

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-6, 2017

DOI: 10.21276/ijcesr.2017.4.6.6
28

ACTUAL-PERIOD FACE MASK AND TEMPARATURE

RECOGNITION USING DEEP LEARNING ON RASPBERRY PI
T RAVI CHANDRA, SRIKANTH MYDAPALLY, MUNAVATH VASANTHA RAO

4.N.MOUNIKA, 5.T.SANDEEP
Assistant Professor ,ECE,

Chandra.torthi@gmail.com

ABSTRACT
The corona virus COVID-19 pandemic is
causing a global health crisis. World Health
Organization (WHO) has stated that there are
two ways in which the spread of COVID 19
virus takes place that are respiratory droplets
and physical contact. So, an effective strategies
to restrain COVID-19 pandemic need high
attention. Regardless of discourse on medical
resources and diversities in masks, all countries
are mandating coverings over the nose and
mouth in public. To contribute towards
communal health, this paper aims to devise a
highly accurate and real-time technique that can
efficiently detect non-mask faces in public and
thus, enforcing to wear mask. A hybrid model
using deep and classical machine learning for
face mask detection will be presented. A face
mask detection dataset consists of with mask
and without mask images, we are going to use
OpenCV to do real-time face detection from a
live stream via Pi Camera Module. We will use
the dataset to build a COVID-19 face mask
detector with computer vision using Python,
OpenCV, and Tensor Flow and Keras. Our goal
is to identify whether the person on image/video
stream is wearing a face mask or not with the
help of computer vision and deep learning.The
creation of dataset, Training of model and
Detection of face mask is carried out on
Raspberry pi 4 to make it cost efficient.

KEYWORDS:
Dataset, Training set, Testing set, Face mask,
COVID-19, Camera module.

INTRODUCTION
 On the brink of new year 2020, the world
witnessed a new and deeply concerning

situation that only a few have anticipated to
have such serious impact on a world-wide scale.
What started out as a local outbreak in Wuhan,
China, quickly became an uncontrolled, world-
wide pandemic, main-ly due to slow
precautionary measures taken by local
governments and large underestimation of the
emerging threat in the form of the COVID-19
disease. Since then, however, preventive
measures have been implemented, in order to at
least slow down the already devastating impacts
– both social and economic, across the whole
world [1]. To this end, devices either for
treatment (e.g. ventilators) or for autom-ated,
proactive detection and monitoring of possible
virus carriers – have become essential tools of
trade in the fight against the pandemic and
further spread prevention. While reverse
transcription polymerase chain reaction or
antibody testing is still relatively time
consuming and costly, a simple evaluation of
the body temperature at various checkpoints
using medical-grade infrared sensors and
control of proper hygienic standards, coupled
with personalized, indoor location data, could
be a quick and effective way of identifying and
controlling the spread of the disease within
closed environments, such as workplaces or
factories.

REVIEW IN “YANG, SHUO AND LUO,
PING AND LOY, CHEN CHANGE AND
TANG, XIAOOU, IEEE CONFERENCE ON
COMPUTER VISION AND PATTERN
RECOGN-ITION (CVPR). WIDER FACE:
A FACE DETECTION BENCHMARK,
2016” Face detection is one of the most studied
topics in the computer vision community. Much
of the progresses have been made by the

