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Abstract—This paper presents a new set of 
techniques for hardwareimplementations of 
Secure Hash Algorithm (SHA) hash 
functions.These techniques consist mostly in 
operation reschedulingand hardware 
reutilization, therefore, significantly 
decreasing thecritical path and required 
area. Throughputs from 1.3 Gbit/s to1.8 
Gbit/s were obtained for the SHA 
implementations on a XilinxVIRTEX II Pro. 
Compared to commercial cores and 
previouslypublished research, these figures 
correspond to an improvement 
inthroughput/slice in the range of 29% to 
59% for SHA-1 and 54%to 100% for SHA-2. 
Experimental results on hybrid 
hardware/softwareimplementations of the 
SHA cores, have shown speedups upto 150 
times for the proposed cores, compared to 
pure software implementations. 
 
Index Terms—Crytography, field-
programmable gate array(FPGA), hardware 
implementation, hash functions, Secure 
HashAlgorithm (SHA). 
 

I. INTRODUCTION 
Cryptographic algorithms can be divided into 
threeseveral classes: public key algorithms, 
symmetric key algorithms,and hash functions. 
While the first two are used toencrypt and 
decrypt data, the hash functions are one-way 
functionsthat do not allow the processed data to 
be retrieved. Thispaper focuses on hashing 
algorithms.Currently, the most commonlyused 
hash functions are the MD5 and the Secure 
HashAlgorithm (SHA), with 128- to 512-bit 
output Digest Messages(DMs), respectively. 
While for MD5, collision attacks are 

computationallyfeasible on a standard desktop 
computer [1], currentSHA-1 attacks still require 
massive computational power[2], (around hash 
operations), making attacks unfeasible forthe 
time being. For applications that require 
additional levels ofsecurity, the SHA-2 has been 
introduced. This algorithm outputsa DM with 
size from 224 to 512 bits.The SHA-1 was 
approved by the National Institute of 
Standardsand Technology (NIST) in 1995 as an 
improvement to theSHA-0. SHA-1 quickly 
found its way into all major security 
applications,such as SSH, PGP, and IPSec. In 
2002, the SHA-2 [3]was released as an official 
standard, allowing the compressionof inputs up 
to 2128bits. 
 
To enforce the security in general purpose 
processors (GPPs)and to improve performance, 
cryptographic algorithms have tobe applied at 
the hardware level, for example in the 
attestationof external memory transactions. 
Specialized hardware coresare typically 
implemented either as application-specific 
integratedcircuit (ASIC) cores [4]–[6] or in 
reconfigurable devices[7]–[10]. Some work has 
been done to improve the SHA 
computationalthroughput by unrolling the 
calculation structure, butat the expense of more 
hardware resources [11], [12]. 
  
 
In this paper, we propose an efficient hardware 
implementationof SHA. Several techniques 
have been proposed to improvethe hardware 
implementation of the SHA algorithm, using 
thefollowing design techniques: 
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• parallel counters and balanced carry save 
adders (CSA), inorder to improve the partial 
additions [4], [5], [7]; 
• unrolling techniques optimize the data 
dependency and improvethe throughput [5], [9], 
[11], [13]; 
• balanced delays and improved addition units; 
in this algorithm,additions are the most critical 
operations [4], [13]; 
• embedded memories store the required 
constant values [8]; 
• pipelining techniques, allow higher working 
frequencies[5], [14]. 
 
This work extends the ideas originally proposed 
by the authorsin [15] and [16] and presents a 
significant set of experimentalresults. Our major 
contributions to the improvement ofthe SHA 
functions hardware implementation can be 
summarizedas follows: 
• operation rescheduling for a more efficient 
pipeline usage; 
• hardware reuse in the DM addition; 
• a shift-based input/output (I/O) interface; 
• memory-based block expansion structures. 
A discussion on alternative data block 
expansion structure hasalso been introduced. 
 
