

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-2, 2018

76

A STUDY ON OPTIMIZATION TECHNIQUES FOR SOLVING

CONSTRAINED NON LINEAR PROBLEMS
M.M.Janolkar1, K.A.Joshi2, K.L.Bondar3

1First Year Engineering Department
Prof Ram Meghe College of Engineering & Management, Amravati-India

2Electrical Engineering Department, Prof Ram Meghe College of Engineering & Management
Amravati-India

3P.G. Department of Mathematics, N.E.S. Science College, Nanded-India

Abstract
In real world, we usually come across the
constrained non-linear optimization
problems (CNLP) which bounds on the
decision variables and the objective
functions are either maximized or minimized
under some constraint. In recent past, there
have been many traditional and heuristic
algorithms to solve CNLP. Lately, the Excel
Solver and MATLAB® toolboxes have made
use of Genetic Algorithms as an inbuilt
function in order to solve CNLP. This paper
studies various optimization techniques
which are in use in order to solve the
constrained non-linear problems.
Keywords: constrained non-linear problem;
heuristic algorithms; evolutionary
algorithms

I. INTRODUCTION

The non-linear problems are more frequently
encountered while modeling the real time
systems and hence the non-linear problems have
attracted researchers. As the nature of non-linear
problems is complex, they can be encountered
in our day to day life. Manually solving the non-
linear is next to impossible as it involves the
mathematical rigidity of the properties that are
to be satisfied. When compared to the linear
problems, non-linear are far more difficult to be
solved. Hence making use of computing
resources could be of great help to the
researchers those who are willing t work in the
domain of non-linear problems. Many a times,
in order to make a non-linear into a linear
problems, many approximations are done and

thereby reducing the efficiency and could be of
no help in the real life problem.

General form of a non-linear problem is:
Optimize (X)f Subject to constraints

j(X)() bjg  1, 2,...,j m

Where 1 2 3 n(x , x , x ,....., x)X 

 There have been many evolutionary
algorithms and techniques that are available for
the purpose of solving the constrained non-
linear problem. The major problem faced in this
domain of non-linear problems is that, a
technique that is suitable for solving a particular
non-linear problem would be highly inefficient
for some other non-linear problem and hence
there is a high risk in choosing any particular
technique in order to solve a particular non-
linear problem.

 Starting with the Random Search Technique
(RST) which was developed in 1965 by Prince
and later it was improved by C Mohan and
Kusum Deep as they made use of FORTRAN to
solve the problems. Also since then, there have
been many versions of the random search
technique which have been based on higher
level programming languages like C, C++ [1].
After the RST came the Genetic Algorithms
(GA) and their hybrids [2], [3] and [4] which
are majorly based on evolution and this got
accepted by many researchers round the world
in order to solve some complex non-linear
problems. There have also been many heuristic
algorithms and their hybrids which have been
used in the non-linear problem solving. Particle
Swarm Optimization [5], [6], [7], Ant Colony
Optimization [8], and many more are the well-

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-2, 2018

77

known techniques for the non-linear problem
solving.

II. METHODS OF OPTIMIZATION
A. Particle Swarm Optimization (PSO)

The Particle Swarm Optimization is an
evolutionary search and optimization technique
that has been designed and developed by
Kennedy and Eberhart. Lately, the concept of
PSO has been growing rapidly and this can be
claimed from the number of applications that
make use of the PSO. The major concept on
which the PSO works is the behavior of some of
the animal societies that have no leader like the
fish or the birds. Basically, a group of animals
that do not have any leader will some or the
other way find some food for themselves at
random or they could also follow a member
from their group who is very much near to
finding the food that is nothing but the possible
solution to the problem. The groups of animals
do achieve best of the results by communicating
between the other animals that are in a better
position of finding food. The animal who has
found the source of food will inform the
remaining animals in the group and hence the
others follow simultaneously to that particular
place. The concept of PSO follows the work of
such animal communities in order to find the
optimal values. Particle swarm optimization
basically comprises of a swarm of particles,
where in the particles represent a potential
solution.

Fig. 1. Variants of Particle Swarm Optimization

 Particle swarm optimization is one of the rare
biologically inspired algorithms, which was
proposed by Kennedy and Eberhart in the year

1995. The PSO algorithm was based on the
behavior of birds and fishes. Lately, there have
been many variants of the PSO technique as can
be seen from figure 1. The basic variants of the
PSO are velocity clamping, inertia weight,
construction coefficient, synchronous and
asynchronous updates. Each of the variant of the
PSO is proposed recently and hence, the
shortfall caused by the previous PSO shall be
covered in the most recent variant of the PSO.