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-6, 2017

DOI: 10.21276/ijcesr.2017.4.6.6
29

availability of face detection benchmark
datasets. We show that there is a gap between
current face detection performance and the real
world requirements. To facilitate future face
detection research, we introduce the WIDER
FACE dataset1, which is 10 times larger than
existing datasets. The dataset contains rich
annotations, including occlusions, poses, event
categories, and face bounding boxes IN “GE,
SHIMING AND LI, JIA AND YE, QITING
AND LUO, ZHAO, DETECTING MASKED
FACES IN THE WILD WITH LLE-CNNS,
THE IEEE CONFERENCE ON
COMPUTER VISION AND PATT-ERN
RECOGNITION (CVPR), 2017” Detecting
faces with occlusions is a challenging task due
to two main reasons: 1) the absence of large
datasets of masked faces, and 2) the absence of
facial cues from the masked regions. To address
these two issues, this paper first introduces a
dataset, denoted as MAFA, with 30, 811
Internet images and 35, 806 masked faces.
Faces in the dataset have various orientations
and occlusion degrees, while at least one part of
each face is occluded by mask. Based on this
dataset, we further propose LLE-CNNs for
masked face detection, which consist of three
major modules. The Proposal module first
combines two pre-trained CNNs to extract
candidate facial regions from the input image
and represent them with high dimensional
descriptors. After that, the Embedding module
is incorporated to turn such descriptors into a
similarity-based descriptor by using locally
linear embedding (LLE) algorithm and the
dictionaries trained on a large pool of
synthesized normal faces, masked faces and
non-faces. In this manner, many missing facial
cues can be largely recovered and the influences
of noisy cues introduced by diversified masks
can be greatly alleviated. Finally, the
Verification module is incorporated to identify
candidate facial regions and refine their
positions by jointly performing the
classification and regression tasks within a
unified CNN. Experimental results on the
MAFA dataset show that the proposed approach
remarkably outper -forms 6 state-of-the-arts by
at least 15.6%

PROPOSED SYSTEM:
A work in progress prototype of the proposed
automated temperature and hygienic

compliance testing device is shown in Fig. 1.
The device is mounted on a fixed stand before
the main entrance to the workplace or at various
checkpoints, e.g. entrances between halls.

BLOCK DIAGRAM

Raspberry Pi 4 Model B w/4GB RAM [2] –
core of the whole system, enables real-time
processing of all image and sensor data.

Raspberry Pi Camera Module v2 – acquisition
of image data (1640 x 1232 pixels) for detection
of the face mask and on-screen face navigation;
- MLX90614 infrared thermometer in TO-39
package design, with medical-grade accuracy
(±0.1 ℃) in human body temperature range [3];
- VL53L0X Time-of-Flight Distance Sensor for
presence detection [4];
 - 7” capacitive Raspberry Pi LCD module with
800x480px resolution;
The device prototype is connected either via
LAN or WiFi connection to a local area
network in order to write necessary information
to the SQL database server, which stores
acquired measurement data and enables
correlation with positional data from the
independently-operated real-time locating
system (RTLS) database. The same LAN subnet
is also used to operate the opening of locks once
safe conditions are met by sending specially
formulated HTTP post requests to specific door
lock nodes with self-integrated Arduino relay
devices. The independent RTLS system, used
primarily for other monitoring purposes (e.g.
productivity assessment or optimization of work
processes), is based on commercial devices
available from Sewio and utilize ultra-wideband
(UWB) technology which enables very precise

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-6, 2017

DOI: 10.21276/ijcesr.2017.4.6.6
30

localization – up to several centimeters in
optimal conditions. Information is processed in
real-time using RTLS studio and positional data
is stored in a MySQL database. Anchors are
placed throughout the building and personal
tags, each assigned to specific person, are
tracked and recorded in real time – and can also
be visualized and further processed. More
information about the commercial RTLS system
from Sewio can be found in [5]

DEEP LEARNING
Deep learning is based on the branch of
machine learning, which is a subset of artificial
intelligence. Since neural networks imitate the
human brain and so deep learning will do. In
deep learning, nothing is programmed
explicitly. Basically, it is a machine learning
class that makes use of numerous nonlinear
processing units so as to perform feature
extraction as well as transformation. The output
from each preceding layer is taken as input by
each one of the successive layers.
Deep learning models are capable enough to
focus on the accurate features themselves by
requiring a little guidance from the programmer
and are very helpful in solving out the problem
of dimensionality. Deep learning algorithms are
used, especially when we have a huge no of
inputs and outputs.
Since deep learning has been evolved by the
machine learning, which itself is a subset of
artificial intelligence and as the idea behind the
artificial intelligence is to mimic the human
behavior, so same is "the idea of deep learning
to build such algorithm that can mimic the
brain".
Deep learning is implemented with the help of
Neural Networks, and the idea behind the
motivation of Neural Network is the biological
neurons, which is nothing but a brain cell.
Deep learning is a collection of statistical
techniques of machine learning for learning
feature hierarchies that are actually based on
artificial neural networks.
So basically, deep learning is implemented by
the help of deep networks, which are nothing
but neural networks with multiple hidden
layers.