The fully implemented architectures proposed 
in this paper,achieve a high throughput for the 
SHA calculation via operationrescheduling. At 
the same time, the proposed hardwarereuse 
techniques indicates an area decrease, resulting 
in asignificant increase of the throughput per 
slice efficiencymetric. Implementation results 
on several FPGA technologiesof the proposed 
SHA, show that a throughput of 1.4 Gbit/s 
isachievable for both SHA-128 and SHA-256 
hash functions.For SHA-512 this value 
increases to 1.8 Gbit/s. Moreover,a 
Througput/Slice improvement up to 100% is 
achieved, regardingcurrent state of the art. 
The proposed SHA cores have also been 
implemented withinthe reconfigurable co-
processor of a Xilinx VIRTEX II ProMOLEN 
prototype [17]. The hybrid implementation 
resultsindicate a 150 times speedup against pure 
software implementations,and a 670% 
Throughput/Slice improvement regardingrelated 
art. 
 

 
Fig. 1. SHA-1 round calculation 
 

II. SHA-1 AND SHA-2 HASH FUNCTIONS 
In 1993, the Secure Hash Standard (SHA) was 
first publishedby the NIST. In 1995, this 
algorithm was revised [18] in order toeliminate 
some of the initial weakness. The revised 
algorithm isusually referenced as SHA-1 (or 
SHA128). In 2001, the hashingalgorithm, SHA-
2, was proposed. It uses larger DM, making 
itmore resistent to possible attacks and allows it 
to be used withlarger data inputs, up to 2128bits 
in the case of SHA512. TheSHA-2 hashing 
algorithm is the same for the SHA224, 
SHA256,SHA384, and SHA512 hashing 
functions, differing only in thesize of the 
operands, the initialization vectors, and the size 
ofthe final DM. 
A. SHA128 Hash Function 
The SHA-1 produces a single output 160-bit 
message digest(the output hash value) from an 
input message. The input messageis composed 
of multiple blocks. The input block, of 512bits, 
is split into 80× 32-bit words, denoted as Wt, 
one 32-bitword for each computational round of 
the SHA-1 algorithm, asdepicted in Fig. 1. Each 
round comprises additions and 
logicaloperations, such as bitwise logical 
operations (ft) and bitwiserotations to the left 
(RotLi). The calculation of ftdepends onthe 
round being executed, as well as the value of 
the constant Kt. The SHA-1 80 rounds are 
divided into four groups of 20rounds, each with 
different values for Kt and the applied 
logicalfunctions (ft ) [15]. The initial values of 
the to variables inthe beginning of each data 
block calculation correspond to thevalue of the 
current 160-bit hash value, to . After the80 
rounds have been computed, the to 32-bit values 
areadded to the current DM. The Initialization 
Vector (IV) or theDM for the first block is a 
predefined constant value. The outputvalue is 
the final DM, after all the data blocks have been 
computed.In some higher level applications 
such as the keyed-HashMessage Authentication 
Code (HMAC) [19], or when a messageis 
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fragmented, the initial hash value (IV) may 
differ fromthe constant specified in [18]. 
B. SHA256 Hash Function 
In the SHA256 hash function, a final DM of 
256 bits is produced.Each 512-bit input block is 
expanded and fed to the 64rounds of the 
SHA256 function in words of 32 bits each 
(denotedby Wt). Like in the SHA-1, the 
datascrambling is performedaccording to the 
computational structure depicted inFig. 2 by 
additions and logical operations, such as bitwise 
logicaloperations and bitwise rotations. The 
computational structureof each round, where the 
input data is mixed with the currentstate, is 
depicted in Fig. 2. Each Wt value is a 32-bit 
data wordand Ktis the 32-bit round dependent 
constant.The 32-bit values of the to variables 
are updated in eachround and the newvalues are 
used in the following round. The IVfor these 
variables is given by the 256-bit constant value 
specifiedin [18], being set only for the first data 
block. The consecutivedata blocks use the 
partial DM computed for the previousdata 
block. Each SHA-256 data block is processed in 
64rounds, after which the values of the 
variables to are addedto the previous DM in 
order to obtain a new value for the 
DM.Comparing Figs. 1 and 2, is it noticeable a 
higher computationalcomplexity of the SHA-2 
algorithm in comparison to the SHA-
1algorithm. 
 

