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Abstract 
The process of categorizing network packets 
into flows in a Network Device (Internet 
router, firewall etc), is called packet 
classification.  All packets belonging to the 
same flow obey a predefined rule and are 
processed in a similar manner by the network 
device. For example, all packets with the same 
source and destination IP addresses may be 
defined to form a flow. Packet classification is 
an enabling function for a variety of Internet 
applications including Quality of Service, 
security, monitoring, and multimedia 
communications.   In order to classify a packet 
as belonging to a particular flow or set of 
flows, network nodes must perform a search 
over a set of filters using multiple fields of the 
packet as the search key. 
In general, packet classification on multiple 
fields is a difficult problem.   Hence, re- 
searchers have proposed a variety of 
algorithms which, broadly speaking, can be 
categorized as hardware based (architectural) 
and software based (algorithmic) approaches.   
[1], [2] 
The network devices has to do packet  
classification at  line speeds (ex OC  
standards) etc and  given the  inability  of 
early algorithms  to  meet  performance  
constraints imposed by these high speed links, 
researchers  devised hardware  based 
(architectural) solutions to the problem.  This 
thread of research produced the most widely 
used packet classification de- vice technology, 
like Ternary Content Addressable Memory 
(TCAM) etc.  But  because of the  limitations  
of this  approach  as pointed  out  by George 
Varghese   [3], new research  is focused more 

on software based(algorithmic)  approach  or 
combination  of both. 
Keywords: Packet Classification, Longest 
Prefix March (LPM), Bloom Filter, Hash 
Table, Decision Table, Firewall, Class Bench. 
 
Introduction 
In  this  section  first  we give the  definition  
and  importance  of packet  classification  as a 
general problem  and  then  mention  about  the  
metrics  of evaluating  the  performance  and 
also the important fields used for the 
classification of packets.  Then we mention the 
different applications of packet classification 
and finally we give an overview the different 
algorithmic techniques that we have studied. 
 
1.1 Definition and Importance 
Until recently, network devices provided only 
best-effort service, servicing packets in a 
first- come-first-served manner.  network 
devices are now called upon to provide 
different qualities of service to different 
applications  which means they need new 
mechanisms such as admission control, 
resource reservation, per-flow queuing, 
intrusion  detection,  fair scheduling etc. All 
of these mechanisms require the network 
devices to distinguish packets belonging to 
different flows. Flows are specified by rules 
applied to incoming packets.  We call a 
collection of rules a classifier.  Each rule 
specifies a flow that a packet may belong to 
based on some criteria applied to the packet 
header, as shown in Figure 1.1 [2]. 
 
 
 

 



INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR) 
 

 
  ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-6, 2017 

140 

 

 
 

Figure 1.1: Example fields used for classification [ 2] 
Although not shown in this figure, higher layer (e.g., application-level) headers may also be used. 

 
1.1 Problem statement 

A classifier is defined by a set of rules and each rule 
R of a classifier has d components. R[i]  is the  ith  
component of rule  R,  and  is a regular  expression  
on ith  the  field of the packet header.  A packet P is 
said to match rule R, if for all i, the field of the header 
of P satisfies the regular expression R[i]. In practice, 
a rule component is not a general regular expression 
but is often limited by syntax to a simple 
address/mask or operator/number(s) specification.   In 
an address/mask specification,  a 0 (respectively  1) at  
bit  position  x in the  mask  denotes  that  the  

corresponding  bit  in the  address  is a don’t  care 
(respectively significant) bit.  Examples of 
operator/number(s) specifications are eq 1232 and 
range 34-9339.   Note  that  a prefix can be specified 
as an  address/ mask  pair  where the  mask  is 
contiguous   i.e., all bits  with value 1 appear  to the  
left of bits with value 0 in the  mask. It can also be 
specified as a range of width equal to 2t   where t = 32 
– prefix length. Most commonly occurring 
specifications can be represented by ranges.  An 
example real-life classifier in four dimensions is 
shown in Figure 1.4 [2]. 

 

 
Figure 1.4: Example real life classifier [2]. 
By convention, the first rule R1 is of highest priority and rule R6 is of lowest priority. 
Some example classification results are shown in Figure 1.5. 

