

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-6, 2017

139

AN ANALYSIS OF THE DIFFERENT APPROACHES

TO NETWORK PACKET CLASSIFICATION
Taufeeq Ahmed1, Amit kumar2

1Assistant Professor, Dept of ISE, GNDEC Bidar
2Assistant Professor, Dept of CSE, GNDEC Bidar

Abstract
The process of categorizing network packets
into flows in a Network Device (Internet
router, firewall etc), is called packet
classification. All packets belonging to the
same flow obey a predefined rule and are
processed in a similar manner by the network
device. For example, all packets with the same
source and destination IP addresses may be
defined to form a flow. Packet classification is
an enabling function for a variety of Internet
applications including Quality of Service,
security, monitoring, and multimedia
communications. In order to classify a packet
as belonging to a particular flow or set of
flows, network nodes must perform a search
over a set of filters using multiple fields of the
packet as the search key.
In general, packet classification on multiple
fields is a difficult problem. Hence, re-
searchers have proposed a variety of
algorithms which, broadly speaking, can be
categorized as hardware based (architectural)
and software based (algorithmic) approaches.
[1], [2]
The network devices has to do packet
classification at line speeds (ex OC
standards) etc and given the inability of
early algorithms to meet performance
constraints imposed by these high speed links,
researchers devised hardware based
(architectural) solutions to the problem. This
thread of research produced the most widely
used packet classification de- vice technology,
like Ternary Content Addressable Memory
(TCAM) etc. But because of the limitations
of this approach as pointed out by George
Varghese [3], new research is focused more

on software based(algorithmic) approach or
combination of both.
Keywords: Packet Classification, Longest
Prefix March (LPM), Bloom Filter, Hash
Table, Decision Table, Firewall, Class Bench.

Introduction
In this section first we give the definition
and importance of packet classification as a
general problem and then mention about the
metrics of evaluating the performance and
also the important fields used for the
classification of packets. Then we mention the
different applications of packet classification
and finally we give an overview the different
algorithmic techniques that we have studied.

1.1 Definition and Importance
Until recently, network devices provided only
best-effort service, servicing packets in a
first- come-first-served manner. network
devices are now called upon to provide
different qualities of service to different
applications which means they need new
mechanisms such as admission control,
resource reservation, per-flow queuing,
intrusion detection, fair scheduling etc. All
of these mechanisms require the network
devices to distinguish packets belonging to
different flows. Flows are specified by rules
applied to incoming packets. We call a
collection of rules a classifier. Each rule
specifies a flow that a packet may belong to
based on some criteria applied to the packet
header, as shown in Figure 1.1 [2].

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-6, 2017

140

Figure 1.1: Example fields used for classification [2]
Although not shown in this figure, higher layer (e.g., application-level) headers may also be used.

1.1 Problem statement

A classifier is defined by a set of rules and each rule
R of a classifier has d components. R[i] is the ith
component of rule R, and is a regular expression
on ith the field of the packet header. A packet P is
said to match rule R, if for all i, the field of the header
of P satisfies the regular expression R[i]. In practice,
a rule component is not a general regular expression
but is often limited by syntax to a simple
address/mask or operator/number(s) specification. In
an address/mask specification, a 0 (respectively 1) at
bit position x in the mask denotes that the

corresponding bit in the address is a don’t care
(respectively significant) bit. Examples of
operator/number(s) specifications are eq 1232 and
range 34-9339. Note that a prefix can be specified
as an address/ mask pair where the mask is
contiguous i.e., all bits with value 1 appear to the
left of bits with value 0 in the mask. It can also be
specified as a range of width equal to 2t where t = 32
– prefix length. Most commonly occurring
specifications can be represented by ranges. An
example real-life classifier in four dimensions is
shown in Figure 1.4 [2].

Figure 1.4: Example real life classifier [2].
By convention, the first rule R1 is of highest priority and rule R6 is of lowest priority.
Some example classification results are shown in Figure 1.5.