 
        Fig. 2. SHA-2 round calculation 
 
C. SHA512 Hash Function 
The SHA512 hash algorithm computation is 
identical to thatof the SHA256 hash function, 
differing only in the size of theoperands, 64 bits 
instead of 32 bits as for the SHA256. The 
DMhas twice the width, 512 bits, and different 
logical functions areused [18]. The values K t 
and W t  are 64 bits wide and eachdata block is 
composed of 16 × 64-bit words, having in 
total1024 bits. 
 

 
Fig. 3. Message padding for 512 bit data blocks. 
 
D. Data Block Expansion for SHA Function 
The SHA-1 algorithm computation steps 
described in Fig. 1are performed 80 times 
(rounds). Each round uses a 32-bit 
wordobtained from the current input data block. 
Since each inputdata block only has 16× 32-bits 
words (512 bits), the remaining64 ×32-bit 
words are obtained from data expansion. This 
expansionis performed by computing (1), where 
Mt

(i) denotes thefirst 16 ×32-bit words of the th 
data block 

 
 
 
For the SHA-2 algorithm, the computation steps 
shown inFig. 2 are performed for 64 rounds (80 
rounds for the SHA512).In each round, a 32-bit 
word (or 64-bit for SHA512) from thecurrent 
data input block is used. Once again, the input 
data blockonly has 16× 32-bits words (or 64-bit 
words for SHA512), resultingin the need to 
expand the initial data block to obtain 
theremaining words. This expansion is 
performed by the computationdescribed in (2), 
where Mt

(i) denotes the first 16 words ofthe th 
data block and the operator + describes the 
arithmeticaddition operation 

 
 
 
E. Message Padding 
In order to assure that the input data block is a 
multiple of 512bits, as required by the SHA-1 
and SHA256specification, theoriginal message 
has to be padded. For the SHA512 algorithmthe 
input data block is a multiple of 1024 bits. 
The padding procedure for a 512 bit input data 
block is asfollows: for an original message 
composed of bits, the bit “1”is appended at the 
end of the message (the bit), followedby zero 
bits, were k is the smallest solution to the 
equationn+1+k=448 mod 512. These last 64 bits 
are filled withthe binary representation of , the 
original message size. Thisoperation is better 
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illustrated in Fig. 3 for a message with 536bits 
(010 0001 1000 in binary representation). 
 
For the SHA512 message padding, 1024-bit 
data blocks areused and the last 128, not 64 bits, 
are reserved for the binaryvalue of the original 
message. This message padding operation can 
be efficiently implemented in software. 
 

 
III. PROPOSED DESIGN FOR SHA-1 

In order to compute the values of one SHA-1 
round, depictedin Fig. 1, the values from the 
previous round are required.This data 
dependency imposes sequentiality, preventing 
parallelcomputation between rounds. Only 
parallelism withineach round can be efficiently 
explored. Some approaches [11]attempt to 
speedup the processing by unrolling each 
roundcomputations. However, this approach 
implies an obviousincrease in circuit area. 
Another approach [12], increases thethroughput 
using a pipelined structure. Such an approach, 
however,makes the core inefficient in practical 
applications, sincea data block can only be 
processed when the previous one hasbeen 
completed, due to the data dependencies of the 
algorithm.In this paper, we propose a functional 
rescheduling of theSHA-1 algorithm as 
described in the work [15], which allowsthe 
high throughput of an unrolled structure to be 
combined witha low hardware complexity. 
A. Operations Rescheduling 
From Fig. 1, it can be observed that the bulk of 
the SHA-1round computation is oriented 
towards the value calculation.The remaining 
values do not require any computation, 
asidefrom the rotation of B. The needed values 
are provided by theprevious round values of the 
variables A to D. Given that thevalue of 
depends on its previous value, no parallelism 
can bedirectly exploited, as depicted in (3) 
 

