to all such communication as
sideband (or out-of-band) signaling, since it is
not directly related to the protocol state
machines of the dataflow portion of the OCP.
The OCP provides support for such signals
through sideband signaling extensions.
Errors are reported across the OCP using two
mechanisms. The error response code in the
response field describes errors resulting from
OCP transfers that provide responses. Write-
type commands without responses cannot use
the in-band reporting mechanism. The second
method for reporting errors across the OCP
uses out-of band error fields. These signals
report more generic sideband errors, including
those associated with posted write commands.

The Open Core Protocol™ (OCP) defines a
high-performance, bus independent interface
between IP cores that reduces design time,
design risk, and manufacturing costs for SOC
designs.
An IP core can be a simple peripheral core, a
high-performance microprocessor, or an on-
chip communication subsystem such as a
wrapped on-chip bus.

The Open Core Protocol:

1.)Achieves the goal of IP design reuse. The
OCP transforms IP cores making them
independent of the architecture and design of
the systems in which they are used

2.)Optimizes die area by configuring into the
OCP only those features needed by the
communicating cores
3.)Simplifies system verification and testing by
providing a firm boundary around each IP core
that can be observed, controlled, and validated

The Open Core Protocol interface addresses
communications between the functional units
(or IP cores) that comprise a system on a chip.
The OCP provides independence from bus
protocols without having to sacrifice high
performance access to on-chip interconnects.
By designing to the interface boundary defined
by the OCP, you can develop reusable IP cores
without regard for the ultimate target system.
Given the wide range of IP core functionality,
performance and interface requirements, a fixed
definition interface protocol cannot address the
full spectrum of requirements. The need to
support verification and test requirements adds
an even higher level of complexity to the
interface. To address this spectrum of interface
definitions, the OCP defines a highly
configurable interface. The OCP’s structured
methodology includes all of the signals
required to describe an IP cores’
communications including data flow, control,
and verification and test signals.

Figure 1 shows a simple system containing a
wrapped bus and three IP core entities: one that
is a system target, one that is a system initiator,
and an entity that is both.

 Fig.4 system showing wrapped bus and
OCPinstances

Below table2 shows the basic signals of the
OCP protocol. Only Clk and MCmd are
required. The remaining OCP signals are
optional.

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-5, 2017

DOI: 10.21276/ijcesr.2017.4.5.4
28

Table 2basic OCP signals

 III.SIGNAL CONNECTIONS
Figure 5 shows the component signal
connections. The bridge uses:
• AMBA AXI-Lite and OCP signals as
described in the AMBA AXI-Lite 4.0 protocol

Fig5 signal connections
Handshaking mechanism of AXI&OCP
In AXI 4.0 specification, each channel has
VALID and READY signals for handshaking.
The source asserts VALID when the control
information or data is available. The destination
asserts READY when it can accept the control
information or data. Transfer occurs only when
both the VALID and READY are asserted.
Figure6 Shows all possible cases of
VALID/READY handshaking. Note that when
source asserts VALID, the corresponding
control information or data must also be
available at the same time. The arrows in
Figure. Indicate when the transfer occurs. A
transfer takes place at the positive edge of
clock. Therefore, the source needs a register
input to sample the READY signal. In the same
way, the destination needs a register input to
sample the VALID signal. Considering the
situation of Figure(c), we assume the source
and destination use output registers instead of
combination circuit, they need one cycle to pull
low VALID/READY and sample the

VALID/READY again at T4 cycle. When they
sample the VALID/READY again at T4, there
should be another transfer which is an error.
Therefore source and destination should use
combinational circuit as output. In short, AXI
protocol is suitable register input and
combinational output circuit.
The OCP Bridge buffers address, control and
data from AXI4-Lite, drives the OCP
peripherals and returns data and response signal
to the AXI4-Lite. It decodes the address using
an internal address map to select the peripheral.
The bridge is designed to operate when the
OCP and AXI4-Lite have independent clock
frequency and phase. For every AXI channel,
invalid commands are not forwarded and an
error response generated. That is once a
peripheral accessed does not exist, the OCP
Bridge will generate DE CERR as response
through the response channel (read or write).
And if the target peripheral exists, but asserts
PSLVERR, it will give a SLVERR response

Fig 6 waveforms for handshaking mechanism.

