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Abstract 
In 1985, Upreti studied approximation 
properties of beta operators. Later in 1991, 
Zhou obtained direct and inverse theorems 
for these operators. In the last decade, Gupta 
and Dogru obtained some direct results for 
beta operators. In the present paper, we 
establish a global direct theorem for a new 
family of beta operators, by using 
Ditzian-Totik modulus of smoothness. 
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I. INTRODUCTION 
Felten [3] obtained local and global 
approximation theorems for positive linear 
operators. In the last decade, Finta [4] studied 
direct local and global approximation theorems 
for Baskakov type operators and Szasz-Mirakian 
type operators. Recently, Kumar [12] studied 
direct results for Beta-Szasz operators in 
simultaneous approximation. Beta operators 
have been studied by several researchers [5, 6, 7, 
8, 9, 10, 13,  14]. In the present paper, we 
establish a global direct theorem for a new 
family of beta operators introduced by Gupta et 
al. [9] to approximate lebesgue integrable 
functions on ),0[  as 
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Some basic properties of  )(, xb vn  are as follows 
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where Nn  and ),0[ x . 
 
 It can be easily verified that the operators (1.1) 
are linear positive operators and the order of 
approximation by these operators is at best 
O(n-1) as n , howsoever smooth the 
function may be. 
 Let ),0[£r

1   be the class of functions g defined 
by  

],0[:{),0[£ 1
(r)r

1 aL gg , 

})1()(and),0(everyfor (r) mtMta  g  

Where the constants M and m depend on g, and 
 pba 0],,[Lp  stands for the pL -space. 
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 It is obvious that ),0[r
p L is not contained in 

),0[£r
1  . 

 Due to Ditzian and Totik [2], the modulus of 
smoothness of a function f is defined by 
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where  )1()(2 xxx    and  
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 Following [2], it can be easily verified that the 
modulus of smoothness defined by (1.9) , is 
equivalent to the modified K-functional given by 
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  The main object of the present paper is to 
establish a global approximation result for the 
operators (1.1) in terms of Ditzian-Totik 
modulus of second order. 
 

II. PRELIMINARY RESULTS 
This section consists of some auxiliary results, 
which will be helpful in proving the main results 
of next section. 

Lemma 2.1. For 0N, rm (the set of 
non-negative integers), let the function 
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and for all rmn  , there holds the recurrence 
relation  
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 Proof. Using the definition of )(,,r xT mn and 
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Thus, collecting the like terms, we get the 
desired recurrence relation 
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 The other consequence easily follows from the 
above recurrence relation. 
  
 Corollary 2.2. It can be easily verified from 
Lemma 2.1 that  
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where )(,, xp nmj  and )(,, xq nmj  are certain 

polynomials in x of  fixed degree with 
coefficients which are bounded uniformly for all 
n. 
Corollary 2.3. For every ,0Nm  
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  Corollary 2.5. Let 0e and 1e be two monomials. 
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Proof. Using basic properties of 
)(, xb vn and proceeding in the same way as in 

Lemma 5.2[1], the above lemma easily follows. 
          
III. GLOBAL APPROXIMATION 

In this section, we establish the following global 
direct result. 
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where the constant C6 is independent of n. 
 
 Thus by Riesz-Thorin theorem, inequality 
(3.4) holds for all  p1 . 
  
 



 INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)   

   

 
  ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-6, 2017 

64 

 

Next collecting the estimates of (3.2), (3.3) and 
(3.4), we get  
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This completes the proof of Theorem 3.1. 
            
Remark 3.2. It is important to note that the 
conclusion of the above Theorem 3.1 is also true 
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