Tensorflow and LibrarieS Used:

OpenCV
OpenCV (Open Source Computer Vision
Library) is an open source computer vision and
machine learning software library. OpenCV was
built to provide a common infrastructure for
computer vision applications and to accelerate
the use of machine perception in the
commercial products. Being a BSD-licensed
product, OpenCV makes it easy for businesses
to utilize and modify the code.
The library has more than 2500 optimized
algorithms, which includes a comprehensive set
of both classic and state-ofthe-art computer
vision and machine learning algorithms. These
algorithms can be used to detect and recognize
faces, identify objects, classify human actions in
videos, track camera movements, track moving
objects, extract 3D models of objects, produce
3D point clouds from stereo cameras, stitch
images together to produce a high resolution
image of an entire scene, find similar images
from an image database, remove red eyes from
images taken using flash, follow eye
movements, recognize scenery and establish
markers to overlay it with augmented reality,
etc. OpenCV has more than 47 thousand people
of user community and estimated number of
downloads exceeding 18 million. The library is
used extensively in companies, research groups
and by governmental bodies. Along with well-
established companies like Google, Yahoo,
Microsoft, Intel, IBM, Sony, Honda, Toyota
that employ the library, there are many startups
such as Applied Minds, Video Surf, and Zeitera,
that make extensive use of OpenCV. OpenCV’s
deployed uses span the range from stitching
street view images together, detecting intrusions
in survey-llance video in Israel, monitoring
mine equipment in China, helping robots
navigate and pick up objects atWillow Garage,
detection of swimming pool drowning accidents
in Europe, running interactive art in Spain and
New York, checking runways for debris in
Turkey, inspecting labels on products in
factories around the world on to rapid face
detection in Japan.
It has C++, Python, Java and MATLAB
interfaces and supports Windows, Linux,
Android and Mac OS. OpenCV leans mostly
towards real-time vision applications and takes
advantage of MMX and SSE instructions when
available. A full-featured CUDA and OpenCL

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-6, 2017

DOI: 10.21276/ijcesr.2017.4.6.6
31

interfaces are being actively developed right
now. There are over 500 algorithms and about
10 times as many functions that compose or
support those algorithms. OpenCV is written
natively in C++ and has a template interface
that works seamlessly with STL containers

TENSORFLOW
TensorFlow is an open-source software library.
Tensor Flow was originally deve-lopped by
researchers and engineers working on the
Google Brain Team within Google’s Machine
Intelligence research organization for the
purposes of conducting machine learning and
deep neural networks research, but the system is
general enough to be applicable in a wide
variety of other domains as well!
Let us first try to understand what the word
TensorFlow actually mean!
TensorFlow is basically a software library for
numerical computation using data flow graphs
where:
• nodes in the graph represent mathematical
operations.
• edges in the graph represent the
multidimensional data arrays (called tensors)
communicated between them. (Please note that
tensor is the central unit of data in TensorFlow).
Consider the diagram given below:

Here, add is a node which represents addition
operation. a and b are input tensors and c is the
resultant
This flexible architecture allows you to deploy
computation to one or more CPUs or GPUs in a
desktop, server, or mobile device with a single
API!

TensorFlow APIs

TensorFlow provides multiple APIs
(Application Programming Interfaces). These
can be classified into 2 major categories:

1. Low level API:
a. complete programming control

b. recommended for machine learning

researchers

c. provides fine levels of control over
the models

d. TensorFlow Core is the low level API

of TensorFlow.

