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Abstract 
Automatic test packet generation is a 
framework model that test the liveness, 
congestion and performance of an network. 
The goal of the system is to automatically 
generate test packets to test the network, and 
pinpoint faults. This methodology reduces 
the data loss and the packet truncation from 
the network also it decreases the unwanted 
data congestion in the network. 
Networks are getting larger and more 
complex, yet administrators rely on 
rudimentary tools such as and to debug 
problems. An automated and systematic 
approach for testing and debugging 
networks is called “Automatic Test Packet 
Generation” (ATPG). ATPG reads router 
configurations and generates a device-
independent model. The model is used to 
generate a minimum set of test packets to 
(minimally) exercise every link in the 
network or (maximally) exercise every rule 
in the network. Test packets are sent 
periodically, and detected failures trigger a 
separate mechanism to localize the fault. 
ATPG can detect both functional (e.g., 
incorrect firewall rule) and performance 
problems (e.g., congested queue). ATPG 
complements but goes beyond earlier work in 
static checking (which cannot detect liveness 
or performance faults) or fault localization.  
Keywords: Test packet generation, Test 
Packet Selection, Fault localization, 
Network Troubleshooting. 
 

1.  INTRODUCTION 
ATPG (acronym for both Automatic Test 

Pattern Generation and Automatic Test Pattern 
Generator) is an electronic design automation 
method/technology used to find an input (or test) 
sequence that, when applied to a digital circuit, 
enables automatic test equipment to distinguish 
between the correct circuit behavior and the 
faulty circuit behavior caused by defects. The 
generated patterns are used to test 
semiconductor devices after manufacture, and in 
some cases to assist with determining the cause 
of failure (failure analysis.) The effectiveness of 
ATPG is measured by the amount of modeled 
defects, or fault models, that are detected and the 
number of generated patterns. These metrics 
generally indicate test quality (higher with more 
fault detections) and test application time 
(higher with more patterns). ATPG efficiency is 
another important consideration. It is influenced 
by the fault model under consideration, the type 
of circuit under test (full scan, synchronous 
sequential, or asynchronous sequential), the 
level of abstraction used to represent the circuit 
under test (gate, register-transfer, switch), and 
the required test quality. room without any wired 
connection to the presentation computer. 

A defect is an error caused in a device during 
the manufacturing process. A fault model is a 
mathematical description of how a defect alters 
design behavior. The logic values observed at 
the device's primary outputs, while applying a 
test pattern to some device under test (DUT), are 
called the output of that test pattern. The output 
of a test pattern, when testing a fault-free device 
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that works exactly as designed, is called the 
expected output of that test pattern. A fault is 
said to be detected by a test pattern if the output 
of that test pattern, when testing a device that 
has only that one fault, is different than the 
expected output. The ATPG process for a 
targeted fault consists of two phases: fault 
activation and fault propagation. Fault activation 
establishes a signal value at the fault model site 
that is opposite of the value produced by the 
fault model. Fault propagation moves the 
resulting signal value, or fault effect, forward by 
sensitizing a path from the fault site to a primary 
output. 

Testing liveness of a network is a 
fundamental problem for ISPs and large data 
center operators. Sending probes between every 
pair of edge ports is neither exhaustive nor 
scalable . It suffices to find a minimal set of end-
to-end packets that traverse each link. However, 
doing this requires a way of abstracting across 
device specific configuration files (e.g., header 
space), generating headers and the links they 
reach (e.g., all-pairs reach¬ability), and finally 
determining a minimum set of test packets (Min-
Set-Cover). Even though the networks have 
become complex in nature,network engineers 
still rely on basic tools and methods for 
debugging which requires an network engineer’s 
utmost concentration and dedication. 

Network engineers past experience and 
wisdom is put into test when a network is 
troubleshooted and this is difficult  and time 
consuming.So,our goal is to automatically detect 
the reasons for troubleshooting and localizing 
the faults. Consider two examples. 