 
Figure 1.5: Example classification results 
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Longest prefix matching for routing lookups is 
a special-case of one-dimensional packet 
classification.  All packets destined to the set 
of addresses described by a common prefix 
may be considered to be part o f  the same flow.  
The address of the next hop where the packet 
should be forwarded to is the associated action.  
Here the length of the prefix defines the priority 
of the rule. A rule which matches a longer prefix 
of the packet header has higher priority. 
 
1.1.1   Fields used for classification 
As we got a general idea of the packet 
classification problem, below we mention about 
the general fields (dimensions) used for this 
problem.  The classification of packets can be 
based on the packet fields like 
• Source IP address 
• Destination IP address 
• Source Destination Port 
• Destination Port 
• Protocol 
• Hardware links 
 
A combination of the above fields or any 
additional f ield required depending on the 
appli- cation may also be used.  As mentioned  
in Section  1.2 a packet P  is said to match  rule 
R, if for all i(dimensions),  the field of the 
header of packet P  matches  with R[i] of a rule 
R. 
 
1.1.2Performance metrics for 
c l a s s i f i c a t i o n  algorithms 
The packet classification problem which 
consists of tens of thousands  of rules and also 
which is done by network devices like 
Routers(Qi’s ), NAP(VPN ), Firewalls 
(intrusion detection ) etc, has to be done at line 
speeds like E1, T1, XDSL, OC standards for 
twisted pair, coaxial cables, optical fibers etc, 
requires high performance in terms of speed, 
storage, updates  etc. Below we mention a few 
metrics which are used for the evaluation of  
the algorithms. 
 
• Search speed - Faster links require faster 
classification.  For example, links running at 
10Gbps can bring 31.25 million packets per 
second (assuming minimum sized 40 byte 
TCP/IP packets). 
 

• Low storage requirements - Small storage 
requirements enable the use of fast memory 
technologies like SRAM (Static Random 
Access Memory).  SRAM can be used as an 
on-chip cache by a software algorithm and as 
on-chip SRAM for a hardware algorithm. 
 
• Ability to handle large real-life classifiers. 

•  
Fast updates - As the classifier changes, the data 

structure needs to be updated. We can 
categorize data structures into those which can 
add or delete entries incrementally, and those 
which need to be reconstructed from scratch 
each time the classifier changes. When the data 
structure is reconstructed from scratch, we call 
it preprocessing.  The update  rate  differs 
among  different applications:   a  very  low 
update  rate  may  be sufficient in firewalls 
where entries  are  added  manually  or 
infrequently,  whereas  a router  with per-flow 
queues may require very frequent updates. 

 
• Scalability in the number of header fields 
used for classification. 
 
•  Flexibility in specification - A classification  
algorithm  should support  general  rules, 
including  prefixes,  operators  (range,  less than,  
greater  than,  equal  to,  etc.)    And wildcards.  
In some applications, non-contiguous masks 
may be required 
 
2.1 Organization of Algorithms 
After an extensive study of various research 
papers we have broadly classified the different 
algorithmic techniques into the different 
methods where we study and analyze one or 
two important techniques from each of the 
methods.   The methods and the techniques are 
classified as follows 
 
• Decision-tree Based - Modular Packet 
Classification (Woo) 
 
• Decomposition based - RFC (Recursive 
f low classification) 
 
• Hash Based - Tuple Space search (TSS), 
Bloom filter based 
 
First we discuss about the Decision-tree b a s e d  
algorithms where we study 
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Modular packet Classification 
proposed by Woo   [4].  This algorithm i s  
motivated by intuitive o b s e r v a t i o n  on the 
classification process, and is based on an 
efficient divide- and-conquer approach.  
Specifically, we break up the classification 
procedure into two main steps.   In the first 
step, our algorithm tr ies to eliminate as many 
filters as possible by examining specific bit 
positions. In the second step, the filter bucket 
is processed to find a match.  In essence, the 
algorithm is a modular composition of two 
procedures:  the first to decompose large filter 
table into small filter buckets of a fixed 
maximum size (from 8 to 
128), and the second to process filter buckets 
of limited size to find a match. 
 
Then we discuss about  the Decomposition  
based algorithms  where we discuss about 
RFC(Recursive flow  classification)  [5], 
which performs the parallel lookups on each 
individual  fields(dimensions)  first (phase  0), 
then  combines the  results  from the  previous 
phase to form the keys for the next phase while 
reducing the dimensions of search in each 
phase gradually. 
 
