

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-9, 2017

38

SMART STOCK MARKET ANALYSIS USING NODE.JS AND
AJAX

1K. Anitha Kumari, 2N. Dharun Kumar, 3N. Rajeswari, 4Maria Ceceli Brittinna,
 5R. Shanmuga Priya

1Asst. Professor, 2,3,4,5UG Scholars, Dept. of IT,
PSG College Of Technology, Coimbatore, India

Abstract
The virtual kind of stock exchange
electronically composes a network of
computers involves traders to make trade at
ease. One of the highest challenges in stock
exchange market is adverse selection; i.e.,
asymmetric information transfer among
users. Therefore, in this paper, we intend to
use Node.js in our application to make it fast
and scalable. In addition, with the facilitation
of Node.js, server workload is reduced to a
greater possible extent as it is a single
threaded scripting language. Use of such
scripting is very useful in data intensive and
multiple client applications such as share
market bidding. The notification mechanism
(callback) of events using Node.js makes the
server not to wait for any operation at any
point of time. The resultant values of the
application retrieved using Node.js is
compared with the multithreaded
application.
Keywords: Smart stock market analysis,
Node.js, AJAX, Asynchronous thread

I. INTRODUCTION

People today are technology favourable, expects
a website to be loaded in less than 2 seconds
and they abandon the sites that take more than 3
seconds [1].In this inevitable situation, web
applications require an efficient access without
degradation in performance. Smart Stock
Market Analysis (SSMA) is a website that
keeps the user updated with the current trends in
the stock market. Users are notified with the
current updates, and privilege is given to view
various information like Bombay Stock

Exchange (BSE) and National Stock Exchange
(NSE), charts like Sensex and Nifty.
Asynchronous JavaScript and XML (AJAX)
provides a better user interface simplifying the
task of transferring information from the client
to the server, helpful in creating asynchronous
web applications [2]. Node.js provides faster
access to the website in the client side and
reduces the server load on the server side [15].
So, the major focus of the application being
developed is on the business class people who
participate in stock exchange and related
processes. The business class people rely on to
the web applications for the correctness of
information and they require smoothness of
accession pertaining to higher degree
continuous performance [3]. In this paper,
node’s performance is boosted with a stock
market application that is compared in terms of
speed, reliability and smoothness of access with
an application running on Apache web server.

II. RELATED WORK

Beginning from the day of its original release,
Node.js has undergone a series of development
iterations which made it possible to be used in a
wide variety of applications and projects. Right
from startups in the SanFrancisco Bay area to
Techgiants like Paypal, LinkedIn, Uber,
NewYorkTimes, NetFlix, Ebay, etc, Node.js has
travelled a long journey. Some of the related
works Node.js includes LinkedIn’s transition
from Ruby on Rails to the faster ever
developing technology Node.js [18]. They had
to do that because maintaining a long list of
data and scrolling it would be hard with a native
HTML (HyperText Markup Language)
application. By this, they went from running 15

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-9, 2017

39

servers with 15 instances (virtual servers) on
each physical machine to just 4 instances that
would handle double the traffic.

III. MATERIALS AND METHODS

Node.js is a very powerful JavaScript-based
framework/platform built on Google Chrome's
JavaScript V8 Engine developed by Ryan Dahl
in 2009. It is one of the upcoming technologies
used to develop fast and scalable applications.
Node.js' package ecosystem “npm” is the
largest ecosystem of open source libraries in the
world [6]. Node.js tries to do asynchronous
processing on a single thread to provide more
performance and scalability for applications that
are supposed to handle too much web traffic
[5]. The various features that make Node.js
advantageous is that, it is single threaded,
asynchronous, event driven, non blocking I/O
and highly scalable [12]. Asynchronous and
event driven,by the terms briefly explains that
node based server never waits for an
Application Program Interface (API) to return
data; it uses a call and notify mechanism of
events that helps the server in getting its
previous API’s response [13]. Node uses a
single threaded program and that handles
multiple server requests. Node.js is open source,
completely free, and used by thousands of
developers around the world [4]. It is used to
develop I/O intensive web applications like
video streaming sites, single-page applications,
and other web applications [11]. A detailed
working of Node.js is shown in figure 1.