Example 1: Suppose a router with a faulty 
line card starts dropping packets silently. Alice, 
who administers 100 routers, receives a ticket 
from several unhappy users complaining about 
connectivity. First, Alice examines each router 
to see if the configuration was changed recently 
and concludes that the configuration was 
untouched. Next, Alice uses her knowledge of 
the topology to triangulate the faulty device 
with  and  . Finally, she calls a 
colleague to replace the line card. 

 
Example 2: Suppose that video traffic is 

mapped to a specific queue in a router, but 
packets are dropped because the token bucket 
rate is too low. It is not at all clear how Alice 
can track down such a performance fault using 

 and  . 

Troubleshooting a network is difficult for three 
reasons. First, the forwarding state is distributed 
across multiple routers and firewalls and is 
defined by their forwarding tables, filter rules, 
and other confi guration parameters. Second, 
the forwarding state is hard to observe because 
it typically requires manu-ally logging into 
every box in the network. Third, there are many 
different programs, protocols, and humans 
updating the forwarding state simultaneously. 
When Alice uses  and  , she is 
using a crude lens to examine the current 
forwarding state for clues to track down the 
failure. 

 
It is a simplified view of network state. At the 

bottom of the figure is the forwarding state used 
to forward each packet, consisting of the L2 and 
L3 forwarding information base (FIB), access 
control lists, etc. The forwarding state is written 
by the control plane (that can be local or remote 
as in the SDN. 

 
The model and should correctly implement the 
network ad-ministrator’s policy. Examples of 
the policy include: “Security group X is isolated 
from security Group Y,” “Use OSPF for 
routing,” and “Video traffic should receive at 
least 1 Mb/s.” 

 
We can think of the controller compiling the 

policy (A) into device-specific configuration 
files (B), which in turn determine the 
forwarding behavior of each packet (C). To 
ensure the net-work behaves as designed, all 
three steps should remain consis-tent at all 
times, i.e., . In addition, the topology, 
shown to the bottom right in the figure, should 
also satisfy a set of liveness properties . 
Minimally,  requires that sufficient links and 
nodes are working; if the control plane specifies 
that a laptop can access a server, the desired 
outcome can fail if links fail.  can also specify 
performance guarantees that detect flaky links. 

 
Recently, researchers have proposed tools to 

check that , enforcing consistency between 
policy and the config-uration. While these 
approaches can find (or prevent) software logic 
errors in the control plane, they are not designed 
to identify liveness failures caused by failed 
links and routers, bugs caused by faulty router 
hardware or software, or performance problems 
caused by network congestion. Such failures 
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require checking for  and whether . Alice’s 
first problem was with  (link not working), and 
her second problem was with  (low level 
token bucket state not reflecting policy for 
video bandwidth). 

 
In fact, we learned from a survey of 61 

network operators that the two most common 
causes of net-work failure are hardware failures 
and software bugs, and that problems manifest 
themselves both as reachability failures and 
throughput/latency degradation. Our goal is to 
automatically de-tect these types of failures. 

 
The main contribution of this paper is what 

we call an Auto-matic Test Packet Generation 
(ATPG) framework that automat-ically 
generates a minimal set of packets to test the 
liveness of the underlying topology and the 
congruence between data plane state and 
configuration specifications. The tool can also 
auto-matically generate packets to test 
performance assertions such as packet latency. 
In Example 1, instead of Alice manually de-
ciding which  packets to send, the tool does 
so periodically on her behalf. In the Example 
the tool determines that it must send packets 
with certain headers to “exercise” the video 
queue, and then determines that these packets 
are being dropped. 

 
ATPG detects and diagnoses errors by 
independently and ex-haustively testing all 
forwarding entries, firewall rules, and any 
packet processing rules in the network. In 
ATPG, test packets are generated 
algorithmically from the device confi guration 
files and FIBs, with the minimum number of 
packets required for complete coverage. Test 
packets are fed into the network so that every 
rule is exercised directly from the data plane.  
Since ATPG treats links just like normal 
forwarding rules, its full cov-erage guarantees 
testing of every link in the network. It can also 
be specialized to generate a minimal set of 
packets that merely test every link for network 
liveness. At least in this basic form, we feel that 
ATPG or some similar technique is fundamental 
to networks: Instead of reacting to failures, 
many network operators such as Internet2 
proactively check the health of their network 
using pings between all pairs of sources. How-
ever, all-pairs  does not guarantee testing of 
all links and has been found to be unscalable for 

large networks such as PlanetLab . 
Organizations can customize ATPG to meet 

their needs; for example, they can choose to 
merely check for network liveness (link cover) 
or check every rule (rule cover) to ensure 
security policy. ATPG can be customized to 
check only for reachability or for performance 
as well.  

