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Abstract 
In real world, we usually come across the 
constrained non-linear optimization 
problems (CNLP) which bounds on the 
decision variables and the objective 
functions are either maximized or minimized 
under some constraint. In recent past, there 
have been many traditional and heuristic 
algorithms to solve CNLP. Lately, the Excel 
Solver and MATLAB® toolboxes have made 
use of Genetic Algorithms as an inbuilt 
function in order to solve CNLP. This paper 
studies various optimization techniques 
which are in use in order to solve the 
constrained non-linear problems. 
Keywords: constrained non-linear problem; 
heuristic algorithms; evolutionary 
algorithms 

I.  INTRODUCTION  

The non-linear problems are more frequently 
encountered while modeling the real time 
systems and hence the non-linear problems have 
attracted researchers. As the nature of non-linear 
problems is complex, they can be encountered 
in our day to day life. Manually solving the non-
linear is next to impossible as it involves the 
mathematical rigidity of the properties that are 
to be satisfied. When compared to the linear 
problems, non-linear are far more difficult to be 
solved. Hence making use of computing 
resources could be of great help to the 
researchers those who are willing t work in the 
domain of non-linear problems. Many a times, 
in order to make a non-linear into a linear 
problems, many approximations are done and 

thereby reducing the efficiency and could be of 
no help in the real life problem. 

General form of a non-linear problem is: 
Optimize (X)f  Subject to constraints 

j(X)( ) bjg  1, 2,...,j m  

Where  1 2 3 n(x , x , x ,....., x )X   

 There have been many evolutionary 
algorithms and techniques that are available for 
the purpose of solving the constrained non-
linear problem. The major problem faced in this 
domain of non-linear problems is that, a 
technique that is suitable for solving a particular 
non-linear problem would be highly inefficient 
for some other non-linear problem and hence 
there is a high risk in choosing any particular 
technique in order to solve a particular non-
linear problem. 

 Starting with the Random Search Technique 
(RST) which was developed in 1965 by Prince 
and later it was improved by C Mohan and 
Kusum Deep as they made use of FORTRAN to 
solve the problems. Also since then, there have 
been many versions of the random search 
technique which have been based on higher 
level programming languages like C, C++ [1]. 
After the RST came the Genetic Algorithms 
(GA) and their hybrids [2], [3] and [4] which 
are majorly based on evolution and this got 
accepted by many researchers round the world 
in order to solve some complex non-linear 
problems. There have also been many heuristic 
algorithms and their hybrids which have been 
used in the non-linear problem solving. Particle 
Swarm Optimization [5], [6], [7], Ant Colony 
Optimization [8], and many more are the well-
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known techniques for the non-linear problem 
solving. 

II. METHODS OF OPTIMIZATION 
A. Particle Swarm Optimization (PSO) 

The Particle Swarm Optimization is an 
evolutionary search and optimization technique 
that has been designed and developed by 
Kennedy and Eberhart. Lately, the concept of 
PSO has been growing rapidly and this can be 
claimed from the number of applications that 
make use of the PSO. The major concept on 
which the PSO works is the behavior of some of 
the animal societies that have no leader like the 
fish or the birds. Basically, a group of animals 
that do not have any leader will some or the 
other way find some food for themselves at 
random or they could also follow a member 
from their group who is very much near to 
finding the food that is nothing but the possible 
solution to the problem. The groups of animals 
do achieve best of the results by communicating 
between the other animals that are in a better 
position of finding food. The animal who has 
found the source of food will inform the 
remaining animals in the group and hence the 
others follow simultaneously to that particular 
place. The concept of PSO follows the work of 
such animal communities in order to find the 
optimal values. Particle swarm optimization 
basically comprises of a swarm of particles, 
where in the particles represent a potential 
solution. 

 
Fig. 1. Variants of Particle Swarm Optimization 

 Particle swarm optimization is one of the rare 
biologically inspired algorithms, which was 
proposed by Kennedy and Eberhart in the year 

1995. The PSO algorithm was based on the 
behavior of birds and fishes. Lately, there have 
been many variants of the PSO technique as can 
be seen from figure 1. The basic variants of the 
PSO are velocity clamping, inertia weight, 
construction coefficient, synchronous and 
asynchronous updates. Each of the variant of the 
PSO is proposed recently and hence, the 
shortfall caused by the previous PSO shall be 
covered in the most recent variant of the PSO. 