 The core functionality and the full
potential of Node.js can be efficiently utilised
only when there is more and more traffic in the
websites. This kind of scenarios exists only in
certain situations. One such scenario is a Stock
market website which faces multiple user
requests during bidding.

Figure1: Asynchronous working of Node.js
server

Many investors who have inadequate
knowledge about the share market can gain
knowledge about investing wisely in shares
through simple and that is a perfect question
which also answers the question “Why we have
chosen stock market analysis with Node.js?”
With multiple users accessing the stock market
website simultaneously during auction, bidding,
etc; since the traffic flowing through the website
is high and the server load may increase which
increases the probability of crashing of server
[7]. This may be disappointing to potential users
of share market, which may also affect the
reliability of that stock market website.
 This kind of situation can be very well
handled by the Node.js backed stock market
website which handles users request efficiently
in such a way that the probability of server
crashing is reduced to a greater extent [9].

IV. NODE.JS IN STOCK MARKET

 Node.js plays a major role in the Smart
Stock Market Analysis (SSMA) website alias
Stockie Smart. Node.js is a JavaScript runtime

File System

Computation

Database

Thread Pool
(Intensive Operation)

Register Call
b k

Operation Complete

Trigger Call

Requests

 Event Loop
(Single Thread)

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-9, 2017

40

that uses the v8 engine developed by Google for
use in chrome [14]. V8 compiles and executes
JavaScript at lightning speeds mainly due to the
fact that v8 compiles JavaScript into native
machine code [20]. Hence, our website works at
a faster rate. The users don’t have to wait for a
long time and can get the information within a
glimpse.
 In addition to lightning fast JavaScript
execution, the real magic behind Node.js is the
event loop. The event loop is a single thread
that performs all I/O operations asynchronously.
When a Node application needs to perform an
I/O operation, it sends an asynchronous task to
the event loop, along with a callback function,
and then continues to execute the rest of its
program [20]. Node allows us to build fast,
scalable network applications capable of
handling huge number of simultaneous
connections with high throughput. The Smart
stock market analysis website includes various
users. Many users access the website at the
same time and the results have to be displayed
constantly without any delay. Thus, huge user
requests are handled efficiently by Node.js.
 The watchlist maintained in the website
is constanly updated with real time information
of Nifty, Sensex, BSE and NSE charts. These

details have to be updated with respect to time
and the users have to be updated at a lightning
speed. We use Node.js in our website that helps
us achieve the better result with high speed.

V. EFFICIENCY AND PERFORMANCE

Since JavaScript is used at the client and
server side, the translational overhead is
reduced, which reduces the response time to a
greater extent [10]. To add on, Node.js uses a
single threaded event loop model which
performs all the tasks with a single thread that
eventually reduces the server load [19]. Thus,
efficiency and performance of Node.js powered
stock market website is at its peak. The Table 1
demonstrates a simple program in Node.js and
PHP/Apache. The advantage of Node.js over
PHP/Apache is that it does not require an
Apache server to run and it can run on any port
of its own (in this case port is 8080).

The Table 1 describes an instance of
explaining the efficiency and performance of
Node.js versus PHP/ pache. This instance
explains the connectivity of Node.js with
MongoDB and PHP/Apache with MySQLi.
Both the code does connection with their
respective databases.