Figure 1.5: Example classification results

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-6, 2017

141

Longest prefix matching for routing lookups is
a special-case of one-dimensional packet
classification. All packets destined to the set
of addresses described by a common prefix
may be considered to be part o f the same flow.
The address of the next hop where the packet
should be forwarded to is the associated action.
Here the length of the prefix defines the priority
of the rule. A rule which matches a longer prefix
of the packet header has higher priority.

1.1.1 Fields used for classification
As we got a general idea of the packet
classification problem, below we mention about
the general fields (dimensions) used for this
problem. The classification of packets can be
based on the packet fields like
• Source IP address
• Destination IP address
• Source Destination Port
• Destination Port
• Protocol
• Hardware links

A combination of the above fields or any
additional f ield required depending on the
appli- cation may also be used. As mentioned
in Section 1.2 a packet P is said to match rule
R, if for all i(dimensions), the field of the
header of packet P matches with R[i] of a rule
R.

1.1.2Performance metrics for
c l a s s i f i c a t i o n algorithms
The packet classification problem which
consists of tens of thousands of rules and also
which is done by network devices like
Routers(Qi’s), NAP(VPN), Firewalls
(intrusion detection) etc, has to be done at line
speeds like E1, T1, XDSL, OC standards for
twisted pair, coaxial cables, optical fibers etc,
requires high performance in terms of speed,
storage, updates etc. Below we mention a few
metrics which are used for the evaluation of
the algorithms.

• Search speed - Faster links require faster
classification. For example, links running at
10Gbps can bring 31.25 million packets per
second (assuming minimum sized 40 byte
TCP/IP packets).

• Low storage requirements - Small storage
requirements enable the use of fast memory
technologies like SRAM (Static Random
Access Memory). SRAM can be used as an
on-chip cache by a software algorithm and as
on-chip SRAM for a hardware algorithm.

• Ability to handle large real-life classifiers.

•
Fast updates - As the classifier changes, the data

structure needs to be updated. We can
categorize data structures into those which can
add or delete entries incrementally, and those
which need to be reconstructed from scratch
each time the classifier changes. When the data
structure is reconstructed from scratch, we call
it preprocessing. The update rate differs
among different applications: a very low
update rate may be sufficient in firewalls
where entries are added manually or
infrequently, whereas a router with per-flow
queues may require very frequent updates.

• Scalability in the number of header fields
used for classification.

• Flexibility in specification - A classification
algorithm should support general rules,
including prefixes, operators (range, less than,
greater than, equal to, etc.) And wildcards.
In some applications, non-contiguous masks
may be required

2.1 Organization of Algorithms
After an extensive study of various research
papers we have broadly classified the different
algorithmic techniques into the different
methods where we study and analyze one or
two important techniques from each of the
methods. The methods and the techniques are
classified as follows

• Decision-tree Based - Modular Packet
Classification (Woo)

• Decomposition based - RFC (Recursive
f low classification)

• Hash Based - Tuple Space search (TSS),
Bloom filter based

First we discuss about the Decision-tree b a s e d
algorithms where we study

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-6, 2017

142

Modular packet Classification
proposed by Woo [4]. This algorithm i s
motivated by intuitive o b s e r v a t i o n on the
classification process, and is based on an
efficient divide- and-conquer approach.
Specifically, we break up the classification
procedure into two main steps. In the first
step, our algorithm tr ies to eliminate as many
filters as possible by examining specific bit
positions. In the second step, the filter bucket
is processed to find a match. In essence, the
algorithm is a modular composition of two
procedures: the first to decompose large filter
table into small filter buckets of a fixed
maximum size (from 8 to
128), and the second to process filter buckets
of limited size to find a match.

Then we discuss about the Decomposition
based algorithms where we discuss about
RFC(Recursive flow classification) [5],
which performs the parallel lookups on each
individual fields(dimensions) first (phase 0),
then combines the results from the previous
phase to form the keys for the next phase while
reducing the dimensions of search in each
phase gradually.

Finally we deal with Hash based algorithms,
where we look at Tuple Space Search [6],
[7] which divides the filter set into different
groups based on the key lengths formed by
combining the significant bits of each
dimension and Bloom filter [10], [13] based
approach which utilizes a combination of hash
functions and a bit vector to store and retrieve
information.

