

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-3, 2018

40

ENTROPY ENCODERS: HUFFMAN CODING AND

ARITHMETIC CODING
 1Ketki R. Jadhav, 2Jayshree R. Pansare

1,2 Department of Computer Engineering, M.E.S. College of Engineering, Pune, India

Abstract
Today, there are lot of compression
techniques used for reducing memory
requirement, bandwidth and time for data.
Compression techniques are either lossless or
lossy. One of the mostly used technique
entropy encoding was first lossless data
compression technique. Over time goes on
there are lot of changes happens in entropy
encoding. Even that this technique is
traditional one, but most of researchers still
use it today in combination with other
techniques to gain expected results for data
compression. The paper studies and compares
two mostly used entropy encoding algorithms:
Huffman encoding and Arithmetic encoding.
CR given by the arithmetic coding is better
than huffman coding but it is so much
complex than huffman coding.
Keywords: Entropy encoding, Arithmetic
coding, Huffman coding, Lossless
Compression.

I. Introduction
Data compression is useful in reducing size of
data without affecting quality of data. Data
could be any type of information such as audio,
video or text. As these types of contents are
growing fast in today’s world and too much
diversity to handle. Diversified data
compression techniques exist today to achieve
expected results for data compression. Data
compression techniques are either lossy or
lossless.

1. Lossless Compression: Everything comes
under the word ‘lossless’ means that
decoded information exactly similar to
original one. Useful in applications where
separation from original content is
undesirable. For example, hyperspectral
image compression is highly lossless

because the type of content that images
hold.

2. Lossy Compression: Little bit loss of
information is acceptable in some
applications when achieving good
compression ratio is concern for those
applications. The decoded information is
not entirely similar to original one. An even
lossy compression technique gives better
CR; processing speed is slow and doesn’t
give expected quality. So most of
researchers, analyst and data compression
technique developers prefer to lossless
compression techniques.

Redundancy reduction leads to compression
achieved by the reducing two type’s
redundancies.

1. Spatial Redundancy: Content that
duplicated within a structure, such as
pixels in a frames and bit pattern in file.
Exploiting spatial redundancy is how
compression is performed.

2. Temporal redundancy: Temporal
redundancy actually found between two
adjacent frames. Exploiting temporal
redundancy is primary goal of image and
video compression techniques.

Benefits of compression
1. Saves the cost by sending less data over

the switched telephone network.
2. Reduces noise and saves bit rate.

3. Provide the security against unlawful
monitoring.

4. In lot of specified applications certain
compression techniques proves to be
very useful e.g. Embedded algorithms
based compression techniques are useful
in compression of HD size videos.

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-3, 2018

41

5. It reduces the memory requirement to
store large amount of data.

6. Reduces processing time for data.

II. Entropy Encoding
Entropy is a lower bound on the average number
of bits needed to represent the symbols.
Assigned no of bits to every symbol of the
message is either the fixed length code or
variable length code. In fixed-length codes all
assigned codewords (no of bits) have same size.
E.g. A-101, B-100, C-111, D-011

If we saw in above example every symbol
consists of fixed length of codeword have length
3. A variable length code assigns different size
of codewords to each symbol.

E.g. A-1, B-11, C-100, D-101

If we saw that A has codeword whose length is 1
while B, C, D consists of length of codeword as
2, 3 and 3 respectively. In information theory,
entropy encoding is lossless data compression
scheme that is independent of the specific
characteristics of the medium. The purpose of
entropy encoding is create and assign a unique
prefix code to each input symbol of message.
Then these entropy encoders compress the image
by replacing every fixed-length input symbol
with the corresponding variable-length prefix
free output codeword.