Finally we deal with Hash based algorithms, 
where we look at Tuple Space Search  [6],  
[7] which divides the filter set into different 
groups based on the key lengths formed by 
combining the significant bits of each 
dimension and Bloom filter   [10], [ 13] based 
approach which utilizes a combination of  hash 
functions and a bit vector to store and retrieve 
information. 
 
We deal with a detailed explanation of the 
Algorithms with the Implementation details in 
the next chapter. 
 

Implementation and Results 
First we mention about the Modular Packet 
Classification as a technique, which follows 
the Decision tree approach to packet 
classification and do its analysis.  Then we 
mention about the Recursive Flow 
classification as a technique, which follows 
the Decomposition approach to packet 
classification and do its analysis.  Finally we 
mention about the Tuple space Search and 

Bloom filter based techniques, which follows 
the Hashing approach to packet classification 
and do its analysis. 
 
3.0.1   Metrics for e v a l u a t i o n  
We measure the space efficiency of an 
algorithm us ing  the average number of bytes 
con- sumed per filter. We measure the 
throughput of an algorithm using the memory 
bandwidth consumed.  The number of bytes 
per memory access and the number of 
dependent memory accesses per packet 
lookup .   The memory bandwidth 
c o n s u m p t i o n  i s  evaluated i n  both the 
worst case and the average case.  The overall 
data structure size is the product of the 
memory consumption per filter and the number 
of filters.  The overall throughput can be 
calculated by dividing the total memory 
bandwidth b y  the memory bandwidth 
c o n s u m e d  per packet lookup. 
 
3.0.2   Usage of filter Set 
The open-source ClassBench [15], [16] is used 
to generate synthetic filter sets with different 
scales and structures.  We provide the 
parameters used for filter set generation.   We 
also generate  a  packet  header  trace  using  
ClassBench  for each  filter  set  for 
implementation verification  and  algorithm  
evaluation.    The size of a trace i s  about 1 0  
times of that o f  the corresponding filter set.  
We provide the original filter sets that a r e  
used as seeds for the synthetic f i l t e r  sets.  The 
statistics files extracted f r o m  the original filter 
sets can be downloaded from the ClassBench 
website [ 15]. 
 

We only consider 5-tuple filters: source IP 
address, destination IP address, source port, 
destination port, protocol.  The filter format  is 
”@source IP address prefix in dot-decimal 
notation/prefix length destination IP address 
prefix in dot-decimal  notation/prefix length 
low source port  :  high source port  low 
destination port  :  high destination port  
protocol value in hexadecimal/protocol mask 
in hexadecimal”.  The header trace  format  is 
”source IP address in decimal destination IP 
address in decimal source port  value in decimal 
destination port value in decimal protocol in 
decimal” 
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A sample of the filter set rule file is as shown in the below Figure   3.1. 
 

 
 

Figure 3.1: Filter set – Sample Rule file 
 
3.1     Modular Packet Classification 
(Woo’s Algorithm) 
It is a Decision tree based algorithm, which is 
an extension to the method HiCuts proposed 
by Gupta and McKeown [ 11].The algorithm is 
motivated by intuitive observation on the 
classification process, and is based on an 
efficient divide-and-conquer approach.  The 
details of the algorithm are as mentioned 
below. 
 
3.1.1   Algorithm 
Woo’s modular packet classification algorithm 
is a decision tree-based packet classification 
algorithm.  Unlike the other decision tree-based 
algorithm, it takes a more direct view over the 
filters.   If we see each filter as a ternary b i t  
string and would like to pick some bit to 
split the filter set.  We would like the  two  
resulting  subsets  to have similar number  of 
filters (maximize ”balancedness”) and as few 
filters as possible to be duplicated  in the two 

subsets (minimize duplication). Clearly, if a 
particular bit position is chosen, all filters with 
this  bit  bearing  a value ’1’ go to a subset,  all 
filters with  this  bit  bearing  a value ’0’ go to 
the other subset,  and all filters with this bit 
being ”don’t care” go to the both subsets. The 
decision tree construction  algorithm  recursively 
splits the filter set with a bit-chosen preference  
until  all the  leaf nodes contain  less than  k 
filters,  where k is the  predefined bucket size. 
Each internal  tree node needs to store a bit 
position, which takes log2(n) bits if the filters 
are n -bit long, and two pointers, each pointing 
to a child node. Each leaf nodes stores a small 
set of filters.  The lookup algorithm i s  very 
simple.  Based on the pattern of the packet 
header, the algorithm follows the chosen bits 
to locate the target l e a f  node and then 
performs a linear search on the filter list.  The 
overall algorithm data structure is shown in the 
following Figure 3.2 
 