2. High level API:
a. built on top of TensorFlow Core

b. easier to learn and use

than TensorFlow Core

c. make repetitive tasks easier and more
consistent between different users

d. tf.contrib.learn is an example of a
high level API.

KERAS
Keras is an API designed for human beings, not
machines. Keras follows best practices for
reducing cognitive load: it offers consistent &
simple APIs, it minimizes the number of user
actions required for common use cases, and it
provides clear & actionable error messages. It
also has extensive documentation and developer
guides. Keras contains numerous
implementations of commonly used
neuralnetwork building blocks such as layers,
objectives, active-tion functions, optimizers,
and a host of tools to make working with image
and text data easier to simplify the coding
necessary for writing deep neural network code.
The code is hosted on GitHub, and community
support forums include the GitHub issues page,
and a Slack channel. Keras is a minimalist
Python library for deep learning that can run on
top of Theano or Tensor Flow. It was developed
to make implementing deep learning models as
fast and easy as possible for research and
development. It runs on Python 2.7 or 3.5 and
can seamlessly execute on GPUs and CPUs
given the underlying frameworks. It is released
under the permissive MIT license.

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-6, 2017

DOI: 10.21276/ijcesr.2017.4.6.6
32

Keras was developed and maintained by
François Chollet, a Google engineer using four
guiding principles:

• Modularity: A model can be understood as a
sequence or a graph alone. All the concerns of a
deep learning model are discrete components
that can be combined in arbitrary ways.

• Minimalism: The library provides just enough
to achieve an outcome, no frills and maximizing
readability.

• Extensibility: New components are
intentionally easy to add and use within the
framework, intended for researchers to trial and
explore new ideas.

• Python: No separate model files with custom
file formats. Everything is native Python. Keras
is designed for minimalism and modularity
allowing you to very quickly define deep
learning models and run them on top of a
Theano or TensorFlow backend

MobileNetV2
MobileNetV2 builds upon the ideas from
MobileNetV1, using depth wise separable
convolution as efficient building blocks.
However, V2 introduces two new features to the
architecture: 1) Linear bottlenecks between the
layers, and 2) Shortcut connections between the
bottlenecks. The basic structure is shown below
channels. MobileNetV2 was chosen as an
algorithm to build a model that could be
deployed on a mobile device. A customized
fully connected layer which contains four
sequential layers on top of the MobileNetV2
model was developed. The layers are

1 Average Pooling layer with 7×7 weights.

2 Linear layer with ReLu activation
function.

3 Dropout Layer.

4 Linear layer with Softmax activation

function with the result of 2 values
Dependencies Installation on Raspberry pi
for Face Mask Detection
Setting up Raspberry pi

• OpenCV is an open source software
library for processing real-time image

and video with machine learning
capabilities.

• Imutils is a series of convenience
functions to expedite OpenCV
computing on the Raspberry Pi.

• Tensorflow is an open source machine
learning platform.

FOUR PHASE PROCESS

1. Data Gathering
2. Training the Model
3. Face Mask Detection
4. Practical Implementation

Data Gathering

In the first phase of the project, we are going to
create a Dataset to store the faces with masks
and without masks.

Training the Model
After we have collected the face samples, we
can pass them on to the neural network and start
the training process to automatically detect
whether a person is wearing a mask or not. Start
the training process importing the packages
and Initialize the initial learning rate, number
of epochs to train for and batch size. Load the
Image sets that are saved and initializing the
data and label lists. Now Loop over the
imagePaths and load all the images to python
script so that we can begin the training. Pre-
processing steps include resizing the images to
224×224 pixels, converting them to array
format, and using the preprocess input
convenience function to scale the pixel
intensities in the input image to the range [-1,
1]. After that perform the one-hot encoding on
the labels. One hot encoding is used to represent
categorical variables as binary vectors. Then
split the data into training and testing sets. 80%
of the data will be used for training and the
remaining 20% will be used for testing. Load
the MobileNet model with pre-trained
ImageNet weights, leaving off the head of the
network. construct the head of the model that
will be placed on top of the base
model.The AveragePooling2D layer calculates
the average output of each feature map in the
previous layer. In order to prevent over-