We deal with a detailed explanation of the
Algorithms with the Implementation details in
the next chapter.

Implementation and Results
First we mention about the Modular Packet
Classification as a technique, which follows
the Decision tree approach to packet
classification and do its analysis. Then we
mention about the Recursive Flow
classification as a technique, which follows
the Decomposition approach to packet
classification and do its analysis. Finally we
mention about the Tuple space Search and

Bloom filter based techniques, which follows
the Hashing approach to packet classification
and do its analysis.

3.0.1 Metrics for e v a l u a t i o n
We measure the space efficiency of an
algorithm us ing the average number of bytes
con- sumed per filter. We measure the
throughput of an algorithm using the memory
bandwidth consumed. The number of bytes
per memory access and the number of
dependent memory accesses per packet
lookup . The memory bandwidth
c o n s u m p t i o n i s evaluated i n both the
worst case and the average case. The overall
data structure size is the product of the
memory consumption per filter and the number
of filters. The overall throughput can be
calculated by dividing the total memory
bandwidth b y the memory bandwidth
c o n s u m e d per packet lookup.

3.0.2 Usage of filter Set
The open-source ClassBench [15], [16] is used
to generate synthetic filter sets with different
scales and structures. We provide the
parameters used for filter set generation. We
also generate a packet header trace using
ClassBench for each filter set for
implementation verification and algorithm
evaluation. The size of a trace i s about 1 0
times of that o f the corresponding filter set.
We provide the original filter sets that a r e
used as seeds for the synthetic f i l t e r sets. The
statistics files extracted f r o m the original filter
sets can be downloaded from the ClassBench
website [15].

We only consider 5-tuple filters: source IP
address, destination IP address, source port,
destination port, protocol. The filter format is
”@source IP address prefix in dot-decimal
notation/prefix length destination IP address
prefix in dot-decimal notation/prefix length
low source port : high source port low
destination port : high destination port
protocol value in hexadecimal/protocol mask
in hexadecimal”. The header trace format is
”source IP address in decimal destination IP
address in decimal source port value in decimal
destination port value in decimal protocol in
decimal”

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-6, 2017

143

A sample of the filter set rule file is as shown in the below Figure 3.1.

Figure 3.1: Filter set – Sample Rule file

3.1 Modular Packet Classification
(Woo’s Algorithm)
It is a Decision tree based algorithm, which is
an extension to the method HiCuts proposed
by Gupta and McKeown [11].The algorithm is
motivated by intuitive observation on the
classification process, and is based on an
efficient divide-and-conquer approach. The
details of the algorithm are as mentioned
below.

3.1.1 Algorithm
Woo’s modular packet classification algorithm
is a decision tree-based packet classification
algorithm. Unlike the other decision tree-based
algorithm, it takes a more direct view over the
filters. If we see each filter as a ternary b i t
string and would like to pick some bit to
split the filter set. We would like the two
resulting subsets to have similar number of
filters (maximize ”balancedness”) and as few
filters as possible to be duplicated in the two

subsets (minimize duplication). Clearly, if a
particular bit position is chosen, all filters with
this bit bearing a value ’1’ go to a subset, all
filters with this bit bearing a value ’0’ go to
the other subset, and all filters with this bit
being ”don’t care” go to the both subsets. The
decision tree construction algorithm recursively
splits the filter set with a bit-chosen preference
until all the leaf nodes contain less than k
filters, where k is the predefined bucket size.
Each internal tree node needs to store a bit
position, which takes log2(n) bits if the filters
are n -bit long, and two pointers, each pointing
to a child node. Each leaf nodes stores a small
set of filters. The lookup algorithm i s very
simple. Based on the pattern of the packet
header, the algorithm follows the chosen bits
to locate the target l e a f node and then
performs a linear search on the filter list. The
overall algorithm data structure is shown in the
following Figure 3.2

Figure 3.2: Modular packet classification

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-6, 2017

144

First, the filters are statically grouped using
some prefix bits from some selected header
fields. Addressed by an index (which is the
numerical value of the concatenated bit string
of the chosen prefix bits), e ac h group of
filters is then spli t to generate a decision tree.
The preference of bit j is defined as:
preference[j] = (Dj − Dmin)/ (Dmax −

Dmin) + (N ∗j−N ∗min)/ (N ∗max −N

∗min). In the equation, Dj = |N 0j − N 1j |.
N 0j, N 1j , and N ∗j are the number of 0, 1,
and * (”don’t care”) at bit position j,
respectively. When splitting a filter set, we
choose the bit position that resul ts in the
least preference value. If there is a tie, we
choose the least bit position.

