

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-3, 2018

37

INTERNET CENSORSHIP

H.Fametha1, T.S.Karthick2, S.Bakiyalakshmi3
1Assistant Professor, 2Associate Professor, 3Assistant Professor

Abstract
Open communication over the Internet
poses a seri- ous threat to countries with
repressive regimes, lead- ing them to develop
and deploy censorship mechanisms within
their networks. Unfortunately, existing
censor- ship circumvention systems do not
provide high avail- ability guarantees to
their users, as censors can iden- tify, hence
disrupt, the traffic belonging to these sys-
tems using today’s advanced censorship
technologies. In this paper we propose
SWEET, a highly available censorship-
resistant infrastructure. SWEET works by
encapsulating a censored user’s traffic to a
proxy server inside email messages that are
carried over by public email service
providers, like Gmail and Yahoo Mail. As
the operation of SWEET is not bound to
specific email providers we argue that a
censor will need to block all email
communications in order to disrupt SWEET,
which is infeasible as email constitutes an
important part of today’s Internet. Through
experiments with a prototype of our system
we find that SWEET’s perfor- mance is
sufficient for web traffic. In particular,
regular websites are downloaded within
couple of seconds.
Keywords: Internet, censorship, http,
protocol,

1. INTRODUCTION
Today’s Internet provides users with an
environment to freely communicate, and to
exchange ideas and in- formation with others
from around the world. How- ever, free
communication continues to threaten repres- sive
regimes, as the open circulation of information
and speech among their citizens can pose
serious threats to their existence. Recent
unrest in the middle east demonstrates that the

Internet can be widely used by citizens under
these regimes as a very powerful tool to spread
censored news and information, inspire dissent,
and organize events and protests. As a result,
repres- sive regimes extensively monitor their
citizens’ access to the Internet and restrict
open access to public net- works [38] by using
different technologies, ranging from simple IP
address blocking (e.g., through access con-
trol lists) and DNS hijacking to more
complicated and resource-intensive Deep Packet
Inspection (DPI) [4,25]. With the use of
censorship technologies, a number of different
systems were developed to retain the open- ness
of the Internet for the users living under
repressive regimes [3,8,13,17,22]. These
systems are composed of an ensemble of
network hosts and use different computer and
networking technologies to evade the
monitoring and blocking performed by the
censors. The earliest circumvention tools are
HTTP proxies [1,8,13] that sim- ply intercept
and manipulate a client’s HTTP requests,
defeating IP address blocking and DNS hijacking
tech- niques. The use of more advanced
censorship technolo- gies such as deep packet
inspection [4,14], rendered the use of HTTP
proxies ineffective for circumvention. This led
to the advent of more advanced circumvention
tools such as Ultrasurf [3] and Psiphon [22],
designed to evade content filtering performed by
the more advanced cen- sors. In addition to
special-purpose anti-censorship sys- tems, many
users have been using anonymity systems as
effective tools to evade Internet censorship
[4,25]. These systems are designed to hide a
user’s activity over the Internet, which can also
help to evade Internet censor- ship since the
censor will not be able to determine the network
destination of a user’s traffic. Multiple designs
have been proposed for anonymity systems,