  
 

Figure 3.2: Modular packet classification
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First, the filters are statically grouped using 
some prefix bits from some selected header 
fields. Addressed by an index (which is the 
numerical value of the concatenated bit string 
of the chosen prefix bits), e ac h  group of 
filters is then spli t  to generate a decision tree. 
The preference of bit j is defined as: 
preference[j] = (Dj − Dmin)/ (Dmax − 

Dmin) + (N ∗j−N ∗min)/ (N ∗max  −N 

∗min).  In the equation,  Dj  = |N 0j  − N 1j  |.  
N 0j, N 1j , and N ∗j  are the number of 0, 1, 
and * (”don’t care”) at bit position j, 
respectively.  When splitting a filter set, we 
choose the bit position that resul ts  in the 
least preference value.  If there is a tie, we 
choose the least bit position. 
 
3.1.3   Evaluation Results 
We measure the space efficiency of an 
algorithm us ing  the average number of bytes 
con- sumed per filter. We measure the 
throughput of an algorithm using the memory 

bandwidth consumed.  The number of bytes 
per memory access and the number of 
dependent memory accesses per packet lookup.  
The memory bandwidth co n su mp t io n  is  
evaluated in the average case.  The overall data 
s t ruc ture  size is the product o f  the memory 
consumption per filter and the number of 
filters.  The overall throughput can be 
calculated by dividing the total memory 
bandwidth by  the memory bandwidth 
consumed per packet lookup. 

In this simulation, we set the bucket size to 
16. No index jump table is used.  As shown in 
the Figure   3.3 below, generally, the ACL1 
filter sets demonstrate better p e r f o r m a n c e  
and scalability and the FW1 filter sets give the 
poorer overall performance.  Before a point, all 
the three types of filter sets have similar 
throughput performance but the FW1 filter 
sets consume significant larger storage.  When 
the number of filters exceeds 5K for FW1, the 
performance becomes unacceptable, so the data 
points are not shown in the figure.  

 

  
 

(a) The storage requirement for the filter set 
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(b) The packet classification performance 

 
Figure 3.3: Modular Packet classification – Performance
 
3.2     Recursive Flow Classification (RFC) 
The RFC algorithm proposed by Gupta and 
McKeown [5] is a Decomposition based, multi- 
stage algorithm.    It uses the fact that t h e  
classifiers contain cons iderab le  structure 
and redundancy that  can be exploited.  The 
details of the algorithm are as mentioned 
below. 
 
3.2.1   Algorithm 
The RFC algorithm is a decomposition-based 
algorithm, which provides very high lookup 
throughput at the cost of low memory 
efficiency. It performs the parallel lookups on 
each individual field first (phase 0). This step 
is typically conducted by a direct table lookup 
in order to achieve the best throughput 
performance.  The table size depends on the 
number of bits of a header field (e.g.  A field 
with n bits requires a table with 2ˆn e n t r i e s ).   
For memory efficiency, the fields such as the 
source IP address and the destination IP 
address are broken into shorter 16-bit chunks 
and a table is built for each chunk. 
The table entry i of chunk j virtually stores 
the set of filters for which the chunk j covers 
the value i. actually, in a table, each unique set 
of filters is binary encoded.  The identifier of 
the encoded set is named eqID. Clearly, for 
packet classification, the intersection of the 