III. Huffman Encoding
Developed by DR. David A. Huffman in 1952,
Huffman coding is entropy encoding technique.
It is lossless compression technique uses
variable-length code table as a main concept.
Variable-length code table consist no of
codewords for each input symbol according to
their frequency of occurrences. Less frequently
occurred symbols got compressed by using large
sized codewords, while more frequently
occurred by using small sized codewords.
Huffman coding is prefix-code, which means
that no codeword is prefix of any other codeword
of symbol. Lot of compression techniques in
combination with huffman coding gives better
results or either improves performance. There is
lot of the areas where huffman code proves to be
useful like in information theory and coding
signal design for radar and communication and
design procedures for asynchronous logical
circuits. Huffman coding is similar to Shannon-

fano which is first information theory for entropy
encoding but instead of using bottom-up
approach it uses top-down approach for entropy
encoding and proved to be optimal technique.
Huffman Tree Construction

Suppose if there are no of symbols given with
their frequency of occurrences huffman tree
generation process goes through the following
stages

1. Start
2. According to frequency occurrences of

symbols algorithm put them in
descending order.

3. Merges two smallest probability symbols
results in high probability symbols.

4. According to top to bottom manner it
assigns zero and ones to every branch of
tree.

5. It merges lowest probability symbols
until it doesn’t get one single node which
is root of tree and having highest
probability value.

6. After root node is found it reads
transition bits on branches from top to
bottom to generate the codewords.

7. End

E.g. Assume there are 5 different symbols
{A, B, C, D, E} with frequency of
occurrences {100, 10, 9, 7, 5}. If we see that
frequency occurrence of symbol A is 100
which is highest than all other symbols.
Huffman tree and their final codes are shown
figure 1 and table 1

Table 1 represent frequency occurrences of
symbols and codeword obtained using huffman
tree that are sent to decoder

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-3, 2018

42

IV. Arithmetic Coding
Instead of working on each symbol, arithmetic
coding works on entire message or on whole
input string by assigning sequence of bits. It
considers whole symbols or message as one unit.
It doesn’t use concept of variable-length code
table for compression of message or string of
symbols like huffman coding. Bits used for
compression of symbols depend on probability
of corresponding symbol. Low arithmetic
coding is assign interval to each symbol starts
with interval from 0 to 1 and find out
subintervals according probability of
corresponding symbols. One subinterval results
as interval for next symbol.
Process of arithmetic coding

1. First, algorithm assigns each symbol their
frequency of occurrences that resides
between intervals 0 to 1.

2. And then checks first symbol of input string
or message and range of occurrence of that
symbol.

3. Range of first input symbol is then
arithmetic code takes as an interval for next
input symbol.

4. For second input symbol it finds probability
of occurrence for each symbol within input
interval using following formulae.

4.1 It first finds out the range difference d
using upper bound value and lower
bound value within input interval.

 d= upper bound-lower bound.

Where upper bound is highest range value and
lower bound is lowest range value of first input
symbol respectively.

4.2 And then for finding range for each
symbol within input interval, algorithm
uses following formula.

Range of symbol= lower limit: lower
limit +d(Probability of symbol)

4.3 It repeats these process until it doesn’t
found frequency of occurrences for each
symbol within input interval.

5. Then it takes next symbols of input string or
message.

6. Each time interval for next input symbol is
equal to range of previously obtained input
symbol.

7. It repeats process for each upcoming symbol
similar to stage 4.

8. Repeats process until it doesn’t reach end
of file.

E.g. If we consider example given in table 2
arithmetic coding works as follows.

We suppose that the input message consist of
following symbols BAADA and it starts from
left to right. Figure 2 explains the graphical
representation of the arithmetic coding of this
message from left to right. As can be seen, the
first probability range is 0.1 to 0.3 because the
first symbol is B.

Figure 2

The encoded interval for mentioned example is
[0.1012, 0.101260]. A sequence of bits is
assigned to a number that located in this range.

V. Advantages of Arithmetic coding
1. Gives better compression efficiency.

2. In combination with adaptive model,

gives better encoding if alphabet or its
properties are changing over the file.

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-3, 2018

43

3. Encoding procedure can be naturally and
simply extended to encompass even an
infinite alphabet. Huffman type codes
require special considerations for each
such alphabet.

VI. Advantages of huffman on arithmetic
coding

1. Arithmetic algorithm runs to much
slower than huffman algorithm, which
can be critical in some applications.

2. Arithmetic coding is more complex than
huffman coding and more difficult to
understand for system user.

3. Main purpose of arithmetic code obtains
compression efficiency which is hard to
get in most realistic situations. As well as
for text based applications, the saving is
typically very small.