3.1.3 Evaluation Results
We measure the space efficiency of an
algorithm us ing the average number of bytes
con- sumed per filter. We measure the
throughput of an algorithm using the memory

bandwidth consumed. The number of bytes
per memory access and the number of
dependent memory accesses per packet lookup.
The memory bandwidth co n su mp t io n is
evaluated in the average case. The overall data
s t ruc ture size is the product o f the memory
consumption per filter and the number of
filters. The overall throughput can be
calculated by dividing the total memory
bandwidth by the memory bandwidth
consumed per packet lookup.

In this simulation, we set the bucket size to
16. No index jump table is used. As shown in
the Figure 3.3 below, generally, the ACL1
filter sets demonstrate better p e r f o r m a n c e
and scalability and the FW1 filter sets give the
poorer overall performance. Before a point, all
the three types of filter sets have similar
throughput performance but the FW1 filter
sets consume significant larger storage. When
the number of filters exceeds 5K for FW1, the
performance becomes unacceptable, so the data
points are not shown in the figure.

(a) The storage requirement for the filter set

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-6, 2017

145

(b) The packet classification performance

Figure 3.3: Modular Packet classification – Performance

3.2 Recursive Flow Classification (RFC)
The RFC algorithm proposed by Gupta and
McKeown [5] is a Decomposition based, multi-
stage algorithm. It uses the fact that t h e
classifiers contain cons iderab le structure
and redundancy that can be exploited. The
details of the algorithm are as mentioned
below.

3.2.1 Algorithm
The RFC algorithm is a decomposition-based
algorithm, which provides very high lookup
throughput at the cost of low memory
efficiency. It performs the parallel lookups on
each individual field first (phase 0). This step
is typically conducted by a direct table lookup
in order to achieve the best throughput
performance. The table size depends on the
number of bits of a header field (e.g. A field
with n bits requires a table with 2ˆn e n t r i e s).
For memory efficiency, the fields such as the
source IP address and the destination IP
address are broken into shorter 16-bit chunks
and a table is built for each chunk.
The table entry i of chunk j virtually stores
the set of filters for which the chunk j covers
the value i. actually, in a table, each unique set
of filters is binary encoded. The identifier of
the encoded set is named eqID. Clearly, for
packet classification, the intersection of the

sets of filters from all the chunk table lookups
is exactly the set of filters that m a t c h e s a
packet. Again, for the best throughput
performance, this step is preferred to be
conducted from a direct table lookup. This
implies we need to build a cross-product table
with the number of entries equaling to the
multiplication of the number of eqID s of
each chunk. Unfortunately, this number could
be terribly large, resulting in unacceptable
i n e f f i c i e n c y of memory use. For this
reason, the cross-producing i s conducted
recursively in multiple phases.
As a tradeoff of throughput and storage, the
number of cross-producing p h a s e s can be
varied. At one extreme, we can finish the cross-
producing in a single step and the algorithm is
degenerated into the variation o f the naive
cross-producing algorithm (2-phase RFC). At
the other extreme, w e can take up to k phases
to finish if there are k chunk tables in total.
For 5-tuple packet classification with 7
chunks, the paper proposes to finish the cross-
producing in 3 or 4 phases. It is also critical to
determine the shape of the reduction tree. A
tree is chosen based on two heuristics. 1 - The
most correlated chunks (e.g. the two chunks
from the source IP address field) should be
merged first. 2 - As long as the memory
consumption is reasonable, the algorithms
should combine as many chunks as possible.