 Let x and v denote a particle coordinates 
(position) and its corresponding flight speed 
(velocity) in a search space, respectively. 
Therefore, the i-th particle is represented as xi = 
(xi1,xi2,…xid) in the d-dimensional space. The 
best previous position of the i-th particle is 
recorded and represented as pbesti = (pbesti1, 
pbesti2, … pbestid)The index of the best particle 
among all the particles in the group is 
represented by the gbestd. The rate of the 
velocity for particle i is represented as vi= (vi1, 
vi2, … vid) . The modified velocity and position 
of each particle can be calculated using the 
current velocity and the distance from pbesti to 
gbestd as shown in the following formulas: 

(t 1) (t) (t)

1
. * ()*( )

id id ididw ra pn b std ev v c x
       (1) 

(t)

2
*Rand()*(g )

iddbestc x     

(t 1) (t) (t 1)
, 1, 2,...,

id id id
i nx x v

               (2) 

 1, 2,..., md   

Where, 

n  number of particles in a group; 

m  number of members in a particle; 

t  pointer to iterations (generations); 

w  inertia weight factor; 

c1,c2 acceleration constant; 

rand(), Rand() uniform random value in the 
range [0,1]; 

(t)

iv  velocity of particle I at iteration t,  

   min (t) max

d id dV v V    

(t)

ix current position of particle i at iteration t. 

 In the above procedures, the parameter Vmax 
determined the resolution, or fitness, with which 
regions are to be searched between the present 
position and the target position. If Vmax is too 
high, particles might fly past good solutions. If 
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Vmax is too small, particles may not explore 
sufficiently beyond local solutions. In many 
experiences with PSO, Vmax was often set at 10–
20% of the dynamic range of the variable on 
each dimension. 

 The constants c1 and c2 and represent the 
weighting of the stochastic acceleration terms 
that pull each particle toward the pbest and gbest 
positions. Low values allow particles to roam 
far from the target regions before being tugged 
back. On the other hand, high values result in 
abrupt movement toward, or past, target 
regions. Hence, the acceleration constants c1 
and c2 were often set to be 2.0 according to past 
experiences.  

 Suitable selection of inertia weight w in (3) 
provides a balance between global and local 
explorations, thus requiring less iteration on 
average to find a sufficiently optimal solution. 
As originally developed, w often decreases 
linearly from about 0.9 to 0.4 during a run. In 
general, the inertia weight w is set according to 
the following equation: 

           max min
max

max

*w iterw ww iter


               (3) 

where itermax is the maximum number of 
iterations and iter is the current number of 
iterations. 

B. Genetic Algorithms (GA) 

The famous naturalist Charles Darwin 
defined natural selection or survival of the 
fittest in his book (Darwin, 1929) as the 
preservation of favourable individual 
differences and variations, and the destruction 
of those that are injurious. In nature, individuals 
have to adapt to their environment in order to 
survive in a process called evolution, in which 
those features that make an individual more 
suitable to compete are preserved when it 
reproduces, and those features that make it 
weaker are eliminated. Such features are 
controlled by units called genes, which form 
sets known as chromosomes. Over subsequent 
generations not only the fittest individuals 
survive, but also their genes which are 
transmitted to their descendants during the 
sexual recombination process, which is called 
crossover. 

Basically, the central thrust of the research 
on genetic algorithms (GAs) has been due to its 
robustness and the balance between efficiency 

and efficacy necessary for survival in many 
different environments. GAs are search 
algorithms, which are based on the mechanics 
of natural selection and survival of the fittest, 
and unlike many mathematical programming 
algorithms they do not require the evaluation of 
gradients of the objective function and 
constraints. 

The Genetic Algorithms are heuristic search 
approaches that are applicable and valid for a 
large range of optimization problems and hence 
this flexibility makes the genetic algorithms 
very attractive for many of the optimization 
problems. The concept on which the genetic 
algorithms work is evolution. The current 
variety and success of species is a good reason 
for believing in the power of evolution. Species 
are able to adapt to their environment. They 
have developed to complex structures that 
allow the survival in different kinds of 
environments. Mating and getting offspring to 
evolve belong to the main principles of the 
success of evolution. These are good reasons 
for adapting evolutionary principles to solving 
optimization problems. 