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-6, 2017

DOI: 10.21276/ijcesr.2017.4.6.6
33

feeding, we have a 50% dropout rate. After
constructing the head of the model, compile the
model with the Adam optimizer. After this, start
training the model and once training is finished
save the model

Face Mask Detection
In this phase we will use the trainer data to
classify each face as with mask or without mask
from the live video feed. So, open up previously
programmed file in the mask detector directory.
Import the required packages grab the
dimensions of the frame and then construct a
blob from it. Then pass the blob through the
network and obtain the face detections using
the faceNet model. Then loop over the face
detections and extract the confidence associated
with the detection. Filter out the detections
whose confidence is less than 0.5. Compute the
x, y-coordinates of the bounding box for the
objects. Convert the image to RGB from BGR
and then resize it to 224x224, and preprocess it.
Then loop over the frames from the video and
resize them. Detect the faces in the frame and
determine if they are wearing a face mask or
not, then loop over the predictions and compare
the predictions for both the labels and display
the label and bounding box rectangle on the
output frame.

Testing the Face Mask Detection
To see real-time COVID-19 face mask detector
in action, connect Raspberry Pi Camera module
with Pi.
Launch the programmed file for detecting mask
. After a few seconds, you should see your
camera view pop-up window. If the mask is
detected, you will see a green box with the label
‘Mask Detected’ and a red box with the label
‘No Mask Detected’ if no mask detected

Practical Implementation

Now a practical implementation is carried out
for detecting if a person is wearing face mask
or not using camera module and his/her
temperature is checked subsequently to check if
that person is having fever or not using
temperature sensor. When a person approaches
near the device the IR sensor module activates

making camera module to detect the face mask,
when the person has worn the mask then the
temperature checks the temperature if
everything is good then Gates/door open. If
either the person is detected of not wearing
mask or if the person is having fever then
buzzer goes on.
Hardware components:

1. Raspberry Pi 4 B (2GB)
2. Temperature sensor - MLX90614
3. IR sensor module
4. Servo motor
5. Buzzer
6. LEDs

Connections
 Wire the LEDs and buzzer as shown in the
diagram below. (Always add a resistor between
the positive terminal of your LED and your
GPIO pin on your Pi.).

• Red LED will be controlled by GPIO14.
• Green LED will be controlled by GPIO15.
• Buzzer will be activated by GPIO 21
• Connect GND to GND on your Pi

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-6, 2017

DOI: 10.21276/ijcesr.2017.4.6.6
34

• Connect the serial clock and serial data of
Temperature sensor to GPIO 2 serial data
and GPIO 3 serial clock

• Connect 5 v and ground of temperature
sensor to Raspberry pi 5v and Ground pins.

• IR sensor Signal pin is connected to GPIO
22 and Vcc,Ground pins to 5v and Ground
pins of raspberry pi board

• Servo motor signl pin is connected to GPIO
27 and Vcc,Gnd to 5v and Ground pins of
raspberry pi board.

RESULTS
Result of the project is that, when a person
without wear a mask is detected then a red box
appears on the face in screen as well Red led
turns on

when a person with wear a mask is detected
then a green box appears on the face in screen
as well Green led turns on

CONCLUSION:
Given the current dire epidemiological situation
and enormous socio-economic impacts, devices
that can either help identify or prevent further
spread of COVID-19 disease are much sought
for. Here the system implementation is such
that when a person is wearing face mask or not
using camera module and his/her temperature is
checked subsequently to check if that person is
having fever or not using temperature sensor.
When a person approaches near the device the
IR sensor module activates making camera
module to detect the face mask, when the
person has worn the mask then the temperature
checks the temperature if everything is good
then Gates/door open. If either the person is
detected of not wearing mask or if the person is
having fever then buzzer goes on. The proposed
device prototype described in this paper can
help in two ways – via automatic evaluation of
bodily temperature at various checkpoints and
by enforcing proper hygiene standards related to
face masks.