 
 
In (4), the term of (3) that does not depend on 
the value ofis precomputed, producing the carry 
(βt ) and save (St ) vectorsof the partial addition 
 

 
 
 

The calculation of , with the precomputation, is 
described bythe following: 
 

 
 
By splitting the computation of the value and by 
reschedulingit to a different computational 
round, the critical path of theSHA-1 algorithm 
can be significantly reduced. Since the 
calculationof the function f(B.C,D) and the 
partial addition areno longer in the critical path, 
the critical path of the algorithmis reduced to a 
three-input full adder and some additional 
selectionlogic, as depicted in Fig. 4. With this 
rescheduling, anadditional clock cycle is 
required, for each data block, since inthe first 
clock cycle the value of is not calculated (A-1 is 
notused). Note that in the last cycle the values 
of B81,C81,D81 ,and E81 are not used as well. 
The additional cycle, however,can be hidden in 
the calculation of the DM of each input 
datablock, as explained further on.After the 80 
SHA-1 rounds have been computed, the 
finalvalues of the internal variables (A to E) are 
added to the currentDM. In turn, the DM 
remains unchanged until the end of eachdata 
block calculation [15]. This final addition is 
performed byone adder for each 32 bits portion 
of the 160-bit hash value.However, the addition 
of the value DM0 is directly performedby a 
CSA adder in the round calculation. With this 
option, anextra full adder is saved and the value 
DM0 calculation, thatdepends on the value A , 
is performed in one less clock cycle.Thus, the 
calculation of all the DMj is concluded in the 
samecycle. 
 

 
 
Fig. 4. SHA-1 rescheduling and internal 
structure. 
 
B. Hash Value Initialization 
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For the first data block the internal hash value 
(DM0 ) is initialized,by adding zero to the 
Initialization Vector (IV). This 
initial value is afterwards loaded to the internal 
registers (B toE), through a multiplexer. In this 
case, the value of  DM0 is not 
set to the register A . Instead, A is set to zero 
and DM0 is directlyintroduced into the 
calculation of A, as described in (6) 
 

 
 
 
 
The IV can be the constant value defined in [18] 
or an applicationdependent value, e.g., from the 
HMAC or from the hashingof fragmented 
messages. In applications, where the IV is 
alwaysa constant, the selection between the IV 
and the current hashvalue can be removed and 
the constant value set in the DM registers.In 
order to minimize the power consumption, the 
internalregisters are disabled when the core is 
not being used. 
 
C. Improved Hash Value Addition 
After all the rounds have been computed, for a 
given datablock, the internal variables have to 
be added to the current DM.This addition can 
be performed with one adder per each 32 bitof 
the DM, as depicted in Fig. 4. In such structure, 
the additionof through with the current DM 
requires four additionaladders. Taking into 
account that 
 

 
 
the computation of the DM from the data block 
can be calculatedfrom the internal variable B , 
as 
 

 

 

Fig. 5. Alternative SHA-1 DM addition. 
 
Thus, the calculation can be performed by just a 
single additionunit and a multiplexer unit, used 
to select between the valueB and its bitwise 
rotation, RotL30. The rot() function in 
(9)represents the optional rotation of the input 
value 
 

 
 
The alternative hardware structure for the 
addition of the values Bto E with the current 
DM is depicted in Fig. 5. 
D. SHA-1 Data Block Expansion 
For efficiency reasons, we expand the 512 bits 
of each datablock in hardware. The input data 
block expansion describedin (1), can be 
implemented with registers and XOR 
operations.Finally, the output value Wt is 
selected between the original datablock, for the 
first 16 rounds, and the computed values, for 
theremaining rounds. Fig. 6 depicts the 
implemented structure. Partof the delay 
registers have been placed after the calculation, 
inorder to eliminate this computation from the 
critical path, sincethe value Wtis connected 
directly to the the SHA-1 core. The one bit 
rotate-left operation can be implemented 
directly in therouting process, not requiring 
additional hardware. 
 