The classic Genetic Algorithm is based on a 
set of candidate solutions that represent a 
solution to the optimization problem we want to 
solve. A solution is a potential candidate for an 
optimum of the optimization problem. Its 
representation plays an important role, as the 
representation determines the choice of the 
genetic operators. Representations are usually 
lists of values and are more generally based on 
sets of symbols. If they are continuous, they are 
called vectors, if they consist of bits, they are 
called bit strings. In case of combinatorial 
problems the solutions often consist of symbols 
that appear in a list. An example is the 
representation of a tour in case of the traveling 
salesman problem. Genetic operators produce 
new solutions in the chosen representation and 
allow the walk in solution space. 

Figure 2 illustrates the flowchart for a 
simple GA linked to a structural design 
problem. At the beginning, all the necessary 
data – GA parameters and structural geometry – 
will be read and the process of the GA will start 
for the first generation. The initial population 
will be generated randomly. Then, the objective 
function regarded as the weight of the structure 
as well as the constraint functions, which are 
reflected on the design criteria requested by BS 
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5950, are computed. At this stage, the average, 
maximum and the fittest design are obtained. 
Convergence criteria described later are also 
checked. The GA process is terminated if the 
convergence is achieved. Otherwise, the GA 
process resumes. By creating the mating pool 
and applying the GA operators, the next 
population is created. The GA process will 
proceed until either the convergence is 
achieved or the maximum number of 
generations is reached. 

 
Fig. 2. Flowchart for GA linked to design 

problem 

C. MATLAB® 

MATLAB® basically stands for Matrix 
Laboratory. It is a language having high 
performance capability used for technical 
computing. MATLAB® provides two different 
ways of solving problems, one is by the method 
of coding and the other is by making use of a 
toolbox. In the toolbox, there are plenty of tools 
to solve the optimization problems that are 
computer oriented and thereby making the 
process of solving such types of problems at a 
very high speed and making it comparatively 
less tedious and increasing the accuracy. 

MATLAB® is also very well known for its 
graphics. There are many plotting functions that 
are available in MATLAB® toolbox which help 
in providing a good visual representation of the 
solutions of the various problems. The main 
purpose of studying the MATLAB® toolboxes 
is to get the basic idea of the optimization 
toolbox that is present in MATLAB®. The 
optimization toolbox is used to find the 
minimum of constrained non-linear 
multivariable function. Basically, it finds the 
minimum of a constrained non-linear 
multivariable function, and by default it is 
based on the Sequential Quadratic 
Programming algorithm. This algorithm 
repeatedly modifies a population of individual 
solutions. 

Let us consider an example of a YALMIP 
MATLAB® toolbox that is used for the purpose 
of optimization. Once all variables and 
constraints have been defined, the optimization 
problem can be solved. Let us for simplicity 
assume that we have matrices c, A and b and 
we wish to minimize cTx subject to the 
constraints Ax ≤ b and ∑xi = 1. The YALMIP 
(Optimization toolbox in MATLAB®) code to 
define and solve this problem is extremely 
intuitive and is essentially a one-to-one 
mapping from the mathematical description. 
The command solvesdp3 is used for all4 
optimization problems and typically take two 
arguments, a set of constraints and the objective 
function.  
>> x = sdpvar(length(c),1);  
>> F = set(A*x < b)+set(sum(x)==1);  
>> solvesdp(F,c’*x); 
 YALMIP will automatically categorize 
this as a linear programming problem and call a 
suitable solver. The optimal solution can be 
extracted with the command double(x). A third 
argument can be used to guide YALMIP in the 
selection of solver, setting display levels and 
change solver specific options etc.  
>> ops = sdpsettings(’solver’,’glpk’);  
>> ops = sdpsettings(ops,’glpk.dual’,0);  
>> ops = sdpsettings(ops,’verbose’,1);  
>> solvesdp(F,c’*x,ops); 
 