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-6, 2017

146

An Example reduction tree is shown in the following Figure 3.4

Figure 3.4: Recursive Flow Classification-General Flow

3.2.2 Construct the Chunk Lookup
Tables
The following figure shows an example of
constructing t h e lookup table. Assuming each
chunk is 4-bit long, we draw the chunk x and
the chunk y in a 2D plane. Projected to this
2D plane, each filter appears to be a rectangle.
We then project the end points of each
rectangle to the axis. Any two adjacent
projection points on an axis defines an
elementary interval which is fully covered by

a set of filters. We say an elementary interval
represent a set of filters. Two neighboring
elementary intervals cannot represent the
same filters; whereas two nonadjacent
elementary intervals are possible to represent
the same filters. We assign each elementary
i n t e r v a l an identifier, named eqID. The
elementary i n t e r v a l s representing the same
set of filters are assigned the same eqID, as
shown in the following Figure 3.4

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-6, 2017

147

Figure 3.5: Recursive Flow – Classification of Elementary Interval

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-6, 2017

148

In the above example, chunk x has 4 eqID s
(encoded as 0 to 3) and chunk y has 4 eqID s
too. Since each chunk has 4 bits, the chunk
lookup table contains 2ˆ4=16 e n t r i e s . The
table index is simply the numerical value of
the chunk bit string. We fill out each table
entry with the corresponding eqID. For
example, given a chunk x with bit string
”1001”, we find it drop in the elementary
interval labeled with eqID 0 (which uniquely
represents the filter set R1), so we fill out the
entry 9 of the chunk x lookup table with 0.
Assume in the second phase, we would like to
combine the chunk x and the chunk y.
Basically, we need to construct a cross-product
table with m*n entries, where m is the number
of unique eqID s for the chunk x and n is the
number of unique eqID s for the chunk y. In
this example, the cross-product table has 16
entries. If this is not the last phase, again,
each table entry should be filled with an eqID
that r e p r e s e n t s a unique set of filters. In
this example, we simply fill out each entry
with the set of filters. During the packet

classification, if the chunk x table lookup
returns an eqID 2 and the chunk y table
lookup returns an eqID 3, then the entry index
of the cross product table should be 3+4*2=11.
We retrieve that entry and know that f i l te r R1
and R2 are matched.

3.2.5 Evaluation Results
We measure the space efficiency of an
algorithm us ing the average number of bytes
con- sumed per filter. We measure the
throughput of an algorithm using the memory
bandwidth consumed. The number of bytes
per memory access and the number of
dependent memory accesses per packet lookup.
The memory bandwidth co n su mp t io n is
evaluated in the average case. The overall data
s t ruc ture size is the product o f the memory
consumption per filter and the number of
filters. The overall throughput can be
calculated by dividing the total memory
bandwidth by the memory bandwidth
consumed per packet lookup.

(a) The storage requirement for the filter set

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-6, 2017

149

(b) The packet classification performance
Figure 3.7: Recursive Flow classification- Performance

In the above simulation, w e use the 4-phase
configuration. The lookup throughput gets
slightly worse when the filter sets become
larger. The memory efficiency does not
necessarily get worse when the filter sets
become larger, as in the case of ACL1 filter
sets. For the IPC1 filter sets with more than
5K filters and the FW1 filter sets with more
than 1K filters, the storage becomes
unacceptably large

3.3 Tuple Space Search - (TSS)
This technique introduced by G.Varghese [6],
makes use of the fact that the real databases
use only a small number of distinct field
lengths. Thus by mapping filers to tuples
(formed by combination of field lengths)
different tuple groups are formed. Finally
hashing is used to search for an entry in the
tuple group. The details of the algorithm is as
below.