TABLE 1.CODE FOR NODE.JS Vs PHP

Testing code using Node.js server
var express = require('express');
var path = require('path');
var MongoClient =
require('mongodb').MongoClient;
var assert = require('assert');
var mongoose = require('mongoose');
console.log("Database Connectivity:");
var url = 'mongodb://localhost:27017/mydb';
MongoClient.connect(url, function (err, db) {
 if (err) {
 console.log('Unable to connect to the
mongoDB server. Error:', err);
 } else {

 console.log('Connection established
to', url);
 var collection =
db.collection('userDetails');
 collection.find({name:
'priya'}).toArray(function (err, result) {
 if (err) {
 console.log(err);

Testing code using PHP file
<?php
$servername = "localhost";
$username = "stockieDatabase";
$password = "sh@rEm@rkeT";
$dbname = "StockDatabase";
$connect = new mysqli($servername,
 $username, $password, $dbname);
if($connect->connect_error){
 die("Connection failed: ". $conn-
>connect_error);
}
$result = $conn->query("SELECT id,
 firstname, lastname FROM Users");
if($result->num_rows >0) {
 while($row = $result->fetch_assoc()){
 echo "id: ". $row["id"]." - Name: ".
$row["firstname"]."

". $row["lastname"]."
";
 }

}else{
 echo "0 results";

}

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-9, 2017

41

 } else if (result.length) {
 console.log('Found:', result);
 } else {
 console.log('No document(s)
found with defined "find" criteria!');
 }
 db.close();
 });
 }

 });

$conn->close();
?>

INSTANCE 1 :(Node.js and MongoDB):To
connect with MongoDB,an inbuilt package
called “mongodb” is used,which simplifies the
connection complexity with MongoDB. Then,
the port on which the MongoDB runs is
specified to imply where to find the database
for Node.js

INSTANCE 2(PHP/Apache and MySQLi): At
first, the required details such as username,
password, the server and the database name are
stored and then passed to the MySQLi
database. On successful connection and
authentication, the details of a list of users are
retrieved and displayed.

TABLE 2. COMPARISON BETWEEN NODE.JS & APACHE

Node.js efficiency
Concurrency Level: 1000
Time taken for tests: 21.162 seconds
Complete requests: 100000
Failed requests: 147
(Connect: 0, Receive: 49, Length: 49,
Exceptions:49)
Total transferred: 8096031 bytes
Requests per second: 4725.43 [#/sec] (mean)
Time per request: 211.621 [ms] (mean)
Transfer rate: 373.61 [Kbytes/sec] received
Connection Times (ms)
min mean[+/-sd] median max
Connect: 0 135 821.9 0 9003
Processing: 1 40 468.5 25 21003
Waiting: 1 30 64.1 25 12505
Total: 2 175 949.1 26 21003
Percentage of the requests served within a
certain
time (ms)
50% 26
66% 33
75% 36
80% 39
90% 55
95% 94
98% 3030
99% 3090

Apache efficiency
Concurrency Level: 1000
Time taken for tests: 121.451 seconds
Complete requests: 100000
Failed requests: 879
(Connect: 0, Receive: 156, Length: 567,
Exceptions: 156)
Total transferred: 29338635 bytes
Requests per second: 823.38 [#/sec] (mean)
Time per request: 1214.510 [ms] (mean)
Transfer rate: 235.91 [Kbytes/sec] received
Connection Times (ms)
min mean[+/-sd] median max
Connect: 0 38 321.8 20 9032
Processing: 0 565 5631.0 51 121380
Waiting: 0 262 2324.1 41 52056
Total: 29 603 5641.7 73 121431
Percentage of the requests served within a
certain
time (ms)
50% 73
66% 78
75% 82
80% 83
90% 89
95% 105
98% 4251
99% 13205

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-9, 2017

42

The Table 2 showcases the performance
comparison between Node.js and PHP/Apache
during the phase of execution. The concurrency
level which indcates the concurrency at which
Node.js and PHP/Apache operates on. As given,
for a 1, 00,000 requests from the clients which
also comprise 20,000 concurrent requests, the
time taken by Node.js is absolutely very
minimal when compared with Apache/PHP. The
rate of failure is also considerably reduced in
the case of the former. The time taken to
complete the requests is about 5 times smaller
in Node.js when compared with PHP/Apache.
The transfer rate is maximum in Node.js while
minimizing the total transferred bytes. Thus,
Node.js has higher efficiency and performance
when compared with other server side scripting
languages [8].
CPU and memory usage is very clearly
portrayed in figure 2 and 3.