IV. SHA IMPLEMENTATION 
In order to evaluate the proposed SHA designs, 
they havebeen implemented as processor cores 
on a Xilinx VIRTEX IIPro (XC2VP30–7) 
FPGA. All the values presented in this paperfor 
the proposed cores were obtained after Place 
and Route. When implementing the ROM used 
to store the valuesof SHA256 or SHA512, the 
FPGA embedded RAMs (BRAMs)have been 
efficiently employed. For the SHA256 
structure, asingle BRAM can be used, since the 
64 32-bits fit in a single32-bit port embedded 
memory block. Since BRAMs have dualoutput 
ports of 32 bits each, the 80 ×64-bit SHA-512 
constantscan be mapped to two 32-bit memory 
ports; one port addressesthe lower 32 bits of the 
constant and the other, the higher partof the 
same constant. Thus, only one BRAM is used to 
store the64-bit Kt constants. 
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A. Discussion on Alternative Data Block 
Expansion Structures 
Alternatively to the register-based structure 
presented inFig. 6, other structures for the SHA-
1 data block expansion canbe implemented. 
One is based on memory blocks addressedin a 
circular fashion. In the 
presentedimplementation, theVIRTEX II 
embedded RAMs (BRAMs) are used. The 
otherstructure is based on first-inputs–first-
outputs (FIFOs).A16-word memory is used to 
store the values with 14 (wt-14 )and 16 (wt-16 ) 
clock cycles delay. In order to use the dual 
portBRAMs, the address of the new value has 
to be the same as thelast one, thus the first and 
the last position of the circular buffercoincide. 
For  

 
Fig. 5. BRAM-based data block expansion unit. 
 
this scheme to work properly, the memory 
mustallowfor write after read (WAR). This 
however, is only availableon the VIRTEX II 
FPGA family. In technologies whereWAR isnot 
available, the first and last position of this 
circular memorycan not coincide, thus an 
additional position in the memory isrequired as 
well as an additional port. The wt-14 can be 
addressedby using the wt-16 (=Wt) address value 
subtracted by2. Identically, the wt-3address can 
be obtained by subtracting5 from the wt-8 
address. The implementation of the 16 bit 
positioncircular memory can be done by 
chaining two eight positionscircular memories, 
thus requiring less memory for theentire unit, as 
depicted in Fig. 5. 
 

 
Fig. 6. FIFO-based data block expansion unit. 
 
A16-word memory is used to 
 
The data block expansion can also be 
implemented withFIFOs. In technologies where 

FIFOs can be efficiently used,the registers used 
to create the temporal delay of  Wtcan 
bereplaced by FIFOs. The FIFOs start 
outputting the valuesafter clock cycles, where is 
the desired delay. The FIFOshave been 
automatically generated by the tool fromXilinx. The 
resulting computational structure is depicted inFig. 
10. Circular memories can also be used. For this 
structure(FIFO-MEM-based), modulo 5 and modulo 
6 counters haveto be used, as well as memories that 
do not require the WARmode.In order to completely 
evaluate the proposed structures, theyhave been 
implemented on a Xilinx VIRTEX II FPGA. 
Theobtained results are presented in Table I. From 
Table I, it canbe concluded that when memories 
with WAR mode are available,the memory-based 
implementation is more efficient. It requiresonly 38 
slices and two 32 ×8 bit memories, resulting ina 
slice occupation of only 30% of the register-based 
approach,at the expense of two BRAMs. When, 
only, memories withoutWAR mode are available, a 
reduction of 35% in terms of sliceusage can still be 
achieved, at the expense of two embeddedRAMs. 
These data block expansion structures for the SHA-
1 algorithm can be directly mapped to the data block 
expansionof the SHA-2 algorithm. For the 
remainder of this paper, onlythe register-based 
unit is considered, in order to obtain less 
technologydependent experimental results. 
TABLE I 
SHA-1 DATA BLOCK EXPANSION UNIT 
COMPARISON 