ATPG can adapt to constraints such as 
requiring test packets from only a few places in 
the network or using special routers to generate 
test packets from every port. ATPG can also be 
tuned to allocate more test packets to exer-cise 
more critical rules. For example, a healthcare 
network may dedicate more test packets to 
Firewall rules to ensure HIPPA compliance. 

 
Put another way, we can check every rule in 

every router on the Stanford backbone 10 times 
every second by sending test packets that 
consume less than 1% of network bandwidth. 
The link cover for Stanford is even smaller, 
around 50 packets, which allows proactive 
liveness testing every millisecond using 1% of 
net-work bandwidth. 
 
2. A SURVEY OF NETWORK 
OPERATORS  

There are six most common symptoms, 
four cannot be detected by static checks of the 
type  (throughput/ latency, intermittent 
connectivity, router CPU utilization, con-
gestion) and require ATPG-like dynamic 
testing. Even the re-maining two failures 
(reachability failure and security Policy 
Violation) may require dynamic testing to 
detect forwarding plane failures. 

 
a) Symptoms of  Network Failure 
b) Causes of  Network Failure 
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Causes: The two most common symptoms 
(switch and router software bugs and hardware 
failure) are best found by dynamic testing. 

 
Cost of troubleshooting: Two metrics capture 

the cost of network debugging—the number of 
network-related tickets per month and the 
average time consumed to resolve a ticket (Fig. 
2). There are 35% of networks that generate 
more than 100 tickets per month. Of the 
respondents, 40.4% estimate it takes under 30 
min to resolve a ticket. However, 24.6% report 
that it takes over an hour on average. 

 
Tools: Table II shows that ping, traceroute 

and SNMP are by far the most popular tools. 
When asked what the ideal tool for network 
debugging would be, 70.7% reported a desire 
for automatic test generation to check 
performance and correctness. Some added a 
desire for “long running tests to detect jitter or 
intermittent issues,” “real-time link capacity 
monitoring,” and “monitoring tools for network 
state.” 

 
In summary, while our survey is small, it 

supports the hypoth-esis that network 
administrators face complicated symptoms and 
causes.  

The cost of debugging is nontrivial due to the 
frequency of problems and the time to solve 
these problems. Classical tools such as  and 

 are still heavily used, but 
administrators desire more sophisticated tools. 
 
3. TEST PACKET GENERATION 
ALGORITHM: 

1) Algorithm: We assume a set of test 
terminals in the network can send and receive 
test packets. Our goal is to generate a set of test 
packets to exercise every rule in every switch 
function, so that any fault will be observed by at 
least one test packet.  

This is analogous to software test suites 
that try to test every possible branch in a 
program. The broader goal can be limited to 
testing every link or every queue. When 
generating test packets,  
ATPG must respect two key constraints:  
1) Port: ATPG must only use test terminals that 
are available;  
 

2)Header: ATPGmust only use headers that 
each test terminal is permitted to send. For 
example, the network administrator 
may only allow using a specific set of VLANs. 
 
3.1 TEST PACKET SELECTION: 
 For a network with the switch functions, { 
T1,..,Tn} and topology function Ґ, determine the 
minimum set of test packets to exercise all 
reachable  rules, subject to the port and header 
constraints. 
 
ATPG chooses test packets using an algorithm 
we call Test Packet Selection (TPS). TPS first 
finds all equivalent classes between each pair of 
available ports.  
An equivalent class is a set of packets that 
exercises the same combination of rules. It then 
samples each class to choose test packets, and 
finally compresses the resulting set of test 
packets to find the minimum covering set. 
 