D. Branch and Bound 

The branch and bound method BBM is 
perhaps the most widely known–method for 
mixed–discrete optimization problems. The 
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method was originally developed for LP, 
however it is quite general and can be applied 
to nonlinear discrete and mixed variable 
problems. It is basically an enumeration method 
where one first obtains a minimum point for the 
problem assuming all variables to be 
continuous. Then, each variable is assigned a 
discrete value in sequence and the problem is 
solved again in the remaining variables. The 
process of assigning discrete values to variables 
need not start from a continuous optimum point 
although this approach may reduce the number 
of times the problem needs to be re–solved to 
obtain a feasible discrete point and 
subsequently the optimum solution. It can be 
seen that the number of times the problem 
needs to be re–solved increases exponentially 
with the number of variables. Several 
procedures have been devised to reduce this 
number. The first use of the branch and bound 
method is attributed to Land and Doig for linear 
problem. Other attempts, to use branch and 
bound to solve integer LP problems related to 
the plastic design of frames, made by 
Reinschmidt. 

Branch and bound was combined with 
exterior penalty functions and SQP methods to 
treat the mixed–discrete NLP problem. John et 
al. had combined branch and bound with 
sequential linearization for discrete optimal 
design of trusses. Hajela and Shih used branch 
and bound to solve multi–objective 
optimization problems with discrete and integer 
variables. Salajegheh and Vanderplaats [9] used 
branch and bound for optimizing trusses with 
discrete sizing and shape variables. Large 
storage space was needed and an exponential 
growth in computational effort limits the 
applicability of branch and bound to solve 
higher dimensional problems.  

The usual BBM approach  is  to  
systematically search continuous solutions 
where the  discrete  variables  are  forced  to  
take  discrete  values  from  the  specified set.  
The logical  structure  for  the  set of  solutions  
is  that of  a  tree  for  each variable.  Initially 
an optimum point is obtained by treating all 
design variables as continuous. If this solution 
is discrete, then the process is terminated. If 
one of the desired variables is not discrete, then 
its value lies between two discrete values: 

, , , 1j i j jd x d 
   

Now two sub–problems are defined, one with 
the constraint  

, ,i j jx d 
   and the other with 

, , 1i j jx d 
  . This process called branching. It 

basically eliminates some portion of the 
continuous feasible region, which is not 
feasible for the discrete problem. It  does  not,  
however,  eliminate  any  of  the  discrete  
feasible  solutions.  The  two  sub–problems  
are  solved  again,  and  the  optimum  solutions  
are  stored  as nodes of  the  tree containing 
optimum values of the variables, the objective 
function and the appropriate bounds on the 
variables. This process of branching and 
solving continuous problems is continued until 
a feasible solution is obtained. The cost 
function corresponding to this solution becomes 
an upper bound on the optimum solution. From  
this  point,  all  the nodes of the tree that have 
cost function values higher than the established 
upper bound are eliminated from further 
consideration. Such nodes, known as fathomed 
nodes, when their  lowest  point  is  reached  
and  no  further  branching  is  necessary  from  
them.  This process is known as bounding. 

E. Simulated Annealing 

Simulated annealing (SA) is one of the 
techniques, which do not require derivatives of 
the problem functions because it does not use 
any gradient or Hessian information. The idea 
of SA originated in statistical mechanics by 
Metropolis et al. The approach is suited to 
solving combinatorial optimization problems, 
such as discrete–integer programming 
problems. 

The use of simulated annealing for structural 
optimization is a quite recent occurrence. 
Elperin applied the SA to design a ten–bar truss 
where member cross–sectional areas were to be 
selected from a set of discrete values. Kincaid 
and Padula used SA for minimizing the 
distortion and internal forces in a truss 
structure. Balling obtained the optimum design 
of three–dimensional steel structures using SA. 
One year later, the same framework was 
studied using the filtered simulated annealing 
algorithm by May and Balling. Recently, Leite 
and Topping proposed a parallel simulated 
annealing model for structural optimization. 

III. CONCLUSION 

The realistic problems that are seen are more 
often non-linear in nature and are also 
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constantly varying which brings in demand for 
improvised techniques that give better optimal 
results. Although there are many other 
techniques, there is still need for more robust 
techniques and also must be feasible. In this 
paper, a study of various optimization 
techniques that are in place for solving 
constrained non-linear problems. In the process 
of the study being done, a new technique can be 
found that can be useful to solve nonlinear 
problems. And also by testing the technique on 
certain benchmarking constrained non-linear 
problems, one can find whether the technique is 
useful and also whether it is robust by nature or 
not. 
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