 

 
 

TABLE II 
SHA-1 DM ADDITION COMPARISON 

 
 
 

V. PERFORMANCE ANALYSIS AND 
RELATED WORK 

In order to compare the architectural gains of 
the proposedSHA structures with the current 
related art, the resulting coreshave been 
implemented in different Xilinx devices. 
A. SHA-1 Core 
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In order to compare the efficiency of the DM 
additionthrough shift registers proposed in 
Section III-C, the SHA-1algorithm with 
variable IV has been implemented with 
bothpresented structures. Table II presents the 
obtained results for arealization on the VIRTEX 
II Pro FPGA. The obtained figuressuggest an 
area reduction of 5% with no degradation on 
theachievable frequency, resulting in a 
Throughput/Slice increasefrom 2.4 to 2.5 Mbit/s. In 
technologies where full addition unitsare more 
expensive, like ASICs, even higher improvements 
canbe expected. 
The SHA-1 core has also been implemented on a 
VIRTEX-E(XCV400e-8) device (Column Our-Exp. 
in Table III), in orderto compare with [11]. The 
presented results in Table III for theVIRTEX-E 
device are for the SHA-1 core with a constant 
initializationvector and without the data block 
expansion module.When compared with the folded 
SHA-1 core proposed in [11],a clear advantage can 
be observed in both area and 
throughput.Experimentations suggest 20% less 
reconfigurable hardwareand 27% higher throughput, 
resulting in a 57% improvementon the 
Throughput/Slice (TP/Slice) metric. When 
comparedwith the unfolded architecture, the 
proposed core has a 28%lower throughput, however, 
the unrolled core proposed in [11]requires 280% 
more hardware, resulting in a TP/Slice, 
2.75times smaller than the core proposed in this 
paper.Table III also presents the SHA-1 
corecharacteristics for theVIRTEX II Pro FPGA 
implementation. Both the core with aconstant 
initialization vector (Our-Cst.) and the one with 
a variableIV initialization (Our+IV) are 
presented. These results alsoinclude the data 
block expansion block.When compared with the 
leading commercial SHA-1 corefrom Helion 
[21], the proposed architecture requires 6% 
lessslices while achieving a throughput 18% 
higher. These two resultssuggest a gain on the 
TP/Slice metric of about 29%.For the SHA-1 
core capable of receiving an IV other than 
theconstant specified in [18], a slight increase in 
the required hardwareoccurs. This is due to the 
fact that the IV can no longerbe set by the 
set/reset signals of the registers. This however 
hasa minimal effect in the cores performance, 
since this loadingmechanism is not located in 
the critical path. The decrease ofthe 
Throughput/Slice metric, from 2.7 to 2.5, 
caused by the additionalhardware for the IV 
loading is counterbalanced by thecapability of 