 
Example topology with three switches 

 
      ALL-PAIRS REACHABILITY TABLE: 
 
 
 
 
 
 
3.2 PROPERTIES:  
 The TPS algorithm has the following useful 
properties. 
Property 1 (Coverage): The set of test packets 
exercise all reachable rules and respect all port 
and header constraints. 
Proof Sketch: Define a rule to be reachable if it 
can be exercised by at least one packet 



INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)   
 

 
  ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-4, ISSUE-9, 2017 

5 

satisfying the header constraint, and can be 
received by at least one test terminal. A 
reachable rule must be in the all-pairs 
reachability table; thus, set cover will pick at 
least one packet that exercises this rule. Some 
rules are not reachable: For example, an IP 
prefix may be made unreachable by a set of 
more specific prefixes either deliberately 
(to provide backup) or accidentally (due to 
misconfiguration). 
Property 2 (Near-Optimality): The set of test 
packets selected by TPS is optimal within 
logarithmic factors among all tests giving 
complete coverage. 
Proof Sketch: This follows from the logarithmic 
(in the size of the set) approximation factor 
inherent in Greedy Set 
Cover. 
Property 3 (Polynomial Runtime): The 
complexity of finding test packets is O(TDR2) 
where is the number of test terminals, D 
is the network diameter, and R is the average 
number of rules in each switch. 
Proof Sketch: The complexity of computing 
reachability from one input port is O(DR2)  [16], 
and this computation is repeated for each test 
terminal. 
 
4. FAULT LOCALIZATION: 
ATPG periodically sends a set of test packets. If 
test packets fail, ATPG pinpoints the fault(s) 
that caused the problem. 
1) Fault Model: A rule fails if its observed 
behavior differs 
from its expected behavior. ATPG keeps track 
of where rules fail using a result function . For a 
rule , the result function is defined as 
 
R(r,pk)=   0, if pk fails at rule r 
 R(r,pk)=  1, if pk succeeds at rule r. 
 
    “Success” and “failure” depend on the 
nature of the rule: A forwarding rule fails if a 
test packet is not delivered to the intended 
output port, whereas a drop rule behaves 
correctly when packets are dropped. Similarly, a 
link failure is a failure of a forwarding 
rule in the topology function. On the other hand, 
if an output link is congested, failure is captured 
by the latency of a test packet going above a 
threshold. 
 
4.1 Algorithm: Our algorithm for pinpointing 
faulty rules assumes that a test packet will 

succeed only if it succeeds at every hop. For 
intuition, a ping succeeds only when all the 
forwarding rules along the path behave 
correctly. Similarly, if a queue is congested, any 
packets that travel through it will incur higher 
latency and may fail an end-to-end test. 
Formally, we have the following. 
 
Assumption 1 (Fault Propagation) R(pk)=1 if 
and only if  for all r € pk,history, R(r,pk)=1:, 
ATPG pinpoints a faulty rule by first computing 
the minimal set of potentially faulty rules. 
Formally, we have Problem 2. 
 
Problem 2 (Fault Localization): Given a list of 
(pk0, R(pk0),(pk1, R(pk1),… tuples, find all that 
satisfies, . pki, R(pki,r)=0. 
 
We solve this problem opportunistically and in 
steps. 
Step 1: Consider the results from sending the 
regular test packets. For every passing test, 
place all rules they exercise into a set of passing 
rules, P.  
Step 2: ATPG next trims the set of suspect rules 
by weeding out correctly working rules. ATPG 
does this using the reserved packets (the packets 
eliminated by Min-Set-Cover). ATPG selects 
reserved packets whose rule histories contain 
exactly one rule from the suspect set and sends 
these packets. Suppose a 
reserved packet exercises only rule in the 
suspect set. If the sending of fails, ATPG infers 
that rule is in error; if passes,is removed from 
the suspect set. ATPG repeats this process for 
each reserved packet chosen in Step 2. 
Step 3: In most cases, the suspect set is small 
enough after 
Step 2, that ATPG can terminate and report the 
suspect set. If needed, ATPG can narrow down 
the suspect set further by sending test packets 
that exercise two or more of the rules in the 
suspect set using the same technique underlying 
Step 2. If these test packets pass, ATPG infers 
that none of the exercised rules 
are in error and removes these rules from the 
suspect set. If our Fault Propagation assumption 
holds, the method will not miss 
any faults, and therefore will have no false 
negatives. 
False Positives: Note that the localization 
method may introduce false positives, rules left 
in the suspect set at the end of  
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Step 3. Specifically, one or more rules in the 
suspect set may in fact behave correctly. 
 