sets of filters from all the chunk table lookups 
is exactly the set of filters that m a t c h e s  a 
packet.  Again, for the best throughput 
performance, this step is preferred to be 
conducted from a direct table lookup.  This 
implies we need to build a cross-product table  
with the number of  entries equaling to the 
multiplication of the number of  eqID s of 
each chunk. Unfortunately, this number could 
be terribly large, resulting in unacceptable 
i n e f f i c i e n c y  of memory use.  For this 
reason, the cross-producing i s  conducted 
recursively in multiple phases. 
As a tradeoff of throughput and storage, the  
number of  cross-producing p h a s e s  can be 
varied.  At one extreme, we can finish the cross-
producing in a single step and the algorithm is 
degenerated into the variation o f  the naive 
cross-producing algorithm (2-phase RFC). At 
the other extreme, w e  can take up to k phases 
to finish if there are k chunk tables in total.   
For 5-tuple packet classification with 7 
chunks, the paper proposes to finish the cross-
producing in 3 or 4 phases.  It is also critical to 
determine the shape of the reduction tree.  A 
tree is chosen based on two heuristics.  1 - The 
most correlated chunks (e.g. the two chunks 
from the source IP address field) should be 
merged first.  2 - As long as the memory 
consumption is reasonable, the algorithms 
should combine as many chunks as possible. 
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An Example reduction tree is shown in the following Figure 3.4 
 

 
 

Figure 3.4: Recursive Flow Classification-General  Flow 
 
3.2.2   Construct the Chunk Lookup 
Tables 
The following figure shows an example of 
constructing t h e  lookup table.   Assuming each 
chunk is 4-bit long, we draw the chunk x and 
the chunk y in a 2D plane.  Projected to this 
2D plane, each filter appears to be a rectangle. 
We then project the end points of each 
rectangle to the axis. Any two adjacent 
projection points on an axis defines an 
elementary interval which is fully covered by 

a set of filters.  We say an elementary interval 
represent a set of filters.   Two neighboring  
elementary  intervals  cannot  represent the  
same filters; whereas two  nonadjacent  
elementary  intervals  are possible to  represent  
the  same filters. We assign each elementary 
i n t e r v a l  an  identifier, named eqID. The 
elementary i n t e r v a l s  representing the  same 
set of filters are assigned the same eqID, as 
shown in the following Figure 3.4 
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Figure 3.5: Recursive Flow – Classification of Elementary Interval
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In the above example, chunk x has 4 eqID s 
(encoded as 0 to 3) and chunk y has 4 eqID s 
too.  Since each chunk has 4 bits, the chunk 
lookup table contains 2ˆ4=16 e n t r i e s .   The 
table index is simply the numerical value of 
the chunk bit string.   We fill out each table 
entry with the corresponding eqID. For 
example, given a chunk x with bit string 
”1001”, we find it drop in the elementary  
interval labeled with eqID 0 (which uniquely 
represents  the filter set R1 ), so we fill out the 
entry 9 of the chunk x lookup table with 0. 
Assume in the second phase, we would like to 
combine the chunk x and the chunk y. 
Basically, we need to construct  a cross-product  
table  with m*n entries,  where m is the number  
of unique eqID s for the  chunk  x and  n  is the  
number  of unique  eqID s for the  chunk  y.  In 
this example, the cross-product table has 16 
entries.  If this is not the last phase, again, 
each table entry should be filled with an eqID 
that r e p r e s e n t s  a  unique set of filters.  In 
this example, we simply fill out each entry 
with the set of filters.   During the packet 

classification, if the chunk x table lookup 
returns an eqID 2 and the chunk y table 
lookup returns an eqID 3, then the entry index 
of the cross product table should be 3+4*2=11. 
We retrieve that entry and know that f i l te r  R1 
and R2 are matched. 
 
3.2.5   Evaluation Results 
We measure the space efficiency of an 
algorithm us ing  the average number of bytes 
con- sumed per filter. We measure the 
throughput of an algorithm using the memory 
bandwidth consumed.  The number of bytes 
per memory access and the number of 
dependent memory accesses per packet lookup. 
The memory bandwidth co n su mp t io n  is  
evaluated in the average case.  The overall data 
s t ruc ture  size is the product o f  the memory 
consumption per filter and the number of 
filters.  The overall throughput can be 
calculated by dividing the total memory 
bandwidth by  the memory bandwidth 
consumed per packet lookup. 
 