 Let x and v denote a particle coordinates
(position) and its corresponding flight speed
(velocity) in a search space, respectively.
Therefore, the i-th particle is represented as xi =
(xi1,xi2,…xid) in the d-dimensional space. The
best previous position of the i-th particle is
recorded and represented as pbesti = (pbesti1,
pbesti2, … pbestid)The index of the best particle
among all the particles in the group is
represented by the gbestd. The rate of the
velocity for particle i is represented as vi= (vi1,
vi2, … vid) . The modified velocity and position
of each particle can be calculated using the
current velocity and the distance from pbesti to
gbestd as shown in the following formulas:

(t 1) (t) (t)

1
. * ()*()

id id ididw ra pn b std ev v c x
    (1)

(t)

2
Rand()(g)

iddbestc x 

(t 1) (t) (t 1)
, 1, 2,...,

id id id
i nx x v

    (2)

 1, 2,..., md 

Where,

n number of particles in a group;

m number of members in a particle;

t pointer to iterations (generations);

w inertia weight factor;

c1,c2 acceleration constant;

rand(), Rand() uniform random value in the
range [0,1];

(t)

iv velocity of particle I at iteration t,

 min (t) max

d id dV v V 

(t)

ix current position of particle i at iteration t.

 In the above procedures, the parameter Vmax
determined the resolution, or fitness, with which
regions are to be searched between the present
position and the target position. If Vmax is too
high, particles might fly past good solutions. If

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-2, 2018

78

Vmax is too small, particles may not explore
sufficiently beyond local solutions. In many
experiences with PSO, Vmax was often set at 10–
20% of the dynamic range of the variable on
each dimension.

 The constants c1 and c2 and represent the
weighting of the stochastic acceleration terms
that pull each particle toward the pbest and gbest
positions. Low values allow particles to roam
far from the target regions before being tugged
back. On the other hand, high values result in
abrupt movement toward, or past, target
regions. Hence, the acceleration constants c1
and c2 were often set to be 2.0 according to past
experiences.

 Suitable selection of inertia weight w in (3)
provides a balance between global and local
explorations, thus requiring less iteration on
average to find a sufficiently optimal solution.
As originally developed, w often decreases
linearly from about 0.9 to 0.4 during a run. In
general, the inertia weight w is set according to
the following equation:

 max min
max

max

*w iterw ww iter


  (3)

where itermax is the maximum number of
iterations and iter is the current number of
iterations.

B. Genetic Algorithms (GA)

The famous naturalist Charles Darwin
defined natural selection or survival of the
fittest in his book (Darwin, 1929) as the
preservation of favourable individual
differences and variations, and the destruction
of those that are injurious. In nature, individuals
have to adapt to their environment in order to
survive in a process called evolution, in which
those features that make an individual more
suitable to compete are preserved when it
reproduces, and those features that make it
weaker are eliminated. Such features are
controlled by units called genes, which form
sets known as chromosomes. Over subsequent
generations not only the fittest individuals
survive, but also their genes which are
transmitted to their descendants during the
sexual recombination process, which is called
crossover.

Basically, the central thrust of the research
on genetic algorithms (GAs) has been due to its
robustness and the balance between efficiency

and efficacy necessary for survival in many
different environments. GAs are search
algorithms, which are based on the mechanics
of natural selection and survival of the fittest,
and unlike many mathematical programming
algorithms they do not require the evaluation of
gradients of the objective function and
constraints.

The Genetic Algorithms are heuristic search
approaches that are applicable and valid for a
large range of optimization problems and hence
this flexibility makes the genetic algorithms
very attractive for many of the optimization
problems. The concept on which the genetic
algorithms work is evolution. The current
variety and success of species is a good reason
for believing in the power of evolution. Species
are able to adapt to their environment. They
have developed to complex structures that
allow the survival in different kinds of
environments. Mating and getting offspring to
evolve belong to the main principles of the
success of evolution. These are good reasons
for adapting evolutionary principles to solving
optimization problems.

The classic Genetic Algorithm is based on a
set of candidate solutions that represent a
solution to the optimization problem we want to
solve. A solution is a potential candidate for an
optimum of the optimization problem. Its
representation plays an important role, as the
representation determines the choice of the
genetic operators. Representations are usually
lists of values and are more generally based on
sets of symbols. If they are continuous, they are
called vectors, if they consist of bits, they are
called bit strings. In case of combinatorial
problems the solutions often consist of symbols
that appear in a list. An example is the
representation of a tour in case of the traveling
salesman problem. Genetic operators produce
new solutions in the chosen representation and
allow the walk in solution space.