  5. USE CASES 

We can use ATPG for both functional and 
performance testing, as the following use cases 
demonstrate. 
 Functional Testing 

We can test the functional correctness of a 
network by testing that every reachable 
forwarding and drop rule in the network is 
behaving correctly. 
 
Forwarding Rule: A forwarding rule is behaving 
correctly if a test packet exercises the rule and 
leaves on the correct port with the correct 
header. 

Upon being tested by making sure a test 
packet passes correctly over the link without 
header modifications. 
 
Drop Link Rule: A link rule is a special case of 
a forwarding rule. It can Rule: Testing drop 
rules is harder because we must verify the 
absence of received test packets. We need to 
know which test packets might reach an egress 
test terminal if a drop rule was to fail. To find 
these packets, in the all-pairs reacha-bility 
analysis, we conceptually “flip” each drop rule 
to a broad-cast rule in the transfer functions. We 
do not actually change rules in the switches—
we simply emulate the drop rule failure in order 
to identify all the ways a packet could reach the 
egress test terminals. 

 
6. IMPLEMENTATION 

We implemented a prototype system to 
automatically parse router configurations and 
generate a set of test packets for the network.  

 
A. Test Packet Generator 

The test packet generator, written in Python, 
contains a Cisco IOS configuration parser and a 
Juniper Junos parser. The data-plane 
information, including router configurations, 
FIBs, MAC learning tables, and network 
topologies, is collected and parsed through the 
command line interface (Cisco IOS) or XML 
files (Junos). The generator then uses the 
Hassel header space analysis library to 
construct switch and topology functions. 

 
All-pairs reachability is computed using the 

 parallel-processing module shipped 

with Python. Each process considers a subset of 
the test ports and finds all the reachable ports 
from each one. 

 
 After reachability tests are complete, re-sults 

are collected, and the master process executes 
the Min-Set-Cover algorithm. Test packets and 
the set of tested rules are stored in a SQLite 
database. 

 
B. Network Monitor 

The network monitor assumes there are 
special test agents in the network that are able 
to send/receive test packets. The net-work 
monitor reads the database and constructs test 
packets and instructs each agent to send the 
appropriate packets. Currently, test agents 
separate test packets by IP Proto field and 
TCP/UDP port number, but other fields, such as 
IP option, can also be used. If some of the tests 
fail, the monitor selects additional test packets 
from reserved packets to pinpoint the problem. 
The process repeats until the fault has been 
identified. The mon-itor uses JSON to 
communicate with the test agents, and uses 
SQLite’s string matching to lookup test packets 
efficiently. 
 
C. Alternate Implementations 

Our prototype was designed to be minimally 
invasive, re-quiring no changes to the network 
except to add terminals at the edge. In networks 
requiring faster diagnosis, the following 
extensions are possible. 

 
Cooperative Routers: A new feature could be 
added to switches/routers, so that a central 
ATPG system can instruct a router to 
send/receive test packets. In fact, for 
manufacturing testing purposes, it is likely that 
almost every commercial switch/router can 
already do this; we just need an open inter-face 
to control them. 

 
SDN -Based Testing: In a software defined 

network (SDN) such as OpenFlow [27], the 
controller could directly instruct the switch to 
send test packets and to detect and forward 
received test packets to the control plane. For 
performance testing, test packets need to be 
time-stamped at the routers. 
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8. RELATED WORK AND DISCUSSION 
A. Overhead and Performance 

The principal sources of overhead for ATPG 
are polling the network periodically for 
forwarding state and performing all-pairs 
reachability. While one can reduce overhead by 
running the offline ATPG calculation less 
frequently, this runs the risk of using out-of-
date forwarding information. Instead, we re-
duce overhead in two ways. First, we have 
recently sped up the all-pairs reachability 
calculation using a fast multithreaded/mul-
timachine header space library.  