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-3, 2018
38

including the onion routing [35] and mix
networks [11].
While these circumvention tools have helped,
they face several challenges that prevent them
from being a good choice for a longer-term
solution to Internet censorship. We believe
that the biggest challenge to existing
circumvention systems is their lack of avail-
ability, meaning that a censor can disrupt
their ser- vice frequently or even disable them
completely [19,27,
29, 30, 33]. The common reason leading to
the men- tioned lack of availability is that the
network traffic made by these systems can be
distinguished from reg- ular Internet traffic by
censors, i.e., such systems are not
unobservable. This enables censors to
disrupt/block the communications made by their
citizens to such cir- cumvention systems. For
example, the popular Tor [17] network works
by having users connect to an en- semble of
nodes with public IP addresses, which proxy the
user’s traffic to the requested, censored
destina- tions. This public knowledge about
Tor’s IP addresses,
which is required to make Tor usable by
users glob- ally, can be/is used by censors to
block their citizens from accessing Tor [5,36].
To improve their availability, recent proposals
for circumvention aim to make their traffic
unobservable from censors [9, 16, 18, 20, 24,
37]. Several designs [9, 16, 18] seek
unobservability by shar- ing secret information
with their clients, which are not known to
censors. For instance, the Tor network has re-
cently adopted the use of Tor Bridges, a set of
volunteer nodes connecting clients to the Tor
network, whose IP addresses are selectively
distributed among Tor users
by Tor. Unfortunately, this approach poses
another challenge [27, 30], which is sharing
such secret infor- mation only with real users
in a scalable manner such that it is not disclosed
to the censors pretending to be users. A more
recent approach in designing unobserv- able,
hence highly-available, circumvention systems
is to integrate censorship circumvention with the
Internet infrastructure [20, 21, 24, 37]. Telex
[37], Cirripede [20], and LAP [21] are example
designs that suggest mod- ifications to Internet
infrastructure, e.g., routing deci- sions, in order
to hide users’ circumvented traffic from their
monitoring censors. Even though such

systems provide better availability promises,
compared to tra- ditional circumvention, their
deployment requires sub- stantial modifications
to ISP networks, requiring coop- eration from
ISP operators and/or network equipment
vendors, presenting a substantial deployment
challenge. In this paper, we design and
implement SWEET, a censorship
circumvention system that provides high
availability by leveraging the openness of
email com- munications.

Figure 1: Overall architecture of SWEET.

 Figure 1 shows the main architecture of
SWEET. A SWEET client, confined by a
censoring ISP, tunnels its network traffic with
blocked destinations in- side a series of email
messages that are exchanged be- tween the client
and an email server operated by SWEET’s
server. The SWEET server, then, acts as an
Inter- net proxy [26] for the client by
proxying the encap- sulated traffic to blocked
Internet destinations. The SWEET client uses
an oblivious, public mail provider (e.g.,
Gmail, Hotmail, etc.) to exchange the
encapsu- lating emails, rendering standard email
filtering mecha- nisms ineffective in
identifying/blocking SWEET-related emails.
More specifically, to use SWEET for circum-
vention a client creates an email account with
any pub-
lic email provider (e.g., Gmail, Hotmail) and
obtains SWEET’s client software from an out-
of-bound chan- nel (similar to other
circumvention systems). The user configures
the installed SWEET software to use her
public email account, which sends/receives
encapsulat- ing emails messages on behalf of
the user to/from the publicly known email
address of SWEET, e.g., tun- nel@sweet.org.
Note that there is no need for the user to obtain

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-3, 2018
39

any secret information, secret key, or secret
design information in order to use SWEET.
SWEET provides several key advantages as
compared to the existing circumvention systems.
First, since email is an essential service in
today’s Internet it is very un- likely that a
censorship authority will block all email
communications to the outside world, due to
different financial and political reasons. This,
along the fact that SWEET can be reached
through any email service, pro- vides a high
degree of availability for SWEET since a
censor will need to block all email traffic to
the Inter- net in order to block SWEET.
Second, by using en- crypted email messages
SWEET is highly unobservable from the
censors. Third, the real-world deployment of
SWEET does not require cooperation of any
third-party entity, e.g., an ISP, a web destination,
or even an spe- cific email provider. Finally,
unlike several recent pro- posals [9, 16, 18, 24]
a SWEET user does not have to obtain any
secret information in order to use SWEET,
providing high user convenience and ensuring
the secu- rity and privacy of the user.
In fact, the high availability of SWEET
comes for the price of higher, but bearable,
communication laten- cies.