Figure 2 illustrates the flowchart for a
simple GA linked to a structural design
problem. At the beginning, all the necessary
data – GA parameters and structural geometry –
will be read and the process of the GA will start
for the first generation. The initial population
will be generated randomly. Then, the objective
function regarded as the weight of the structure
as well as the constraint functions, which are
reflected on the design criteria requested by BS

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-2, 2018

79

5950, are computed. At this stage, the average,
maximum and the fittest design are obtained.
Convergence criteria described later are also
checked. The GA process is terminated if the
convergence is achieved. Otherwise, the GA
process resumes. By creating the mating pool
and applying the GA operators, the next
population is created. The GA process will
proceed until either the convergence is
achieved or the maximum number of
generations is reached.

Fig. 2. Flowchart for GA linked to design

problem

C. MATLAB®

MATLAB® basically stands for Matrix
Laboratory. It is a language having high
performance capability used for technical
computing. MATLAB® provides two different
ways of solving problems, one is by the method
of coding and the other is by making use of a
toolbox. In the toolbox, there are plenty of tools
to solve the optimization problems that are
computer oriented and thereby making the
process of solving such types of problems at a
very high speed and making it comparatively
less tedious and increasing the accuracy.

MATLAB® is also very well known for its
graphics. There are many plotting functions that
are available in MATLAB® toolbox which help
in providing a good visual representation of the
solutions of the various problems. The main
purpose of studying the MATLAB® toolboxes
is to get the basic idea of the optimization
toolbox that is present in MATLAB®. The
optimization toolbox is used to find the
minimum of constrained non-linear
multivariable function. Basically, it finds the
minimum of a constrained non-linear
multivariable function, and by default it is
based on the Sequential Quadratic
Programming algorithm. This algorithm
repeatedly modifies a population of individual
solutions.

Let us consider an example of a YALMIP
MATLAB® toolbox that is used for the purpose
of optimization. Once all variables and
constraints have been defined, the optimization
problem can be solved. Let us for simplicity
assume that we have matrices c, A and b and
we wish to minimize cTx subject to the
constraints Ax ≤ b and ∑xi = 1. The YALMIP
(Optimization toolbox in MATLAB®) code to
define and solve this problem is extremely
intuitive and is essentially a one-to-one
mapping from the mathematical description.
The command solvesdp3 is used for all4
optimization problems and typically take two
arguments, a set of constraints and the objective
function.
>> x = sdpvar(length(c),1);
>> F = set(A*x < b)+set(sum(x)==1);
>> solvesdp(F,c’*x);
 YALMIP will automatically categorize
this as a linear programming problem and call a
suitable solver. The optimal solution can be
extracted with the command double(x). A third
argument can be used to guide YALMIP in the
selection of solver, setting display levels and
change solver specific options etc.
>> ops = sdpsettings(’solver’,’glpk’);
>> ops = sdpsettings(ops,’glpk.dual’,0);
>> ops = sdpsettings(ops,’verbose’,1);
>> solvesdp(F,c’*x,ops);

D. Branch and Bound

The branch and bound method BBM is
perhaps the most widely known–method for
mixed–discrete optimization problems. The

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-2, 2018

80

method was originally developed for LP,
however it is quite general and can be applied
to nonlinear discrete and mixed variable
problems. It is basically an enumeration method
where one first obtains a minimum point for the
problem assuming all variables to be
continuous. Then, each variable is assigned a
discrete value in sequence and the problem is
solved again in the remaining variables. The
process of assigning discrete values to variables
need not start from a continuous optimum point
although this approach may reduce the number
of times the problem needs to be re–solved to
obtain a feasible discrete point and
subsequently the optimum solution. It can be
seen that the number of times the problem
needs to be re–solved increases exponentially
with the number of variables. Several
procedures have been devised to reduce this
number. The first use of the branch and bound
method is attributed to Land and Doig for linear
problem. Other attempts, to use branch and
bound to solve integer LP problems related to
the plastic design of frames, made by
Reinschmidt.

Branch and bound was combined with
exterior penalty functions and SQP methods to
treat the mixed–discrete NLP problem. John et
al. had combined branch and bound with
sequential linearization for discrete optimal
design of trusses. Hajela and Shih used branch
and bound to solve multi–objective
optimization problems with discrete and integer
variables. Salajegheh and Vanderplaats [9] used
branch and bound for optimizing trusses with
discrete sizing and shape variables. Large
storage space was needed and an exponential
growth in computational effort limits the
applicability of branch and bound to solve
higher dimensional problems.