  

 
(a) The storage requirement for the filter set 

 



INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR) 
 

 
  ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-6, 2017 

149 

 
 

(b) The packet classification performance 
Figure 3.7: Recursive Flow classification- Performance 

 
In the above simulation, w e  use the 4-phase 
configuration.   The lookup throughput gets 
slightly worse when the filter sets become 
larger.   The memory efficiency does not 
necessarily get worse when the filter sets 
become larger, as in the case of ACL1 filter 
sets. For the IPC1 filter sets with more than 
5K filters and the FW1 filter sets with more 
than 1K filters, the storage becomes 
unacceptably large 
 
3.3     Tuple Space Search - (TSS) 
This technique introduced by G.Varghese [ 6], 
makes use of the fact that the real databases 
use only a small number of distinct field 
lengths.  Thus by mapping filers to tuples 
(formed by combination of field lengths) 
different tuple groups are formed. Finally 
hashing is used to search for an entry in the 
tuple group.  The details of the algorithm is as 
below. 
 
3.3.1   Algorithm 
The Tuple Space Search algorithm is a hash-
based algorithm.  A tuple is defined as a vector 
of k lengths, where k is the number of fields in 
a filter.  For example, in a 5-field filter set, the 
tuple [7, 12, 8, 0, 16] means the length of the 
source IP address prefix is 7, the length of the 
destination IP address prefix is 12, the length 
of the protocol prefix is 8 (an exact protocol 
value), the length of the source port prefix is 0 
(wildcard or”don’t care”), and the length of 
the destination port prefix is 16 (an exact port 
value).  We can partition the filters in a filter 
set to the different tuple groups.  Since the 
filters in a same tuple group have the same 
tuple specification, they are mutual exclusive 

and none of them overlaps with others in this 
tuple group.  Now we can perform the packet 
classification across all the tuples to find the 
best matched filter.  If multiple tuple groups 
report matches, we resolve the best matched 
filter by comparing their priorities.  The filters 
in a tuple can be easily organized into a hash 
table, where we use the tuple specification 
to extract t h e  proper number of  bits from 
each field as the hash key.  Assume there is no 
hash collision in the hash tables. One memory 
access can determine if there is a matched filter 
in a hash table so the lookup performance is 
only determined b y  the number of tuple 
specifications.  If the hash tables are properly 
implemented, this algorithm gives an excellent 
storage performance, which is linear to the 
filter set size. 
 
3.3.2   Algorithm Optimization 
Tuple pruning s ince  the number of tuples can 
be very large, the lookup throughput per- 
formance suffers. The tuple pruning technique 
is developed to reduce the number of tuples 
that h a s  to be searched during the lookups.  
The observation is for any given packet, the 
number of unique prefixes matched on a 
particular field is typically small.  So if we 
could perform the longest prefix match (LPM) 
first on some field and figure out the lengths 
of the matched prefixes, then only a subset of 
tuple groups need to be searched. If LPMs are 
performed on more additional fields, we can 
filter out more tuples.  Here is a tradeoff:  more 
LPMs mean larger storage and at the same 
time, more single field lookups, which at some 
point may even lower the overall lookup 
throughput.  In practice,  the  LPMs  
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performed on only the  source IP  address  field 
and  the  destination IP  address  field can 
achieve the significant tuple reduction  at the 
reasonable extra  cost. 
 
3.3.5   Evaluation Results 
We measure the space efficiency of an 
algorithm us ing  the average number of bytes 
con- sumed per filter. We measure the 
throughput of an algorithm using the memory 
bandwidth consumed.  The number of bytes 
per memory access and the number of 
dependent memory accesses per packet 
lookup.   The memory bandwidth 
c o n s u m p t i o n  i s  evaluated i n  both the 

worst case and the average case.  The overall 
data structure size is the product of the 
memory consumption per filter and the number 
of filters.  The overall throughput can be 
calculated by dividing the total memory 
bandwidth b y  the memory bandwidth 
c o n s u m e d  per packet lookup. 
The algorithm works better on  the ACL1 and 
the IPC1 filter sets.  It also shows the best 
storage and throughput scalability on these 
two types of filter sets. 
 
