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Abstract 
A new window function is presented which 
like the well known Hamming window offers 
a preferred property for use in signal 
spectrum analysis: the sum of window 
coefficients with its shifted version by half of 
the order is constant for the overlapped 
region in the time domain. In high orders, the 
new window has main-lobe width equal to 
Hamming window. For low orders, the 
window parameters are modified to have 
smaller main-lobe width compared to 
Hamming window, while maintaining smaller 
maximum side-lobe peak. The results indicate 
performance improvement of the proposed 
window compared to Kaiser and Gaussian 
windows. The FIR filters designed by 
windowing method show the efficiency of the 
new window. 
Keywords: FIR, Window 
 

I.INTRODUCTION 
Window functions (or simply as windows) are 
widely used in digital signal processing for the 
applications in signal analysis and estimation, 
digital filter design and speech processing. In 
literature many windows have been proposed. 
They are known as suboptimal solutions and the 
best window is depending on the applications.   
FFT windows reduce the effects of leakage but 
can not only eliminate leakage entirely. In effect, 
they only change the shape of the leakage. In 
addition each type of window affects the 
spectrum in a slightly different way. Many 
different windows have been proposed over time 
each with its own advantage and disadvantage 
relative to the others. Some are effective for 
specific types of signal types such as random or 

sinusoidal. Some improve the frequency 
resolution, that is, they make it easier to detect 
the exact frequency of a peak in the spectrum. 
Some improve the amplitude accuracy that is 
they most accurately indicate the level of the 
peak. The best type of window should be chosen 
for each specific application. 
 Two main applications of the windows in digital 
signal processing are: data analysis based on Fast 
Fourier Transform (FFT) and design of Finite 
Impulse Response filters from Infinite Impulse 
Response filters. For FFT analysis, windows are 
employed to suppress the so- called “leakage 
effect”, and for FIR filter design according to the 
“windowing method”, Gibbs oscillations are 
attenuated. Desirable characteristics for a 
window in the frequency domain are small main-
lobe width and side-lobe peak (high attenuation). 
However, these two requirements are 
contradictory, since for a given length, a window 
with a narrow main-lobe has a poor attenuation 
and vice versa. Also a third preferred property of 
window when applied in data spectrum analysis 
is that, in the time domain, the sum of window 
function (w[n]) with its shifted version by M/2 
samples (M is the window order) would be 
constant: 
w[n]+w[n-M/2]=constant                                                        
M/2 ≤ n ≤ M.............(4.3) 
For example, in analyzing the non-stationary 
signals (such as speech processing), the signal is 
partitioned into several overlapped frames to 
yield approximately stationary properties; these 
frames are, in fact, the windowed versions of the 
original signals, and if the applied window 
satisfies property in equation (4.3), the cost of 
computations is considerably decreased. The 
rectangular, Bartlett, Hanning and Hamming 
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windows offer this advantage, but other windows 
such as Blackman, Kaiser, Gaussian, and Dolph-
Chebyshev do not satisfy this property. 
In this paper, a new window function is 
presented which can be considered as a special 
case of the important class of windows, named 
raised cosine windows. The proposed window 
has 2~4 dB more side-lobe attenuation than that 
of Hamming window, while offering 
approximately the same main-lobe width and 
still satisfying the property in equation (4.3). The 
window parameters are modified to avoid the 
performance degradation for lower window 
lengths, which happens for Hamming window. 
 

II.TYPES OF WINDOWS 
There are different types of windows starting 
from simple type (rectangular window) to more 
complex type (Kaiser window). The main goal of 
these windows is to truncate the impulse 
response of the filter in order to generate fixed 
length filter. 
1. Kaiser window:   
Syntax: 
w = kaiser(L,beta) 
Description: 
It returns an L-point Kaiser  window in the 
column vector w. Beta is the Kaiser window β 
parameter that affects the sidelobe attenuation of 
the Fourier transform of the window. The default 
value for beta is 0.5. 
To obtain a Kaiser window that designs an FIR 
filter with sidelobe attenuation of α dB, use the 
following β. Kaiser window is defined by: 
 

 
                
…(4.2.1)                   