Figure 2: Comparing availability and
communi- cation latency of several
circumvention systems

Figure 2 compares SWEET with several
popular circumvention systems regarding their
availability and communication latency. As

our measurements in Sec- tion 7 show, SWEET
provides communication latencies that are
convenient for latency-sensitive activities like
web browsing (i.e., few seconds). Such
additional, toler- able latency of SWEET comes
with the bonus of better availability, as discussed
in Section 5.2.
We have built a prototype implementation for
the SWEET system and evaluated its
performance. We have also prototyped two
different designs for SWEET’s client software,
as proposed in this paper. The first client
design uses email protocols, e.g., POP3 and
SMTP, to communicate with the SWEET
system, and our sec- ond design is based on using
the webmail interface. Our measurements show
that a SWEET client is able to browse
regular-sized web destinations with download
times in the order of couple of seconds.
In summary, this paper makes the following
main contributions: i) we propose a novel
infrastructure for censorship circumvention,
SWEET, which provides high availability, a
feature missing in practical circumvention
systems; ii) we develop two prototype
implementations for SWEET (one using
webmail and the other using email exchange
protocols) that allow the use of nearly all email
providers by SWEET clients; and, iii) we show
the feasibility of SWEET for practical
censorship cir- cumvention by measuring the
communication latency of SWEET for web
browsing using our prototype im-
plementation.
The rest of this paper is organized as follows; in
Section 2, we provide some background
information and discuss the related work on
censorship circumvention. In Section 3, we
reviews our threat model. We provide the
detailed description of the proposed
circumvention system, SWEET, in Section 4.
We discuss SWEET’s censorship features,
including its availability, in Sec- tion 5 and
compare it with the literature. Our proto- type
implementation and evaluations are presented
in Sections 6 and 7, respectively. Finally, we
conclude the paper in Section 8.

2. RELATED WORK
As a result of extensive censorship of the Internet
by repressive regimes, affected citizens have
been looking for effective tools to gain
unrestricted access to the In- ternet. Early

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-3, 2018
40

censors used simple blocking techniques such
as IP address blocking and DNS hijacking;
hence, the early circumvention tools are based
on proxying the traffic to the blocked
destinations, i.e., by using an HTTP proxy [15].
Examples of proxy-based circumven- tion tools
include Anonymizer [8], Freenet [13] and Ul-
trasurf [3], that helped a number of users to
bypass the Internet censorship in the early
days of Internet cen- sorship. Proxying
network traffic is also adopted by the Tor
anonymous communication network [17] to help
users bypass the censorship. Tor bridges [16]
proxy the censored clients’ traffic to the Tor
network. The main challenge with the Tor
bridges and other proxy-based circumvention
systems is that keeping the IP address of the
proxies unknown to the censors is a challenging
problem [19, 27, 29, 30, 33]; a censor learning
the IP ad- dress of the proxies can easily block
any access to them and also identify their users.
The use of more advanced technologies by the
censors, e.g., content filtering using deep packet
inspection, re- sulted in the emergence of more
complicated circumven- tion systems
[9,18,20,24,37]. These systems aim in pro-
tecting their availability by hiding the use of their
sys- tems from the censors in the first place. As
an example, Infranet [18] shares a secret key and
some secret URL addresses with a client,
which is then used to estab- lish an
unobservable communication between the client
and the Infranet system, thereby enabling
access the blocked destination. As another
example, Collage [9] works by having a client
and the Collage system secretly agree on some
user-generated content sharing websites, e.g.,
flickr.com, and communicate using
steganography. Unfortunately, sharing secret
information with a wide range of clients is a
serious challenge for these systems, as a censor
can obtain the same secret information by
pretending to be a client.
Some recent research suggests circumvention
being built into the Internet infrastructure to
better provide unobservability [20, 24, 37].
These systems rely on col- laboration from
some Internet routers that intercept users’
traffic to uncensored destinations to establish
covert communication between the users and the
censored des- tinations. This provides a high
degree of unobservabil- ity: a client’s covert
communication with a censored destination

appears to the censor to be benign traffic
with a non-prohibited destination. Telex [37]
and Cirripede [20] provide this unobservable
communica- tion without the need for some
pre-shared secret in- formation with the client,
as the secret keys are also covertly
communicated inside the network traffic. Cir-
ripede [20] uses an additional client
registration stage that provides some advantages
and limitations as com- pared to Telex [37] and
Decoy routing [24] systems. Even though these
systems are a large step forward in providing
unobservable censorship circumvention their
real-world deployment is highly dependent on
collabo- ration from a number of ISPs/ASes,
bringing into ques- tion whether they will be
deployed in the near future.
SWEET-like systems. There are two projects
that work in a similar manner to SWEET: the
foe-project [2] and the MailMyWeb [28] for-
profit service. Instead of tunneling traffic,
which is the case in SWEET, these systems
simply download a requested website and send it
as an email attachment to the requesting user.
This highly limits therir performance compared
to SWEET, as discussed in Section 4.4.