Figure 2: Node.js Vs Apache/PHP CPU
Usage

As portrayed in the figure 2, Node.js uses less
CPU cycles, reducing the CPU usage by means
of a single threaded event loop mechanism. The
single threaded event model is possible only
because of a concept called “callback”, in which
the single thread does not wait for an operation
to be completed. It fires the respective event
and then registering a callback [16]. Once it has
completed, the thread will be called and
processing is done. Using a single thread
definitely reduces the CPU usage, thereby
advantageous over multi-threaded server-side
scripting languages.

Figure 3: Node.js Vs Apache/PHP Memory
Usage

The figure 3 indicates that the memory usage of
Node.js is slightly higher than PHP/Apache.
This is due to the fact that Node.js uses event
loop mechanism and once an event is
completed, it has to process it. This is possible
only when it maintains a stack of all the
functions it has started; so that it can be
processed once it is completed, which makes
use of memory. But, this is not a major
drawback as the real time servers will have
humongous amount of memory available [17].

VI. CONCLUSION

Numerous performance tests and efficiency
tests were conducted on a smart application in
this paper to clearly precribe that Node.js is the
most powerful event loop model that performs
very efficiently than any other server side
scripting languages. Hence, this new technology
with no doubt due to its widespread adoption,
positively impacts society.

 REFERENCES
 [1] Santhosh, a Tech talker on upcoming
technologies. (2014). Retrieved from
http://santhoshthepro.in.
[2] Edmond Woychowsky,”Creating Web
Pages with Asynchronous JavaScript and
XML”, 2007.
[3] Scientific Journal Impact Factor (SJIF):
1.711 International Journal of Modern Trends in
Engineering and Research.
[4] Karthik. (2016). Retrieved from
www.tutorialspoint.com/node.js/tutorials.
[5] Domecraft. (2016, November 12). Retrieved
from https://developer.mozilla.org/en-
US/docs/Web/JavaScript.

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-9, 2017

43

[6] Austin. (2016, November 29). Retrieved
from https://nodejs.org/en.
[7] Node.js: Using JavaScript to Build High-
Performance Network Programs , Stefan Tilkov
-innoQ, Steve Vinoski – Verivue, IEEE
INTERNET COMPUTING,pg:80.
[8] Herb Sutter, A Fundamental Turn Toward
Concurrency in Software, March 01, 2005.
[9] Gregor Hohpe, Programming Without a Call
Stack – Event-driven Architectures, 2006.
[10] Vivek S. Pai, Peter Druschel, and Willy
Zwaenepoel, Flash: An Efficient and Portable
Web Server.
[11] Nickolai Zeldovich, Alexander Yip, Frank
Dabek, Robert T Morris, David Mazières, Frans
Kaashoek, Multiprocessor Support for Event-
Driven Programs, 2003.
[12] Paul Krill. (2016, January 08). Retrieved
from http://www.infoworld.com.

[13] Dan Shaw. (2016). Retrieved from
http://nodesource.com.
[14] Paul Krill. (2014, August 12). Retrieved
from http://www.javaworld.com.
[15] Dan Kegel, The C10K problem, 1999.
[16] Gregor Hohpe, Programming Without a
Call Stack, 2006.
[17] Flash: an efficient and portable web server,
Vivek S. Pai,1999.
[18] Bu Kinoshita (2015, January 10). Retrieved
from https://www.quora.com/How-has-the-
switch-from-Ruby-on-Rails-to-Node-js-
affected-LinkedIn-long-term.
[19] Douglas C. Schmidt, Reactor, 1995.
[20] Gerard Sychay. (2014, September 10).
Retrieved from http://blog.modulus.io/top-10-
reasons-to-use-node.