Increasing beta widens the main lobe and 
decreases the amplitude of the sidelobes 
(i.e.,increases the attenuation). 
2. Hamming window:  
Syntax: 
w = hamming(L) 
Description: 
It returns an L-point symmetric Hamming 
window in the column vector w. L should be a 
positive integer. The coefficients of a Hamming 
window are computed from the following 
equation. Hamming window is optimized to 

minimize the maximum (nearest) side lobe, 
giving it a height of about one-fifth that of the 
Hann window, a raised cosine with simpler 
coefficients. This is a raised cosine window 
defined by: 

                    
.…….(4.2.2) 
The window length is    

 
3. Gaussian window: 
Syntax: 
w = gausswin(N) 
w = gausswin(N,Alpha) 
Description: 
It  returns an N-point Gaussian window in the 
column vector w. L is a positive integer. The 
coefficients of a Gaussian window are computed 
from the following equation. The shape of this 
window is similar in the frequency domain 
because the Fourier transform of a Gaussian is 
also a Gaussian. 
 
4. Taylor window: 
 Syntax: 
w = taylorwin(n) 
Description: 
Taylor windows are similar to Chebyshev 
windows. While a Chebyshev window has the 
narrowest possible mainlobe for a specified 
sidelobe level, a Taylor window allows to make 
tradeoffs between the mainlobe width and 
sidelobe level. The Taylor distribution avoids 
edge discontinuities, so Taylor window 
sidelobes decrease monotonically. Taylor 
window coefficients are not normalized. Taylor 
windows are typically used in radar applications, 
such as weighting synthetic aperature radar 
images and antenna design.  
w = taylorwin(n) returns an n-point Taylor 
window in a column vector w. The values in this 
vector are the window weights or coefficients. n 
must be a positive integer. The default value for 
the number of approximately equal height 
sidelobes is 4 and for the maximum sidelobe 
level is -30. 
 
5. Blackman window: 
Syntax: 
w = blackman(L) 
Description: 



 
  INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)       

 
  ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-2, 2018 

21 

It returns the L-point symmetric Blackman 
window in the column vector w, where L is a 
positive integer. Blackman windows have 
slightly wider central lobes and less sideband 
leakage than equivalent length Hamming and 
Hann windows. Blackman window is defined by:  

            
............(4.2.5) 
6. Rectangular window:  
Syntax: 
w = rectwin(L) 
Description: 
It returns a rectangular window of length L in the 
column vector w. This function is provided for 
completeness; a rectangular window is 
equivalent to no window at all. It is defined by: 

                                                                                      
…………..(4.2.6) 
7. Bartlett window: 
Syntax 
w = bartlett(L) 
Description 
It  returns an L-point Bartlett window in the 
column vector w, where L must be a positive 
integer. The coefficients of a Bartlett window are 
computed. It is defined as follows: 

                                                             
………..…(4.2.7) 
 
8. Hanning window: 
Syntax 
w = hann(L) 
Description  
It  returns an L-point symmetric Hann window in 
the column vector w. L must be a positive 
integer. The coefficients of a Hann window are 
computed from the following equation. 

                                       
…..……..(4.2.8) 
The window length is L = N + 1. 

 
 
 

III.WINDOWING TECHNIQUE 
The windowing method involves multiplying the 
ideal impulse response with a window function 
to generate a corresponding filter, which tapers 
the ideal impulse response. Like the frequency 
sampling method, the windowing method 
produces a filter whose frequency response 
approximates a desired frequency response. The 
windowing method, however, tends to produce 
better results than the frequency sampling 
method. 

The impulse response of ideal filters is of infinite 
duration. It is not possible to evaluate the 
corresponding frequency response and 
implement the filter by hardware or software. 
Thus the impulse response must be truncated at 
both ends with respect to the central. Even the 
impulse response can be truncated when it is 
small enough but such a sudden cut off will cause 
some undesired effects. The window method will 
reduce them. 

In the time domain windowing means to multiply 
the infinite impulse response hD(n) by a finite 
duration window function w(n) to get a 
truncation. The resulted impulse response h(n) is 
their product and is given as follows: 

H(n) = hD(n)*w(n) ,                  

 0 ≤ n ≤ M ....................................(4.1.1) 

In the window design method we first evaluate 
the desired filter response hD(n) from the given 
desired frequency response HD( ) and then 
apply an appropriate window. Thus the method 
should be called Fourier window method. In this 
method, use is the made of the fact that the 
frequency response of the filter, HD( ) and the 
corresponding impulse response, hd(n) are 
related by inverse Fourier transform. The 
subscript D is used to distinguish between ideal 
and practical impulse response. 