 
 
 
 

  
(a) The storage requirement for the filter set 

 
(b) The packet classification performance 

Figure 3.9: Tuple space search- Performance 



INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR) 
 

 
  ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-6, 2017 

151 

 
3.4     Bloom filter based 
A Bloom filter is essentially a bit-vector of 
length m used to efficiently represent a set of 
messages.  Given a set of messages X with n 
members, the Bloom filter is programmed as 
follows.  For each message x in X, k hash 
functions are computed on  x producing k 
values each ranging from 1 to m.  Each of these 
values address a single bit in the m-bit vector, 
hence each message x causes k bits in the m-
bit vector to be set to 1. Note that i f  one of 
the k hash values addresses a bit that i s  already 
set to 1, that b i t  is not changed. Querying the 
filter for set membership of a given message x 
is similar to the programming process. Given 
message x, k hash values are generated using 
the same hash functions used to program the 
filter.  The bits in the m-bit long vector at the 
locations corresponding to the k hash values are 
checked. If at least one of the k bits is 0, then 
the message is declared to be a non-member of 
the set.  If all the bits are found to be 1, then 
the message is said to belong to the set with 
a certain probability. If all the k bits are found 
to be 1 and x is not a member of X, then it is 
said to be a false positive. 
Let k be the number of hash functions used, 
m be the size of the bit vector and n be the 
number of elements inserted then the false 
positive probability f, is given by the Equation 
3.1 
f = (1 − (1 – 1/m ) nk) k  (3.1) 

For large values of f the above equation 
reduces to 

    
The false positive probability a t  this optimal 
point is given by 

 
It should be noted that i f  the false positive 
probability i s  to fixed, the the size of the 
filter m needs to scale linearly with the size 
of the message set, n. 
 
3.4.1   Basic Configuration 
A basic configuration of our approach is shown 
in Figure 3.10. We begin by grouping the 
database o f  prefixes into sets according to 
prefix length.  The system employs a set of 
W counting Bloom filters where W is the 
length of input addr esses , and associates 
one filter with each unique prefix length.  Each 
filter is programmed” w i th  the associated set 
of prefixes according to the previously 
described procedure.  A hash table is also 
constructed for each distinct prefix length.  
Each hash table is initialized with the set of 
corresponding prefixes, where each hash entry 
is a [prefix, next hop] pair.  While we assume 
the result of a match is the next hop for the 
packet, more elaborate information may be 
associated with each prefix if so desired. 
 

 
Figure 3.10: Basic Configuration of Longest prefix matching using Bloom filters [ 10] 
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A search proceeds as follows. The input IP 
address is used to probe the set of W Bloom 
filters in parallel.  One-bit prefix of the address 
is used to probe the filter associated with length 
one prefixes, two-bit prefix of the address is 
used to probe the filter associated with length 
two prefixes, etc.  Each filter simply indicates 
match or no match.   By examining the 
outputs of all filters, we compose a vector of 
potentially matching prefix lengths for the 
given address, which we will refer to as the 
match vector.  Consider an IPv4 example where 
the input address produces matches in the 
Bloom filters associated with prefix lengths 8, 
17, 23, and 30; the resulting match vector 

would be f8, 17, 23,30g. The search proceeds 
by probing the hash tables associated with the 
prefix lengths represented in the match vector 
in order of longest prefix to shortest.   The 
search continues until a match is found or the 
vector is exhausted. 
3.4.2   Optimization 
To reduce the number of Bloom filters prefix 
distribution of the IPv4 is used as a heuristic, 
which shows a large numbers of 24-bit prefixes 
and few prefixes of length less than 8-bits. An 
average prefix distribution for all of the tables 
we collected is shown in Figure 3.11 

 
Figure 3.11: Average prefix length distribution for IPv4 BGP table   [10] 
 
Several variables affect system performance 
and resource utilization as  below 
• N, the target amount  of prefixes supported 
by  the system 
 

• M, the total amount of embedded memory 
available for Bloom filters 
 

•  Wdist., the number of unique prefix lengths 
supported by  the system 
•  mi, the size of each Bloom filter 

•  ki, the number of hash functions computed 
in each Bloom filter 
•  ni, the number of prefixes stored in each 
Bloom filter 
Reducing the Number of Filters 
 