3. THREAT MODEL
We assume that a user is confined inside a
censoring ISP, e.g., a user living under a
repressive regime. The censoring ISP blocks the
user’s access to certain Internet destinations,
namely blocked destinations. We assume that
the censor uses today’s advanced filtering
technolo- gies, including IP address blocking,
DNS hijacking, and deep packet inspection
techniques [25]. The censoring ISP also
monitors all of its egress/ingress traffic to de- tect
any use of circumvention techniques by users
that try to evade the censorship.
We assume that the censoring ISP’s censorship
is con- strained not to degrade the usability of
the Internet. In other words, even though the
censoring ISP selectively blocks certain Internet
connections, she is not willing to block key
Internet services entirely. In particular, the
operation of SWEET system relies on the fact
that a censoring ISP does not block all email
communica- tions, even though she can
selectively block email mes- sages/email
providers. We also assume that the cen-
soring ISP has as much information about

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-3, 2018
41

SWEET as any SWEET client (SWEET does not
share any secret information with its clients).
We also consider an active behavior for the
censoring ISP. An active censor, in addition
to traffic monitor- ing, manipulates its
egress/ingress Internet traffic, e.g., by selectively
dropping some packets, and adding addi- tional
latency to some packets, in an attempt to disrupt
the use of circumvention systems and/or to
detect the users of such systems. Again, such
perturbations are constrained to preserve the
usability of the Internet for benign users.

4. DESIGN OF SWEET
In this section, we describe the detailed
design of SWEET, our email-based censorship
circumvention sys- tem. Figure 1 shows the
overall architecture of SWEET. SWEET tunnels
network connections between a client and a
server, called SWEET server, inside email com-
munications. The assumption that a censor
does not block all email communications, as
stated in our threat model in Section 3, ensures
a strong availability for SWEET since it does
not rely on any specific email provider. Upon
receiving the tunneled network pack- ets, the
SWEET server acts as a transparent proxy be-
tween the client and the network destinations
requested by the client. In the following, we
describe the detailed description of SWEET’s
client and server architectures.

4.1 SWEET server
The SWEET server is a computer server running
out- side the censored region. The SWEET
server helps a censored user to evade censorship
by proxying her traffic to blocked Internet
destinations. More specifically, the SWEET
server communicates with a censored user by
exchanging email messages that carry network
packets of the user’s tunneled traffic.

Figure 3: The main architecture of SWEET
server.

 Figure 3 shows the build- ing blocks of the
SWEET server, which is composed of the
following four main components:

 Email agent: The email agent component is
an IMAP and SMTP server that receives email
messages that contain the tunneled Internet
traffic, being sent by SWEET clients to
SWEET’s publicized email ad- dress
tunnel@sweet.org. The email agent passes the
received email messages to another
components of the SWEET server, i.e., the
converter agent and the regis- tration agent, to
get processed accordingly. The email agent also
sends email messages to SWEET clients, which
are generated by other components of
SWEET server and contain tunneled network
packets or client registra- tion information.
 Converter: The converter component processes
the emails passed by the email agent, and
extracts the tun- neled network packets. The
converter, then, forwards the extracted data to
another component of the SWEET server, the
proxy agent component. Also, the converter
component receives network packets from the
proxy agent and converts them into email
messages that are tar- geted to the email
address of corresponding SWEET clients. The
converter component then passes these email
messages to the email agent for delivery to their
intended recipients. As described later, the
converter encrypts/decrypts the email
attachments of a user us- ing a secret key shared
with that user.
 Proxy agent: The proxy agent proxies the
network packets of SWEET clients that are
extracted by the con- verter component, and
sends them to the Internet des- tination requested
by the clients. In other words, the proxy
agent makes a proxy connection with SWEET
clients, being tunneled inside the email-based
commu- nication. Through the established
proxy connections, the client requests access to
Internet destinations, e.g., blocked web sites.
 Registration agent: This component is in charge
of registering the email addresses of the
SWEET clients, prior to their use of SWEET.
The information about the registered clients
can be used to ensure quality of service for
all users and prevent denial-of-service attacks on
the SWEET server. Additionally, the
registration agent shares a secret key with the
client, which is used to encrypt the tunneled
information between the client and the SWEET
server.
The email agent of the SWEET server
receives two type of email messages; traffic