3.3.1 Algorithm
The Tuple Space Search algorithm is a hash-
based algorithm. A tuple is defined as a vector
of k lengths, where k is the number of fields in
a filter. For example, in a 5-field filter set, the
tuple [7, 12, 8, 0, 16] means the length of the
source IP address prefix is 7, the length of the
destination IP address prefix is 12, the length
of the protocol prefix is 8 (an exact protocol
value), the length of the source port prefix is 0
(wildcard or”don’t care”), and the length of
the destination port prefix is 16 (an exact port
value). We can partition the filters in a filter
set to the different tuple groups. Since the
filters in a same tuple group have the same
tuple specification, they are mutual exclusive

and none of them overlaps with others in this
tuple group. Now we can perform the packet
classification across all the tuples to find the
best matched filter. If multiple tuple groups
report matches, we resolve the best matched
filter by comparing their priorities. The filters
in a tuple can be easily organized into a hash
table, where we use the tuple specification
to extract t h e proper number of bits from
each field as the hash key. Assume there is no
hash collision in the hash tables. One memory
access can determine if there is a matched filter
in a hash table so the lookup performance is
only determined b y the number of tuple
specifications. If the hash tables are properly
implemented, this algorithm gives an excellent
storage performance, which is linear to the
filter set size.

3.3.2 Algorithm Optimization
Tuple pruning s ince the number of tuples can
be very large, the lookup throughput per-
formance suffers. The tuple pruning technique
is developed to reduce the number of tuples
that h a s to be searched during the lookups.
The observation is for any given packet, the
number of unique prefixes matched on a
particular field is typically small. So if we
could perform the longest prefix match (LPM)
first on some field and figure out the lengths
of the matched prefixes, then only a subset of
tuple groups need to be searched. If LPMs are
performed on more additional fields, we can
filter out more tuples. Here is a tradeoff: more
LPMs mean larger storage and at the same
time, more single field lookups, which at some
point may even lower the overall lookup
throughput. In practice, the LPMs

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-6, 2017

150

performed on only the source IP address field
and the destination IP address field can
achieve the significant tuple reduction at the
reasonable extra cost.

3.3.5 Evaluation Results
We measure the space efficiency of an
algorithm us ing the average number of bytes
con- sumed per filter. We measure the
throughput of an algorithm using the memory
bandwidth consumed. The number of bytes
per memory access and the number of
dependent memory accesses per packet
lookup. The memory bandwidth
c o n s u m p t i o n i s evaluated i n both the

worst case and the average case. The overall
data structure size is the product of the
memory consumption per filter and the number
of filters. The overall throughput can be
calculated by dividing the total memory
bandwidth b y the memory bandwidth
c o n s u m e d per packet lookup.
The algorithm works better on the ACL1 and
the IPC1 filter sets. It also shows the best
storage and throughput scalability on these
two types of filter sets.

(a) The storage requirement for the filter set

(b) The packet classification performance

Figure 3.9: Tuple space search- Performance

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-6, 2017

151

3.4 Bloom filter based
A Bloom filter is essentially a bit-vector of
length m used to efficiently represent a set of
messages. Given a set of messages X with n
members, the Bloom filter is programmed as
follows. For each message x in X, k hash
functions are computed on x producing k
values each ranging from 1 to m. Each of these
values address a single bit in the m-bit vector,
hence each message x causes k bits in the m-
bit vector to be set to 1. Note that i f one of
the k hash values addresses a bit that i s already
set to 1, that b i t is not changed. Querying the
filter for set membership of a given message x
is similar to the programming process. Given
message x, k hash values are generated using
the same hash functions used to program the
filter. The bits in the m-bit long vector at the
locations corresponding to the k hash values are
checked. If at least one of the k bits is 0, then
the message is declared to be a non-member of
the set. If all the bits are found to be 1, then
the message is said to belong to the set with
a certain probability. If all the k bits are found
to be 1 and x is not a member of X, then it is
said to be a false positive.
Let k be the number of hash functions used,
m be the size of the bit vector and n be the
number of elements inserted then the false
positive probability f, is given by the Equation
3.1
f = (1 − (1 – 1/m) nk) k (3.1)

For large values of f the above equation
reduces to

The false positive probability a t this optimal
point is given by

It should be noted that i f the false positive
probability i s to fixed, the the size of the
filter m needs to scale linearly with the size
of the message set, n.

3.4.1 Basic Configuration
A basic configuration of our approach is shown
in Figure 3.10. We begin by grouping the
database o f prefixes into sets according to
prefix length. The system employs a set of
W counting Bloom filters where W is the
length of input addr esses , and associates
one filter with each unique prefix length. Each
filter is programmed” w i th the associated set
of prefixes according to the previously
described procedure. A hash table is also
constructed for each distinct prefix length.
Each hash table is initialized with the set of
corresponding prefixes, where each hash entry
is a [prefix, next hop] pair. While we assume
the result of a match is the next hop for the
packet, more elaborate information may be
associated with each prefix if so desired.