The usual BBM approach is to
systematically search continuous solutions
where the discrete variables are forced to
take discrete values from the specified set.
The logical structure for the set of solutions
is that of a tree for each variable. Initially
an optimum point is obtained by treating all
design variables as continuous. If this solution
is discrete, then the process is terminated. If
one of the desired variables is not discrete, then
its value lies between two discrete values:

, , , 1j i j jd x d 
 

Now two sub–problems are defined, one with
the constraint

, ,i j jx d 
 and the other with

, , 1i j jx d 
 . This process called branching. It

basically eliminates some portion of the
continuous feasible region, which is not
feasible for the discrete problem. It does not,
however, eliminate any of the discrete
feasible solutions. The two sub–problems
are solved again, and the optimum solutions
are stored as nodes of the tree containing
optimum values of the variables, the objective
function and the appropriate bounds on the
variables. This process of branching and
solving continuous problems is continued until
a feasible solution is obtained. The cost
function corresponding to this solution becomes
an upper bound on the optimum solution. From
this point, all the nodes of the tree that have
cost function values higher than the established
upper bound are eliminated from further
consideration. Such nodes, known as fathomed
nodes, when their lowest point is reached
and no further branching is necessary from
them. This process is known as bounding.

E. Simulated Annealing

Simulated annealing (SA) is one of the
techniques, which do not require derivatives of
the problem functions because it does not use
any gradient or Hessian information. The idea
of SA originated in statistical mechanics by
Metropolis et al. The approach is suited to
solving combinatorial optimization problems,
such as discrete–integer programming
problems.

The use of simulated annealing for structural
optimization is a quite recent occurrence.
Elperin applied the SA to design a ten–bar truss
where member cross–sectional areas were to be
selected from a set of discrete values. Kincaid
and Padula used SA for minimizing the
distortion and internal forces in a truss
structure. Balling obtained the optimum design
of three–dimensional steel structures using SA.
One year later, the same framework was
studied using the filtered simulated annealing
algorithm by May and Balling. Recently, Leite
and Topping proposed a parallel simulated
annealing model for structural optimization.

III. CONCLUSION

The realistic problems that are seen are more
often non-linear in nature and are also

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-2, 2018

81

constantly varying which brings in demand for
improvised techniques that give better optimal
results. Although there are many other
techniques, there is still need for more robust
techniques and also must be feasible. In this
paper, a study of various optimization
techniques that are in place for solving
constrained non-linear problems. In the process
of the study being done, a new technique can be
found that can be useful to solve nonlinear
problems. And also by testing the technique on
certain benchmarking constrained non-linear
problems, one can find whether the technique is
useful and also whether it is robust by nature or
not.

REFERENCES

[1] C. Mohan and H.T. Nguyen, “A Controlled
Random Search Technique Incorporating
the Simulated Annealing Concept for
Solving Integer and Mixed Integer Global
Optimization Problems”, Comput. Optim.
Appl., 14, pp. 103-32, 1999.

[2] Kusum Deep, “Recent advances in
optimization techniques and their
applications”, Department of Mathematics
and Continuing Education Centre, Indian
Institute of Technology, 2009.

[3] Richard Y. K. Fung, Jiafu Tang and
Dingwei Wang, “Extension of a hybrid
genetic algorithm for non-linear

programming problems with equality and
inequality constraints”, Comput. Oper. Res.,
29, pp. 261-74, 2002.

[4] Jiafu Tang and Dingwei Wang, “A Hybrid
Genetic Algorithm for a type of Nonlinear
Programming Problem”, Comput. Math.
Appl., 36(5), pp. 11-21, 1998.

[5] Mazdak Shokrian and Karen Ann High,
“Application of a multi objective multi-
leader particle swarm optimization
algorithm on NLP and MINLP problems”,
Comput. Chem. Eng., 60, pp. 57-75, 2014.

[6] Yang Sun, Lingbo Zhang and
XingshengGu, “A hybrid co-evolutionary
cultural algorithm based on particle
swwarm optimization for solving global
optimization problems”, Neurocomputing,
98, pp. 76-89, 2012.

[7] Ying Dong, Jiafu Tang, Baodong Xu and
Dingwei Wang, “An Application of Swarm
Optimization to Nonlinear Programming”,
Comput. Math. Appl., 49, pp. 1655-68,
2005.

[8] Christian Blum, “Ant Colony Optimization:
Introduction and recent trends”, Phys.
Life.Rev., 2, pp. 353-73, 2005.

[9] Salajegheh, E. & Vanderplaats, G.N.
“Structural Optimization”, pp. 6: 79. ,
1993