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-3, 2018
42

emails, which contain tunneled traffic from the
clients (sent to tunnel@sweet.org address), and
registration emails, which carry client reg-
istration information (sent to
register@sweet.org).
Client registration: Before the very first use of
the SWEET service, a client needs to register her
email ad- dress with the SWEET system. This
is automatically performed by the client’s
SWEET software, through the same email
channel used for traffic tunneling. The objective
of client registration is twofold: to prevent
denial-of-service (DoS) attacks and to share a
secret key between a client and the SWEET
server. A denial-of- service attack might be
launched on the SWEET server to disrupt its
availability, e.g., through sending many
malformed emails on behalf of non-existing
email ad- dresses (this is discussed in Section 5).
In order to regis- ter (or update) the email address
of a client, the client’s SWEET software sends
a registration email from the

to generate the same kC,R key using SWEET’s
publicly advertised public key and her own
private key [34].
Tunneling the traffic: Any traffic email
received by the email agent is processed as
follows: the email agent () of SWEET server
forwards the received traf- fic email to the
converter agent (). The converter agent
processes the traffic email and extracts the tun-
neled information from the email. The converter
agent, then, decrypts the extracted traffic
information (using the key kC,R corresponding
to the user) and sends it to the proxy agent ()
of SWEET server. Finally, the proxy processes
the received packet as required, e.g., sends the
packet to the requested destination. Similarly,
for any tunneled packet received from the
proxied destinations, the proxy agent sends it to
the converter agent. The converter agent
encrypts the received packet(s) (us- ing the
corresponding kC,R), and generate a traffic
email that contain the encrypted data as email
attachment. Each email is targeted to the email
address of the corre- sponding client (e.g., by
specifying the To: field of the email message).
The generated email is passed to the email
agent, who sends the email to the corresponding
client. Note that to improve the latency
performance of the connection, small packets

that arrive at the same time get attached to the
same email message.

4.2 SWEET client
To use SWEET, a SWEET client needs to
obtain a copy of SWEET’s client software and
install it on her machine. The client further
needs to have an email ac- count with a public
email provider, e.g., Gmail1 mail service. The
choice of an encrypted versus plaintext email
service makes a tradeoff between the usage
un- observability and the performance The use
of an en- user’s email address, e.g.,
user@gmail.com, to the SWEET’s crypted
email service, e.g., Gmail, improves the usage
registration email address, i.e.,
register@sweet.org,
requesting registration. The email agent
forwards all received registration emails to the
registration agent () of the SWEET server.
For any new registration request, the
registration agent generates and sends an email
to the requesting email address (through the
email agent) that contains a unique
computational challenge (e.g., [23]). After
solving the challenge, the client soft- ware sends
a second email to register@sweet.org that
contains the solution to the challenge, along
with a Diffie-Hellman [34] public key KC =
gkC . If the client’s response is verified by the
registration agent the client’s email address will
be added to a registration list, that contains
the list of registered email addresses with their
expiration time. Also, the registration agent
uses its own Diffie-Hellman public key, KR =
gkR , to evaluate a shared key kC,R = gkRkC
for the later communications with the client.
The registration agent adds this keyto the
client’s entry in the registration list, to be used
for communications with that client. The client
is able

unobservability while using a plaintext email
service, e.g., Hotmail, improves the
connection’s throughput; this is discussed in
Section 5.1. A client needs to con- figure the
installed SWEET’s software with informa-
tion about her email account. Prior to the first
use of SWEET by a client, the client software
registers the email address of its user with the
SWEET server and obtains a shared secret
key kC,R, as described in Sec- tion 4.1.