Figure 3.10: Basic Configuration of Longest prefix matching using Bloom filters [10]

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-6, 2017

152

A search proceeds as follows. The input IP
address is used to probe the set of W Bloom
filters in parallel. One-bit prefix of the address
is used to probe the filter associated with length
one prefixes, two-bit prefix of the address is
used to probe the filter associated with length
two prefixes, etc. Each filter simply indicates
match or no match. By examining the
outputs of all filters, we compose a vector of
potentially matching prefix lengths for the
given address, which we will refer to as the
match vector. Consider an IPv4 example where
the input address produces matches in the
Bloom filters associated with prefix lengths 8,
17, 23, and 30; the resulting match vector

would be f8, 17, 23,30g. The search proceeds
by probing the hash tables associated with the
prefix lengths represented in the match vector
in order of longest prefix to shortest. The
search continues until a match is found or the
vector is exhausted.
3.4.2 Optimization
To reduce the number of Bloom filters prefix
distribution of the IPv4 is used as a heuristic,
which shows a large numbers of 24-bit prefixes
and few prefixes of length less than 8-bits. An
average prefix distribution for all of the tables
we collected is shown in Figure 3.11

Figure 3.11: Average prefix length distribution for IPv4 BGP table [10]

Several variables affect system performance
and resource utilization as below
• N, the target amount of prefixes supported
by the system

• M, the total amount of embedded memory
available for Bloom filters

• Wdist., the number of unique prefix lengths
supported by the system
• mi, the size of each Bloom filter

• ki, the number of hash functions computed
in each Bloom filter
• ni, the number of prefixes stored in each
Bloom filter
Reducing the Number of Filters

The following methods are used to reduce the
number of Bloom filter
Direct lookup array: We observe from the
distribution statistics that se ts associated
with the first few prefix lengths are typically
empty and the first few non-empty sets hold
few prefixes as shown in Figure 2. This
suggests that utilizing a direct lookup array
for the first a prefix lengths is an efficient
way to represent shorter prefixes while
reducing the number of Bloom filters. For
every prefix length we represent in the direct
lookup array, the number of worst case hash
probes is reduced by one. Use of a direct
lookup array also reduces the amount of
embedded memory required to achieve optimal
average performance, as the number of prefixes

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-6, 2017

153

represented by Bloom filters is decreased. CPE
: We can reduce the number of remaining
Bloom filters by limiting the number of
distinct prefix lengths via further use of
Controlled Prefix Expansion (CPE). Clearly,
the appropriate choice of CPE strides depends
on the prefix distribution. As illustrated in
the average distribution of IPv4 prefixes
shown in Figure 2, we observe in all of our
sample databases that there is a significant
concentration of prefixes from lengths 21 to
24. On average, 75.2% of the N prefixes fall
in the range of 21 to 24. Likewise, we observe
in all of our sample databases that prefixes in
the 25 to 32 range are extremely sparse.
Specifically, 0.2% of the N prefixes fall in the
range 25 to 32.
Now the expression for the expected number
of hash probes per lookup becomes

3.4.3 Evaluation Results
We measure the space efficiency of an
algorithm us ing the average number of bytes
con- sumed per filter. We measure the
throughput of an algorithm using the memory
bandwidth consumed. The number of bytes
per memory access and the number of
dependent memory accesses per packet
lookup . The memory bandwidth
consumption is evaluated in both the worst
case and the average case. The overall data
s t r u c t u r e size is the product o f the
memory consumption per filter and the
number of filters. The overall throughput can
be calculated by dividing the total memory
bandwidth by the memory bandwidth
consumed per packet lookup. As can been seen
from the Figure 3.12 below as the size of the
Embedded memory is increased the the number
of hash probes required reduces to nearly 1.