The following methods are used to reduce the 
number of Bloom filter 
Direct lookup array: We observe from the 
distribution statistics that se ts  associated 
with the first few prefix lengths are typically 
empty and the first few non-empty sets  hold 
few prefixes as shown in Figure 2.  This  
suggests that  utilizing  a direct  lookup array  
for the first a prefix lengths  is an  efficient 
way to  represent shorter  prefixes while 
reducing  the number  of Bloom filters.  For 
every prefix length we represent in the direct 
lookup array, the number of worst case hash 
probes is reduced by one. Use of a direct 
lookup array also reduces the amount of 
embedded memory required to achieve optimal 
average performance, as the number of prefixes 
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represented by  Bloom filters is decreased.  CPE 
: We can reduce the  number  of remaining  
Bloom filters by limiting  the  number  of 
distinct  prefix lengths via further  use of 
Controlled  Prefix Expansion  (CPE). Clearly, 
the appropriate choice of CPE strides depends 
on the prefix distribution. As illustrated in 
the average distribution of IPv4 prefixes 
shown in Figure 2, we observe in all of our 
sample databases that there  is a significant 
concentration of prefixes from lengths 21 to 
24.  On average, 75.2% of the N prefixes fall 
in the range of 21 to 24.  Likewise, we observe 
in all of our sample databases that prefixes in 
the 25 to 32 range are extremely sparse.  
Specifically, 0.2% of the N prefixes fall in the 
range 25 to 32. 
Now the expression for the expected number 
of hash probes per lookup becomes 

 

3.4.3   Evaluation Results 
We measure the space efficiency of an 
algorithm us ing  the average number of bytes  
con- sumed per filter. We measure the 
throughput of an algorithm using the memory 
bandwidth consumed.  The number of bytes 
per memory access and the number of 
dependent memory accesses per packet 
lookup .   The  memory  bandwidth  
consumption  is evaluated  in both the  worst 
case  and  the  average  case.   The overall data 
s t r u c t u r e  size is the product o f  the 
memory consumption per filter and the 
number of filters.  The overall throughput can 
be calculated  by dividing  the  total  memory  
bandwidth  by the  memory  bandwidth  
consumed per packet  lookup.  As can been seen 
from the Figure 3.12 below as the size of the 
Embedded memory is increased the the number 
of hash probes required reduces to nearly 1. 

 
Figure 3.12:  Average number o f  hash probes per lookup for various embedded memory sizes 

Conclusion and Future Work 
4.1     Conclusion 
We see that  the Modular packet classification  
method by Woo  [4] combines a heuristic tree 
search for separating  a large set of filters into 
fixed size filter buckets,  and another  search 
procedure for searching through  fixed size filter 
buckets and it is motivated  by the practical 
observation  that  a single search approach  may 
not  be optimal  for filter table  of all sizes.  

Recursive  flow classification  techniques  
relies on the fact  that  real  classifiers exhibit 
a considerable  amount of structure and 
redundancy,  and introduces  for the  idea of 
using simple heuristic  algorithms  to  solve the  
multi-dimensional packet  classification  
problem. RFC deliberately attempts to exploit 
this structure in the real classifiers and also 
extends the idea of cross-production 
t e c h n i q u e .    
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Tuple space search algori thm searches  
through t he  field length combinations found 
in the filter set.  It is motivated by the 
observation that the number of tuples in real 
databases is much smaller than the number of 
filters. The algorithm works better o n  the 
ACL1 and the IPC1 filter sets.  It also shows 
the best storage and throughput scalability on 
these two types of filter sets as shown in 
Figures   3.9a and  3.9b.The tuple pruning 
optimization has the significantly effect on 
reducing the number  of tuples that  need to be 
searched. 

Here we have used Bloom filter based 
approach only for the Longest Prefix Match 
prob- lem, though it can be easily scaled to 
packet classification of packet in multiple 
dimensions as demonstrated by 
Dharmapurikar [12]. For the LPM  case we 
find that  the as the size of the Embedded  
memory increases the throughput for finding a 
match reduces to 1, which is one of the best 
algorithmic  approach  in terms of throughput 
as shown in the Figure   3.12. 

Bloom filter based approach which uses 
Hashing as its core approach, is a generic tech- 
nique which can be applied to varied fields.  
To use it  with  packet  classification  usually 
we use it  in conjunction  with  the  existing  
techniques,  which greatly  reduces  the  search 
time and provides high efficiency. It can be 
combined with the existing algorithmic 
techniques and can easily be scaled to the 
hardware as well [10]. Its usage with the 
existing cross-production algorithm is well 
demonstrated by the paper   [12] which also 
employs the algorithmic approach but it can be 
easily scaled to the hardware level as well. 
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