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-6, 2017

DOI: 10.21276/ijcesr.2017.4.6.6
35

REFERENCES
[1] “World Health Organization Coronavirus
disease (COVID-2019) situation reports
website”, available online [10.4.2020] at
https://www.who.int/emergencies/diseases/nove
l-coronavirus2019/situation-reports

 [2] “Raspberry Pi 4 Model B website”,
available online [20.3.2020] at
https://www.raspberrypi.org/products/raspberry
-pi-4-model-b/

[3] “Datasheet for Melexis MLX90614”,
available online [20.3.2020] at
https://www.melexis.com/-
/media/files/documents/datasheets/mlx90614-
datasheet-melexis.pdf

[4] “Datasheet for - VL53L0X”, available
online [20.3.2020] at
https://www.st.com/resource/en/datasheet/vl53l
0x.pdf

 [5] “SEWIO UWB Real-Time Location System
(RTLS)”, available online [5.4.2020] at
https://www.sewio.net/real-time-location-
system-rtls-onuwb/

[6] “OpenCV packages for Python”, available
online [10.4.2020] at
https://pypi.org/project/opencv-python/

[7] “Kivy – Cross-platform Python Framework
for NUI development”, available online
[10.4.2020] at https://kivy.org

[8] C. Sagonas, E. Antonakos, G,
Tzimiropoulos, S. Zafeiriou, M. Pantic. 300
faces In-the-wild challenge: Database and
results. Image and Vision Computing
(IMAVIS), Special Issue on Facial Landmark
Localisation "In-The-Wild". 2016.

 [9] Yang, Shuo and Luo, Ping and Loy, Chen
Change and Tang, Xiaoou, IEEE Conference on
Computer Vision and Pattern Recognition
(CVPR). WIDER FACE: A Face Detection
Benchmark, 2016.

[10] Ge, Shiming and Li, Jia and Ye, Qiting and
Luo, Zhao, Detecting Masked Faces in the Wild
With LLE-CNNs, The IEEE Conference on

Computer Vision and Pattern Recognition
(CVPR), 2017.

[11] “ROCK Pi N10 website”, available online
[28.5.2020] at
https://wiki.radxa.com/RockpiN10

[12] “Jetson Nano Developer Kit website”,
available online [28.5.2020] at
https://developer.nvidia.com/embedded/jetson-
nano-developer-kit.

https://www.who.int/emergencies/diseases/novel-coronavirus2019/situation-reports
https://www.who.int/emergencies/diseases/novel-coronavirus2019/situation-reports
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/
https://www.raspberrypi.org/products/raspberry-pi-4-model-b/
https://www.st.com/resource/en/datasheet/vl53l0x.pdf
https://www.st.com/resource/en/datasheet/vl53l0x.pdf
https://www.sewio.net/real-time-location-system-rtls-onuwb/
https://www.sewio.net/real-time-location-system-rtls-onuwb/
https://pypi.org/project/opencv-python/
https://kivy.org/
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit