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-3, 2018
43

We propose two designs for SWEET client
software: a protocol-based design, which uses
standard email proto- cols to exchange email
with client’s email provider, and a webmail-
based design, which uses the webmail inter- face
of the client’s email provider. We describe
these two designs in the following.

4.2.1 Protocol-based design
Figure 4 shows the main elements of the
protocol- based design of SWEET client. This
is composed ofthree main components:
 Web Browser: A SWEET client needs to
use a web browser to render the web sites
accessed through SWEET. The client can use
any web browser that sup- ports proxying of
connections, e.g., Google Chrome, In- ternet
Explorer, or Mozilla Firefox. The client needs to
configure her web browser to use a local
proxy server, e.g., by setting localhost:4444 as
the HTTP/SOCKS proxy in the browser’s
settings. The client can use two different web
browsers for browsing with and with- out
SWEET in order to avoid the need for
frequent re-configurations of the browser.
Alternatively, some browsers (e.g., Google
Chrome , and Mozilla Firefox) allow a user to
have multiple browsing profiles, hence, a user
can setup two profiles for browsing with and
with- out SWEET.
 Email Agent: This component sends and
receives
SWEET emails thorough the client’s public
email ac- count. The client needs to configure
the email agent with the settings of the SMTP
and IMAP/POP3 servers of her public email
account. The client also needs to provide the
email client with the required login infor-
mation of her email account.
 Converter: This component sits in the middle of
the web browser and the email agent, and
converts SWEET emails into network packets
and vice versa. The con- verter uses the keys
shared with SWEET, kC,R, to en- crypt/decrypt
email contents.
Once the client enters a URL into the configured
web browser (component), the browser makes
a proxy connection to the local port that the
converter () is listening on (as specified in
the proxy settings of the browser). The
converter accepts the proxy connection from the
browser and keeps the state of the established
TCP/IP connections. For packets that are

received from the web browser the converter
generates traffic emails, targeted to
tunnel@sweet.org, having the re- ceived
packets as encrypted email attachments (using
the key kC,R). Such emails are passed to
the email agent () that sends the emails to the
SWEET server through the public email provider
of the client (as con- figured).
The email client is also configured to receive
emails from the client’s email account through
an email re- trieval protocol, e.g., IMAP or
POP3. This allows the email agent to
continuously look for new emails from the
SWEET server. Once new emails are received
the email agent passes them to the converter,
who in turn extracts the packet information
from the emails, de- crypts them, and sends
them to the web browser over the existing
TCP/IP connection with the browser.

4.2.2 Webmail-based design
As an alternative approach to the protocol-based
de- sign described above, the SWEET client
can use the webmail interface of the client’s
public email provider to exchange emails with
the SWEET server.

Figure 4: The protocol-based design for SWEET
client.

Figure 5: The webmail-based design for
SWEET client.

Figure 5 shows the main architecture of our
webmail- based design. The main difference
with the protocol- based design is that in this
case the email agent (com- ponent) uses a web
browser to exchange emails. More specifically,
the email agent uses its web browser to open
a webmail interface with the client’s email
account, using the user’s authentication
credentials for logging in. Through this
HTTP/HTTPS connection, the email agent
communicates with the SWEET server by
sending and receiving emails. The rest of the

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-3, 2018
44

webmail-based de- sign is similar to the
protocol-based design. If desired, the email
agent can use the same web browser that the user
uses for normal web browsing.

4.3 The choice of the proxy protocol
As mentioned before, the SWEET server uses a
proxy agent that receives the tunneled traffic of
clients and es- tablishes connections to the
requested destinations. We consider the use of
both SOCKS [26] and HTTP [32] proxies in
the design of SWEET, as each provides unique
advantages. To provide the users with both
options, our SWEET server’s proxy agent runs a
SOCKS proxy and an HTTP proxy in parallel,
each running on a different port. A user can
choose to use the type of proxy by
configuring her SWEET client to connect to the
corre- sponding port number.
The use of the SOCKS proxy allows the client to
make any IP connection through the SWEET
system, includ- ing dynamic web
communications, such as Javascript or AJAX,
and instant messaging services. In contrast, an
HTTP proxy only allows access to HTTP
destinations. However, an HTTP proxy may
speed up connections to such destinations by
using HTTP-layer optimizations such as
caching or pre-fetching of web objects.