HD(n)= )(




DH


n d  .........................(4.1.2) 

The toolbox provides two functions for window-
based filter design, fwind1 and fwind2. fwind1 
designs a two-dimensional filter by using a two-
dimensional window that it creates from one or 
two one-dimensional windows that is specified. 
fwind2 designs a two-dimensional filter by using 
a specified two-dimensional window directly. 
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The basic idea behind the Window method of 
filter design is that the ideal frequency response 
of the desired filter is equal to 1 for all the pass 
band frequencies, and equal to 0 for all the stop 
band frequencies and then the filter impulse 
response is obtained by taking the Discrete 
Fourier Transform (DFT) of the ideal frequency 
response. Unfortunately, the filter response 
would be infinitely long since it has to reproduce 
the infinitely steep discontinuities in the ideal 
frequency response at the band edges. To create 
a Finite Impulse Response (FIR) filter, the time 
domain filter coefficients must be restricted in 
number by multiplying by a window function of 
a finite width. Many windows are used for 
truncating the signal and the simplest window 
function is the rectangular window which 
corresponds to truncating the sequence after a 
certain number of terms. 

Windowing amplitude modulates the input 
signal so that the spectral leakage is evened out. 
Thus windowing reduces the amplitude of the 
samples at the beginning and end of the window, 
altering leakage. Windowing is implemented by 
multiplying the input signal with a window 
function. An input signal can be any number of 
dimensions and can be complex.  

Windowing functions are also called tapering or 
apodization functions. It is derived from the 
Greek and literally means removing the feet. It is 
the technical term for changing the shape of a 
signal by the use of a function that has a zero-
value outside of a selected interval. It involves 
using a tapering function to smooth out the 
transactions. 

IV. PROPOSED WINDOW 
The goal is to modify Hamming window to lower 
its maximum side-lobe peak, while holding the 
main-lobe width unchanged, and still satisfying 
property of equation (4.3). In the following, the 
derivation of the new window is explained. All 
windows described later, have zero valued 
coefficients outside the interval  0 ≤  n ≤ m .  
Hamming window has the shape of 
WH[n]=0.54-0.46cos(2πn/M)                                                               
0 ≤ n ≤ M............(4.4.1)   
This window satisfies the property mentioned in 
eq. (4.3), i.e. 
WH[ n]+ WH[ n- M/2]= 0.54+0.54                                                         
M/2≤n ≤M..........(4.4.2)   

On the other hand, Blackman window is 
composed of three terms as: 
WH[n]=0.42-0.5*cos(2πn/M)+0.08*cos(4πn/M)                     
0 ≤n≤M...............(4.4.3) 
that is, it has a DC term, a cosine function with 
frequency 2/M, and its second harmonic. For 
this window, due to the second harmonic, the 
property in eq.(4.3) is not satisfied: 
wH[ n] +wH[ n-M/2]=0.84+0.16*cos(4πn/M )                         
M/2≤n≤M...........(4.4.5)   
However, it can be found that if the third 
harmonic is added to the Hamming window 
function, then the property of eq. (4.3) will be 
satisfied. Therefore, the main idea in obtaining 
the new window is to insert a third harmonic of 
cosine function into eq. (4.4.1). Thus, an extra 
degree of freedom is obtained in tuning the 
window coefficients. In this way, the proposed 
window will be as: 
W[n]=a0-a1*cos(4πn/M)-a3cos(6πn/M)                                   
0≤n ≤M..............(4.4.6) 
Where for normalization, i.e. W[M/2]=1, one 
have: 
a0+a1+a3  = 1.............(4.4.7)   
The new window is also symmetric about point 
M/2; thus it has a generalized linear phase, like 
the other common windows. Checking for the 
property in eq. (4.3), one find that: 
W[n]+W[n-M/2]= 2a0         ............(4.4.8) 
Another point of view states that eq. (4.4.5) is a 
four-term raised cosine window, with restriction 
that the third term is zero: 
W[n]= ∑ ai cos(2iπn/M)   
 0 ≤ n ≤ M, k = 3, a2 = 0  ...........(4.4.9) 
The new window can be analyzed in the 
frequency domain. Its Fourier transform is: 
W(ὣ) = {a0 D(ω) + a1/2[D(ω - 2π/M) + D(ω + 
2π/M)] + a3/2[D(ω -6π/M)+D(ω +6π/M)]}* 
exp(-jMω/2)                         ..........(4.4.10) 
where D(ω) is Dirichlet kernel in [4.4.10]: 
D(ω)=sin((M+1)ω/2)/sin(ω/2)..........(4.4.11) 
Noting the above condition and the normalizing 
condition in eq. (4.4.6), one can apply a simple 
optimization algorithm to find the optimal values 
of the window parameters. For sufficiently large 
orders, the derived window is of the form: 
W[n]=0.536-0.46cos*(2πn/M)-
0.003*cos(6πn/M)                               
   0≤n≤M ..........(4.4.12) 
Just like Hamming window, the frequency 
response of the new window is degraded for low 
orders; therefore depending on the window 
order, the above parameters are modified to 
maintain the efficiency. It shows the dependence 
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of a0 and a1 on M. It can be easily verified that 
the coefficients are composed of a monotonic 
function and a DC term. Some simple formulas 
are tried to present the dependence of these 
parameters on M, the following formulas 
approximately fit the data obtained from the 
optimization:   
a0= 0.537- 0.3/(M+15);  a1 = 0.46 + 0.25/(M+15);  
 a3 = 1 - a0 - a1                                ............(4.4.13) 
 