	/
	ACTUAL-PERIOD FACE MASK AND TEMPARATURE RECOGNITION USING DEEP LEARNING ON RASPBERRY PI
	T RAVI CHANDRA, SRIKANTH MYDAPALLY, MUNAVATH VASANTHA RAO
	4.N.MOUNIKA, 5.T.SANDEEP
	Assistant Professor ,ECE,
	Chandra.torthi@gmail.com
	The corona virus COVID-19 pandemic is causing a global health crisis. World Health Organization (WHO) has stated that there are two ways in which the spread of COVID 19 virus takes place that are respiratory droplets and physical contact. So, an effec...
	KEYWORDS:
	Dataset, Training set, Testing set, Face mask, COVID-19, Camera module.
	INTRODUCTION
	On the brink of new year 2020, the world witnessed a new and deeply concerning situation that only a few have anticipated to have such serious impact on a world-wide scale. What started out as a local outbreak in Wuhan, China, quickly became an uncon...
	REVIEW IN “YANG, SHUO AND LUO, PING AND LOY, CHEN CHANGE AND TANG, XIAOOU, IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGN-ITION (CVPR). WIDER FACE: A FACE DETECTION BENCHMARK, 2016” Face detection is one of the most studied topics in the comput...
	PROPOSED SYSTEM:
	A work in progress prototype of the proposed automated temperature and hygienic compliance testing device is shown in Fig. 1. The device is mounted on a fixed stand before the main entrance to the workplace or at various checkpoints, e.g. entrances be...
	Raspberry Pi 4 Model B w/4GB RAM [2] – core of the whole system, enables real-time processing of all image and sensor data.
	- MLX90614 infrared thermometer in TO-39 package design, with medical-grade accuracy (±0.1 ℃) in human body temperature range [3];
	OpenCV
	TensorFlow provides multiple APIs (Application Programming Interfaces). These can be classified into 2 major categories:
	High level API:
	MobileNetV2
	MobileNetV2 builds upon the ideas from MobileNetV1, using depth wise separable convolution as efficient building blocks. However, V2 introduces two new features to the architecture: 1) Linear bottlenecks between the layers, and 2) Shortcut connections...
	Linear layer with Softmax activation function with the result of 2 values
	Setting up Raspberry pi
	OpenCV is an open source software library for processing real-time image and video with machine learning capabilities.
	Imutils is a series of convenience functions to expedite OpenCV computing on the Raspberry Pi.
	Tensorflow is an open source machine learning platform.
	Data Gathering
	Training the Model
	Face Mask Detection
	Practical Implementation
	Data Gathering

	1TTraining the Model
	After we have collected the face samples, we can pass them on to the neural network and start the training process to automatically detect whether a person is wearing a mask or not. Start the training process importing the packages and Initialize ...
	Face Mask Detection
	In this phase we will use the trainer data to classify each face as with mask or without mask from the live video feed. So, open up previously programmed file in the mask detector directory. Import the required packages grab the dimensions of the fra...
	1TTesting the Face Mask Detection
	To see real-time COVID-19 face mask detector in action, connect Raspberry Pi Camera module with Pi.
	Launch the programmed file for detecting mask . After a few seconds, you should see your camera view pop-up window. If the mask is detected, you will see a green box with the label ‘Mask Detected’ and a red box with the label ‘No Mask Detected’ if no ...
	Now a practical implementation is carried out for detecting if a person is wearing face mask or not using camera module and his/her temperature is checked subsequently to check if that person is having fever or not using temperature sensor. When a...
	Connections
	Wire the LEDs and buzzer as shown in the diagram below. (Always add a resistor between the positive terminal of your LED and your GPIO pin on your Pi.).
	/
	Red LED will be controlled by GPIO14.
	Green LED will be controlled by GPIO15.
	Buzzer will be activated by GPIO 21
	Connect GND to GND on your Pi
	Connect the serial clock and serial data of Temperature sensor to GPIO 2 serial data and GPIO 3 serial clock
	Connect 5 v and ground of temperature sensor to Raspberry pi 5v and Ground pins.
	IR sensor Signal pin is connected to GPIO 22 and Vcc,Ground pins to 5v and Ground pins of raspberry pi board
	Servo motor signl pin is connected to GPIO 27 and Vcc,Gnd to 5v and Ground pins of raspberry pi board.
	Given the current dire epidemiological situation and enormous socio-economic impacts, devices that can either help identify or prevent further spread of COVID-19 disease are much sought for. Here the system implementation is such that when a person i...