4.4 An alternative approach: Web download

A trivial approach in providing censorship
circum- vention using email is to download
an entire webpage and attach it as an email
attachment to email mes- sages that are targeted
to the requesting users. In fact, this approach is
under development by the open-source foe
project [2], and the for-profit service of
MailMy- Web [28]. Unfortunately, this simple
approach only pro- vides a limited access to the
Internet: a user can only access static websites.
In particular, this approach can- not be used to
access destinations that require end-to- end
encryption, contain dynamic web applications
like HTML5 and Javascript sockets, or need user
login infor- mation. Also, this approach does not
support accessing web destinations that require a
live Internet connection, e.g., video streaming
websites, instant messaging, etc. In fact, the
MailMyWeb service uses some heuristics to
tackle some of these shortcomings partially,
which are privacy-invasive and inefficient. For

example, in order to access login-based
websites MailMyWeb requests a user to send
her login credentials to MailMyWeb by email.
Also, a user can request for videos hosted
only on the YouTube video sharing website,
which are then downloaded by MailMyWeb
and sent as email attach- ments; this causes a
large delay between the time a video is
requested until it is has received by the user.
SWEET, on the other hand, provides a
comprehensive web browsing experience to its
users since it can tunnel any kind of IP traffic.

5. DISCUSSIONS AND COMPARISONS
In this section we evaluate SWEET’s
circumvention capabilities by discussing
important features that are essential for an
effective circumvention.

5.1 Unobservability and the use of encryption
We say a circumvention tool provides
unobservability if censors are not able to identify
the users of that tool by monitoring the Internet
traffic of their citizens. Un- observability has
been considered in designing several recent
circumvention systems [20, 24, 37] as a
mecha- nism to ensure the availability of the
service.
Usage unobservability can be a very desirable
prop- erty to users living under repressive
regimes, as it can reduce a user’s risk of
suspicion by the government. However, if
desired, SWEET users may disable unob-
servability while retaining availability. This
provides the benefit of reduced latency. It comes
at the expense of observability, but users in
some environments may wish to retain reliable
anonymous communications yet do not fear
reprisal from their government. SWEET users
have the option to use SWEET in a highly unob-
servable manner, or to trade off unobservability
for bet- ter communication performance. More
specifically, the use of an encryption-enabled
email service (e.g., Gmail,

Hushmail2) with SWEET provides usage
unobservabil- ity for the user, as the censor will
not be able to see the recipient’s email address,
e.g., tunnel@sweet.org. On the other side, the
use of plaintext email services (e.g., Yahoo!,
Hotmail) provides better availability as repres-
sive regimes occasionally disrupt or block the
access to encryption-enabled services, including

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-3, 2018
45

encrypted emails (yet they do not block all email
communications). As a recent instance, Iran
blocked all HTTPS connections of its citizen
during the second week of February 2012 [7], the
anniversary of Iran’s green movement in 2009.
In addition, while using an encryption-enabled
email, to ensure unobservability the user’s email
traffic patterns should mimic that of normal
email communications, e.g., to defeat traffic
analysis by a censor; this limits the bandwidth
available to the user, as discussed in Sec- tion
7.2.