V. RESULT ANALYSIS 
The various methodologies are adopted in 
developing the MATLAB programs for 
proposed window, its comparison with other 
windows, performance evaluation, filter 
designing and plotting their magnitude response, 
phase response, pole-zero plot, impulse 
response, step response, phase delay, group 
delay and filter information. This chapter 
discusses the simulation results for window 
based FIR filters design. 
 

 
Fig 5.1 Time-Magnitude response of different 

windows 

 
Fig. 5.2 Plot of different windows in matrix 

form 

 

 
Fig 5.4(a) Frequency response of Proposed 

window 

 
Fig 5.4(b) Magnitude and Phase response of 

Proposed window 

 
Fig 5.5(a) Time-Magnitude response of Kaiser 

window & Proposed window 

 
Fig 5.5(b) Frequency-Magnitude response of 

Kaiser window & Proposed window 

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

time

am
pl

itu
de

comparision of different windows

 

 

hamm
hann

black

kaiser

gauss

taylor
bart

0 50 100
0

0.5

1
hamm

0 50 100
0

0.5

1
hann

0 50 100
0

0.5

1
black

0 50 100
0.9

0.95

1
kaiser

0 50 100
0

0.5

1
gauss

0 50 100
0

1

2
taylor

0 50 100
0

0.5

1
bart

0 50 100
0

1

2
rect

0 50 100
0

0.5

1
cheby

0 1 2 3 4 5 6 7 8 9 10

x 10
5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

frequency

am
pl

itu
de

comparision of windows

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-400

-200

0

200

Normalized Frequency  ( rad/sample)

P
ha

se
 (

de
gr

ee
s)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-100

-50

0

50

Normalized Frequency  ( rad/sample)

M
ag

ni
tu

de
 (

dB
)

2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

samples

am
pl

itu
de

 

 

proposed

kaiser

0 0.5 1 1.5 2 2.5 3 3.5
-150

-100

-50

0

50

m
ag

ni
tu

de

proposed

0 0.5 1 1.5 2 2.5 3 3.5
-100

-50

0

50
ksiser

m
ag

ni
tu

de

frequency



 
  INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)       

 
  ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-2, 2018 

24 

 
5.6(a) Time-Magnitude response of Hamming 

window & Proposed window 

 
Fig 5.6(b) Frequency-Magnitude response of 

Hamming window & Proposed window 

 
Fig 5.6(c) Frequency-Phase response of 
Hamming window & Proposed window 

 
Fig 5.7(a) Time-Magnitude response of 
Blackman window & Proposed window 

 
Fig 5.7(b) Frequency-Magnitude response of 

Blackman window & Proposed window 

 
Fig 5.7(c) Frequency-Phase response of 
Blackman window & Proposed window 

 
Fig 5.8(a) Time-Magnitude response of 
Gaussian window & Proposed window 

 
Fig 5.8(b) Frequency-Magnitude response of 

Gaussian window & Proposed window 
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