 
Second, instead of extracting the complete 

network state every time ATPG is triggered, an 
incre-mental state updater can signi ficantly 
reduce both the retrieval time and the time to 
calculate reachability. We are working on real-
time version of ATPG that incorporates both 
techniques. Test agents within terminals incur 
negligible overhead be- cause they merely 
demultiplex test packets addressed to their IP 
address at a modest rate (e.g., 1 per millisecond) 
compared to the link speeds  Gb/s  most 
modern CPUs are capable of receiving. 

 
B. Limitations 

 ATPG has the following limitations. 
1) Dynamic boxes: ATPG cannot model boxes 

whose internal state can be changed by test 
packets. For example, an NAT that 
dynamically assigns TCP ports to outgoing 
packets can confuse the online monitor as 
the same test packet can give different 
results. 
  

2) Nondeterministic boxes: Boxes can load-
balance packets based on a hash function of 
packet fields, usually combined with a 
random seed; this is common in multipath 
routing such as ECMP. When the hash 
algorithm and parameters are unknown, 
ATPG cannot properly model such rules. 
However, if there are known packet 
patterns that can iterate through all possible 
outputs, ATPG can generate packets to 
traverse every output.  

 
3) Invisible rules: A failed rule can make a 

backup rule active, and as a result, no 
changes may be observed by the test 
packets. This can happen when, despite a 
failure, a test packet is routed to the 

expected destination by other rules. In 
addition, an error in a backup rule cannot be 
detected in normal operation. Another 
example is when two drop rules appear in a 
row: The failure of one rule is undetectable 
since the effect will be masked by the other 
rule.  

 
4) Transient network states: ATPG cannot 

uncover errors whose lifetime is shorter 
than the time between each round of tests. 
For example, congestion may disappear 
before an available bandwidth probing test 
concludes. Finer-grained test agents are 
needed to capture abnormalities of short 
duration.  

 
5) Sampling: ATPG uses sampling when 

generating test packets. As a result, ATPG 
can miss match faults since the error is not 
uniform all matching headers. In worst case 
exhaustive testing is needed. 

 
9. CONCLUSION: 
Testing liveness of a network is a fundamental 
problem for ISPs and large data center 
operators. Sending probes between every pair of 
edge ports is neither exhaustive nor scalable 
ATPG, however, goes much further than 
liveness testing with the same framework. 
ATPG can test for reachability policy (by 
testing all rules including drop rules) and 
performance health (by associating performance 
measures such as latency and loss with test 
packets). Our implementation also augments 
testing with a simple fault localization scheme 
also constructed using the header space 
framework. As in software testing, the formal 
model helps maximize test coverage while 
minimizing test packets (Min- Set-Cover). Even 
the fundamental problem of automatically 
generating test packets for efficient liveness 
testing re-quires techniques akin to ATPG. 

 
ATPG, however, goes much further than 

liveness testing with the same framework. 
ATPG can test for reachability policy (by 
testing all rules including drop rules) and 
performance health (by associating performance 
measures such as latency and loss with test 
packets). Our implementation also augments 
testing with a simple fault localization scheme 
also constructed using the header space 
framework. As in software testing, the formal 
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model helps maximize test coverage while 
minimizing test packets. Our results show that 
all forwarding rules in Stanford backbone or 
Internet2 can be exercised by a surprisingly 
small number of test packets (  for Stanford, 
and  for Internet2). 

 
Our survey results indicate that they are eager 
for more sophisticated tools. Other fields of 
engineering indi-cate that these desires are not 
unreasonable: For example, both the ASIC and 
software design industries are buttressed by 
billion-dollar tool businesses that supply 
techniques for both static (e.g., design rule) and 
dynamic (e.g., timing) verification. In fact, 
many months after we built and named our 
system, we dis-covered to our surprise that 
ATPG was a well-known acronym in hardware 
chip testing, where it stands for Automatic Test 
Pat-tern Generation [2]. We hope network 
ATPG will be equally useful for automated 
dynamic testing of production networks. 
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