Figure 3.12: Average number o f hash probes per lookup for various embedded memory sizes

Conclusion and Future Work
4.1 Conclusion
We see that the Modular packet classification
method by Woo [4] combines a heuristic tree
search for separating a large set of filters into
fixed size filter buckets, and another search
procedure for searching through fixed size filter
buckets and it is motivated by the practical
observation that a single search approach may
not be optimal for filter table of all sizes.

Recursive flow classification techniques
relies on the fact that real classifiers exhibit
a considerable amount of structure and
redundancy, and introduces for the idea of
using simple heuristic algorithms to solve the
multi-dimensional packet classification
problem. RFC deliberately attempts to exploit
this structure in the real classifiers and also
extends the idea of cross-production
t e c h n i q u e .

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-6, 2017

154

Tuple space search algori thm searches
through t he field length combinations found
in the filter set. It is motivated by the
observation that the number of tuples in real
databases is much smaller than the number of
filters. The algorithm works better o n the
ACL1 and the IPC1 filter sets. It also shows
the best storage and throughput scalability on
these two types of filter sets as shown in
Figures 3.9a and 3.9b.The tuple pruning
optimization has the significantly effect on
reducing the number of tuples that need to be
searched.

Here we have used Bloom filter based
approach only for the Longest Prefix Match
prob- lem, though it can be easily scaled to
packet classification of packet in multiple
dimensions as demonstrated by
Dharmapurikar [12]. For the LPM case we
find that the as the size of the Embedded
memory increases the throughput for finding a
match reduces to 1, which is one of the best
algorithmic approach in terms of throughput
as shown in the Figure 3.12.

Bloom filter based approach which uses
Hashing as its core approach, is a generic tech-
nique which can be applied to varied fields.
To use it with packet classification usually
we use it in conjunction with the existing
techniques, which greatly reduces the search
time and provides high efficiency. It can be
combined with the existing algorithmic
techniques and can easily be scaled to the
hardware as well [10]. Its usage with the
existing cross-production algorithm is well
demonstrated by the paper [12] which also
employs the algorithmic approach but it can be
easily scaled to the hardware level as well.

References

[1] David E. Taylor Survey & Taxonomy of Packet
Classification Techniques, ACM COM-
PUTING SURVEYS, May. 2004.

[2] Pankaj G u p t a , N i c k McKeown Algorithms
for Packet Classification, Proc IEEE Network
Special Issue, vol. 15, no. 2, march 2001.

[3] Florin B a b o e s c u , Sumeet S i n g h ,
G e o r g e V a r g h e s e P a c k e t
Classification for C o r e
Routers: Is there an alternative to CAMs? Proc
IEEE INFOCOM 2003.
[4] T. Woo, A modular approach to packet
classification: Algorithms and results, in INFO-
COM, 2000.
[5] Pankaj Gupta, Nick McKeown Packet
classification on multiple fields, Proc ACM
SIG- COMM ’99, Volume 29 Issue 4, Oct.
1999
[6] V. Srinivasan, S u b h a s h Sur i , and
George Varghese. Packet c las s i f i ca t ion
us ing tuple space search In Proc of ACM-
SIGCOMM, pages 135146, Cambridge,
Massachuse t t s , USA, September 1999.
[7] Hyesook Lim, So Yeon Kim Tuple Pruning
Using Bloom Filters for Packet Classification,
IEEE Micro archive, Volume 30 Issue 3, May
2010
[8] Marcel Waldvogel, George Varghese, Jon
Turner, and Bernhard Plattner. Scalable high
speed IP routing table lookups. In Proc of
ACM SIGCOMM, pages 2536, September
1997.
[9] George Varghese. Network Algorithmics:
An Interdisciplinary Approach to Designing
Fast Networked Devices, 2005.
[10] S. Dharmapurikar, P. Krishnamurthy, and
D.E. Taylor, Longest Prefix Matching Using
Bloom Filters, IEEE/ACM Trans. Networking,
vol. 14, no. 2, pp. 397-409, Apr. 2006.
[11] P. Gupta a n d N. McKeown, Packet
Classification using Hierarchical
I n t e l l i g e n t Cut- tings, Hot Interconnects
V I I , August 1999.