4. Lot of applications uses inaccurate
probabilities, where saving may actually
be negative.

VII. Conclusion
We studied two entropy encoding

algorithms: Huffman coding and Arithmetic
coding. Even though entropy encoding
techniques traditional one, but still lot of
researchers uses it for data compression.
Entropy encoding is lossless compression
technique. From process of execution of
algorithms and from given examples we can
understand that Arithmetic coding is better one
than huffman coding and gives better
compression ratio. But it has slowest processing
speed than huffman coding and more complex to
understand for user. But both are useful in
specific applications. Diversified applications
according to their type of compression either use
huffman coding or arithmetic coding.

Acknowledgment
It gives me great pleasure and satisfaction in
presenting seminar on “Entropy Encoders:
Huffman coding and Arithmetic coding,” I
would like to thank my project guide, Prof. J. R.
Pansare mam for her guidance and support.
Without her constant support, guidance and
assistance this seminar report would not have
been completed. Without their coordination,
guidance and reviewing this task could not be
completed alone. I would like to thank all those,

who have directly or indirectly helped me for the
completion of the work during this project.

REFERENCES

1. Ahsan Habib and Mohammad Shahidur
Rahman, “Balancing decoding speed and
memory usage for Huffman codes using
quaternary tree,” pp. 1-15, 2017.

2. Asadollah Shahbahrami, Ramin
Bahrampour, Mobin Sabbaghi Rostami,
Mostafa Ayoubi Mobarhan “Evaluation
of Huffman and Arithmetic Algorithms
for Multimedia Compression Standards”.

3. Gaurav Vijayvargiya, Dr. Sanjay

Silakari and Dr.Rajeev Pandey, “A
Survey: Various Techniques of Image
Compression,” (IJCSIS) International
Journal of Computer Science and
Information Security, Vol. 11, No. 10,
October 2013.

4. Nehal Markandeya, Prof.Dr.Sonali Patil,

“Image Compression Using Huffman
Coding,” International Journal Of
Engineering And Computer Science,
Vol. 6, Issue 1, pp. 19999-20002, Jan.
2017.

5. Rachit Patel, Virendra Kumar, Vaibhav

Tyagi and Vishal Asthana, “A Fast and
Improved Image Compression
Technique Using Huffman Coding,”
IEEE WiSPNET, pp. 2283-2286. March
2016.

6. Mamta Sharma, “Compression Using

Huffman Coding,” (IJCSNS)
International Journal of Computer
Science and Network Security, VOL.10
No.5, pp. 133-141, May 2010.

7. Sanjay Kumar Gupta, “An Algorithm For

Image Compression Using Huffman
Coding Technique,” (IJARSE)
International Journal of Advance
Research in Science and Engineering,
Vol. 5, No. 7, pp. 69-75, July 2016.

8. A. Bookstein and S. T. Klein, “Is

Huffman coding dead?” Computing, vol.
50, no. 4, pp. 279–296, 1993.

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-3, 2018

44

9. Ms. Pallavi M. Sune Prof. Vijaya K.
Shandilya., “Image Compression
Techniques based On Wavelet and
Huffman Coding,” International Journal
of Advanced Research in Computer
Science and Software Engineering, Vol.
3, Issue 4, pp. 524-528, April 2013.

10. Paul G. Howard and Jeffrey Scott Vitter,

“Analysis Of Arithmetic Coding For
Data Compression,” Information
Processing & Management, Vol. 28, No.
6. pp. 749-763, 1992.

11. Ezhilarasu P. , Krishnaraj N. , Dhiyanesh
B., “Arithmetic Coding for Lossless Data
Compression- A Review,” International
Journal of Computer Science Trends and
Technology (IJCST), Vol. 3, Issue 3, pp.
89-94, May-June 2015.

12. Mridul Kumar Mathur, Seema Loonker,

Dr. Dheeraj Saxena, “Lossless Huffman
Coding Technique For Image
Compression And Reconstruction Using
Binary Trees,” IJCTA, Vol. 3, No. 1, pp.
76-79, Jan-Feb 2012.