this SHA-1 core (Our+IV) to process 
fragmentedmessages. 
B. SHA 256 Core 
The proposed SHA256 hash function core has 
been also comparedwith the most recent and 
most efficient related art. Thecomparison 
figures are presented in Table IV. When 
comparedwith the most recent academic work 
[13], [22] the results showhigher throughputs, 
from 17% up to 98%, while achieving 
areduction in area above 25% up to 42%. These 
figures suggesta significant improvement to the 
TP/Slice metric in the range of 100% to 170%. 
When compared with the commercialSHA256 
core from Helion [23], the proposed core 
suggests anidentical area value (less 7%) while 
achieving a 40% gain to thethroughput, 
resulting in an improvement of 53% to the 
TP/Slicemetric. The structure proposed by 
McEvoy [13] also has messagepadding 
hardware, however, no figures are given for 
theindividual cost of this extra hardware. This 
message padding isperformed once at the end of 
the message, and has no significantcost when 
implemented in software. Thus, the majority of 
theproposed cores do not include the hardware 
for this operation. 
C. SHA 512 Core 
Table V presents the implementation results for 
our SHA512core and the most significant 
related art, to out best knowledge.When 
compared with [22], our core requires 25% less 
reconfigurablelogic while a throughput increase 
of 85% is achieved,resulting in a TP/Slice 
metric improvement of 165%. From allknown 
SHA512 cores, the unrolled core proposed by 
Lien in[11] is the only one capable of achieving 
a higher throughput.However, this throughput is 
only slightly higher (4%), but requirestwice as 
much area as our proposal and indicates a 77% 
higher TP/Slice metric. It should also be noticed 
that, the resultspresented by Lien in [11] do not 
include the data expansionmodule, which would 
increase the required area even further. 
D. Integration on the MOLEN Processor 
In order to create a practical platform where the 
SHA corescan be used and tested, a wrapping 
interface has been addedto integrate these units 
in the MOLEN polymorphic processor.The 
MOLEN operation [17], [24] is based on the 
coprocessorarchitectural paradigm, allowing the 
usage of reconfigurablecustom designed 
hardware units. The MOLEN 
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computationalparadigm enables the SHA cores 
to be embedded in a reconfigurablecoprocessor, 
tightly coupled with the GPP. Theconsidered 
polymorphic architecture prototype uses the 
FPGAwith an embedded PowerPC, running at 
300 MHz as the coreGPP, and a main data 
memory running at 100 MHz. 
Theimplementation is identical to the one 
described in [25].For this coprocessor 
implementations of the SHA hashfunctions, the 
SHA128, SHA256, and SHA512 cores, withIV 
loading, have been used. Implementations 
results of theSHA128 CCU indicate a device 
occupation of 813 slices, usinga total of 6% of 
the available resources on a XC2VP30 FPGA. 
In this functional test the CCU is running with 
same clockfrequency as the main data memory, 
operating at 100 MHz,thus achieving a 
maximum throughput of 623 Mbit/s. 
Whencompared with the 
puresoftwareimplementations, capable 
ofachieving a maximum throughput of 4 Mbit/s 
and 5 Mbit/s forSHA128 and SHA256, 
respectively, the usage of this hybridHW/SW 
approach allows for a speedup up to 150 
times.The CCUs for the SHA256 and SHA512 
cores require 994and 1806 Slices using in total 
7% and 13% of the available 
resources,respectively. At 100 MHz, the SHA-2 
CCUs are capableof achieving a maximum 
throughput of 785 Mbit/s forSHA-256 and 1.2 
Gbit/s for the SHA-512 hash function. 
TABLE III 
SHA-1 CORE PERFORMANCE 
COMPARISONS 

 
VI. CONCLUSION 

We have proposed hardware rescheduling and 
reutilizationtechniques to improve SHA algorithm 
realizations, both inspeed and in area.With operation 
rescheduling, the critical pathcan be reduced in a 
similar manner to structures with loop 
unrolling,without increasing the required hardware, 
also leadingto the usage of a well balanced pipeline 
structure. An efficienttechnique for the addition of 
the DM is also proposed. Thistechnique allows for a 

substantial reduction on the requiredreconfigurable 
resources, while concealing the extra clockcycle 
delay introduced by the pipeline.Implementation 
results clearly indicate significant performanceand 
hardware gains for the proposed cores when 
comparedto the existing commercial cores and 
related academiaart. Experimental results for hybrid, 
hardware/software, implementationsof the SHA 
algorithms suggest a speed up of150 times for both 
hashcomputations regarding pure 
softwareimplementations. 
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