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Abstract 
The non-homogeneous cubic equation with 
three unknowns represented by (x + y)2 – 3xy = 

12z3

  is analysed for its patterns of non-zero 
distinct integer solutions. A few interesting 
relations among the solutions are presented. 
Keywords: Non-homogeneous cubic, ternary 
cubic, integer solutions. 
 
Notations: 
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,6 nCP n  - Centered hexagonal  pyramidal 

number of rank n 

4.  
2
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
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Pn  - Pentagonal pyramidal 

number of rank n 
5.  1 nnPRn - Pronic number bof rank n 

INTRODUCTION 
It is well known that the Diophantine equations 
are rich in variety [1-3]. In particular, one may 
refer [4-12] for cubic with three unknowns. In 
this paper yet another cubic equation with three 
unknowns is given by(x + y)2 – 3xy = 12z3

 is 
considered for determining its infinitely many 
non-zero integer solutions. Also, A few 
interesting relations among the solutions are 
exhibited. 
 
 
 

Method of analysis: 
The non-homogeneous cubic equation to be 
solved is  
  32 123 zxyyx              (1) 
Introducing the linear transformations 

vuyvux  ,            (2) 
in (1), it gives 
 322 123 zvu               (3) 
Assume 

  22 3, babazz               (4) 

Also,   333312 ii          (5) 
 
Substituting (4), (5) in (3) and applying the 
method of factorization, we have 

         33
33333333 biabiaiiviuviu 

 
Equating the positive and negative terms in the 
above equation, we have 

      33333 biaiviu         (6) 

     33333 biaiviu          (7) 
Equating the real and imaginary parts in either 
(6) or (7), we have 

3223 99273 bbaabau   
2332 999 ababbav   

Substituting the above values of u and v  in (2), 
we get 

  23 34, ababaxx             (8) 

  3223 1818182, bbaababayy      (9) 
Thus, (4), (8) and (9) represent the integer 
solutions to (1) 
Properties: 

1.    3mod01, ,10  ataaz  

2.   bx ,146    is a nasty number. 
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3.     533,1,1 ,4  btbzbx  

4. 18182)1,( ,6  aa PRCPay  

Note: It is worth to mention that , in addition to 
(5) , 12 may also be written in the following 
ways : 
way 1:   333312 ii        (10) 

way 2:   323212 ii              (11) 
Following the procedure as above , the 
corresponding integer solutions to (10) and (11) 
are presented below: 
Solution for (10): 

bababax 2323 1818182   
23 364 abay   

22 3baz   
 
Solution for (11): 

2323 1821818 abababx   
2323 1821818 abababy   

22 3baz   
However, we have other choices of integer 
solutions to (1) that are illustrated below: 
 1123 322  zvu               (12) 

Assume   
4

3131
1

ii 
          (13) 

Substituting (4), (5) and (13)  in (12) and 
employing the method of factorization, define  

      333133
2

1
3 biaiiviu        (14) 

Equating the real and imaginary parts in (14), we 
have 

23

32

182

1818

abav

bbau



  

Substituting the above values of u  and v  in (2), 
we get 

  2332 1821818, ababbabaxx      (15) 

  2332 1821818, ababbabayy     (16) 
Thus, (4), (15) and (16) represent the integer 
solution  to (1) 
Properties: 

1.    5mod1,1 ,10  atbbz  

2.   21818,1 ,6  bb PRCPbx  

3.  2,6 aaz  is a nasty number when 

    ,....1,0,1,3232
32

1 11




 


na

nn

 
4.      2mod081,1, ,3  aCPaxay  

5.     8181,1,6 5  aPaxay  is a nasty number. 

Note: It is to be noted that, in addition to (13) , 1 
may also be represented as  

  
49

341341
1

ii 
                  (17) 

For this choice, the corresponding integer 
solutions to (1) are given by 

   BAABBABAxx 2233 14436144449,   
 

   BAABBABAyy 2233 90198902249,   

   22 349, BABAzz   
Further, considering (10) with (13) , the integer 
solution to (1) are given by 
 23 364 abax   

3223 1818182 bbaabay   
22 3baz   

Considering (10) with (17) , the integer solution 
to (1) are found to be 

   




  3322
54221989049, BAABBABAxx  

  




  3322
54262345449, BAABBABAyy  

   22 349, BABAzz   
Considering (11) with (13), the integer solutions 
are represented as 

baabbax 2233 1818182   
23 364 abay   

22 3baz   
Considering (11) with (17) the integer solutions 
are obtained as 

  




  3322
54262345449, BAABBABAxx  

  




  3322
14443614449, BAABBABAyy  

   22 349, BABAzz   
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