 IV FEATURES OF THIS WORK
The AXI to OCP Bridge translates AXI4-Lite
transactions intoOCP transactions. The bridge
functions as a slave on the AXI4-Lite interface
and as a master on the OCP interface. The AXI
to OCP Bridge main use model is to connect
the OCP slaves with AXI masters. Both AXI4-
Lite and OCP transactions are happened during
rising edge of the clock.

Figure 7 AXI to OCP block diagram

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-5, 2017

DOI: 10.21276/ijcesr.2017.4.5.4
29

The AXI to OCP Bridge block diagram is
shown in Figure 7 and described in subsequent
sections.
AXI LITE SLAVE INTERFACE
The AXI4-Lite Slave Interface module provides
a bi-directional slave interface to the AXI. The
AXI address and data bus widths are always
fixed to 32-bits and 1024bits. When both write
and read transfers are simultaneously requested
on AXI4-Lite, the write request is given more
priority than the read request. This module also
contains the data phase time out logic for
generating OK response on AXI interface when
OCP slave does not respond.

OCP MASTER INTERFACE
The OCP Master Interface module provides a
bi-directional slave interface to the OCP. The
OCP address and data bus widths are always
fixed to 32-bits and 1024bits. When both write
and read transfers are simultaneously requested
on OCP, the write request is given more
priority than the read request.

We provide an implementation of AXI4-Lite to
OCP Bridge which has the following features:
1.)32-bit AXI slave and OCP master interfaces.
2.)AXI clock domain completely independent
of OCP clock domain.
3.)Support up to 16 OCP peripherals.
4.)Suports increment,burst transfer,wrapping
functions on data transfer.
5.)OCP signals Configuration.
 V.CONCLUSION
 Implemented An Intellectual Property (IP) core
of AXI4(Advanced Extensible Interface) Lite to
Open Core Protocol Bridge, which translates
the AXI4.0-lite transactions into OCP
Transactions. The bridge provides interfaces
between the high-performance AXI bus and
Configurable high performance OCP .In this
work, the bus bridge was designed to interface
these protocols which plays a vital role in SoC
application such as it may lead to application
failure, if it doesn’t work properly. Initially
basic AXI 4.0 and OCP protocols are modelled
separately using VERILOG and are simulated.
Basically Bus Bridge should convert command
and data of AXI formats to acceptable OCP
formats. This conversion does not ensure
proper communication unless the timings of
each protocol were met. Hence the
interconnecting Bus Bridge wrapper between

Advanced eXtensible Interface (AXI) and on
chip was designed with proper timing delay.

 VI REFERENCES
1. Design and Implementation of APB Bridge
based on AMBA 4.0 (IEEE 2011), ARM
Limited.
2.http://en.wikipedia.org/wiki/System_on_a_ch
ip#Structure
3. Power.org Embedded Bus Architecture
Report Presented by the Bus Architecture TSC
Version 1.0 – 11 April 2008
4.ARM, "AMBA Protocol Specification 4.0",
www.arm.com, 2010
5.ARM,AMBA Specification (Rev 2.0).
6.AMBA® 4 AXI4™, AXI4-Lite™, and
AXI4-Stream™ Protocol Assertions Revision:
r0p0 User Guide.
7.AMBA® APB Protocol Version: 2.0
Specifications.
8.ASB Example AMBA System Technical
Reference Manual Copyright © 1998-1999
ARM Limited.
9. AHB to APB Bridge (AHB2APB) Technical
Data Sheet Part Number: T-CS-PR-0005-100
Document Number: I-IPA01-0106-USR Rev 05
March 2007.

http://en.wikipedia.org/wiki/System_on_a_chip#Structure
http://en.wikipedia.org/wiki/System_on_a_chip#Structure

	I Introduction