5.2 Availability
SWEET’s availability is tied to the assumption
dis- cussed previously that a censor is not willing
to block all email communications, as it would
degrade the usability of the Internet for its users.
As the use of SWEET does not require an email
account with any specific email provider, users
can always find an email service to get
connected to SWEET.
IP filtering and DNS hijacking techniques would
not be able to stop SWEET traffic as a SWEET
user’s traf- fic is destined to her public email
provider, but not to an IP address or
nameserver belonging to SWEET system.
Another technique used by today’s sophisti-
cated censors is deep packet inspection (DPI).
The use of encryption-enabled email renders DPI
ineffective, as the email headers get encrypted
and the DPI will not be able to analyze the
email headers in order to de- tect the email
addresses of SWEET, to hence block the traffic.
In the case of plaintext emails, to defeat DPI
SWEET server can provide different email
aliases to different users or to change its public
email address fre- quently. Note that generating
email aliases has no cost for SWEET server and
can be done with no limit. In the worst case,
a user can obtain her specialized email address
through an out of band channel, or by con-
necting through a encryption-enabled email
account (as mentioned before the DPI is
ineffective on encryption- enabled emails).
As another approach for disrupting the operation
of SWEET, a censor might try to launch a denial-
of-service (DoS) attack on SWEET server.
The common tech- niques for DoS attacks,
e.g., ICMP flooding and SYN flooding, can
be mitigated by protecting the SWEET server
using up-to-date firewalls. Alternatively, a
ma- licious entity (e.g., a censor) can try to

exhaust the SWEET service by sending
disruptive traffic through the email
communication channel of SWEET. In other
words, a censor can play the role of a SWEET
client and send Internet traffic through its
SWEET client software in a way that breaks or
overloads the SWEET server. As an example,
the attacker can flood the SWEET’s SOCKS
proxy by initiating many incomplete SOCKS
connections, or sending SYN floods. A
censor could send such attacking requests on
behalf of a number of rogue (non-existing)
email addresses, to render an email blacklist
maintained by SWEET server ineffective in
preventing such attacks. As a result, SWEET
server should deploy effective mechanisms to
protect against possible DoS attacks. One
effective mechanism is to require a new user
to register her email address with SWEET
server prior to her first use of SWEET. Such
registration can be performed in an unobservable
man- ner by SWEET’s client software through
the email com- munication channel (see Section
4.1). Also, to ensure the quality of service
for all users, the SWEET server can limit the
use of SWEET by putting a cap on the
volume of traffic communicated by each
registered email address.

5.3 Other properties of SWEET
Confidentiality: As mentioned before,
SWEET en- crypts the tunneled traffic, i.e.,
the email attachments are encrypted using a
key shared between a user and SWEET server.
This ensures the confidentiality of SWEET user
communications from any entity wiretapping
the traffic, including the censorship authorities
and the public email provider. Note that the
email attachments are encrypted even if the
user to choose a plaintext email service. To
make a connection confidential from SWEET
server the user can use an end-to-end encryp-
tion with the final destination, e.g., by using
HTTPS. Alternatively, a user can use SWEET to
connect to an- other circumvention system, like
Anonymizer [10], to ensure confidentiality from
SWEET server.
Ease of deployment: We argue that SWEET can
be easily deployed on the Internet and provide
service to a wide range of users. First of all,
SWEET is low-cost and needs few resources for
deployment. It can be de- ployed using a single
server that runs a few light-weight processes,

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-3, 2018
46

including a mail server and a SOCKS proxy. To
service in a large scale SWEET server can
be de- ployed in a distributed manner by several
machines in different geographic locations.
Secondly, the operation of SWEET is standalone
and does not rely on collabo- ration from other
entities, e.g., end-hosts or ISPs. This provides a
significant advantage to recent research that
relies on collaboration from ISPs [20, 24, 37],
or end- hosts [9, 18]. In fact, the easy setup
and low-resources of SWEET’s deployment
allows it to be implemented by individuals
with different levels of technical exper- tise.
For instance, an ordinary home user can deploy
a personal SWEET server to help her friends in
censored regions evade censorship, or a
corporate network can setup such system for its
agents residing in a censored country.
User convenience: As mentioned before, a
recent study [10] surveying the use of
circumvention tools in censored countries
shows that users give the most pref- erence to the
ease of use when choosing a circumvention tool.
The use of SWEET is simple and requires
few resources from a client. A SWEET client
only needs to install the provided client
software, that can be ob- tained from out-of-
band channels like social networks or
downloaded from the Internet. Due to its simple
de- sign, an expert user can also develop the
client software herself. In addition to SWEET
software, the user needs to have an email account
with a public email provider, and needs to know
the public information related to SWEET, e.g.,
the email addresses of SWEET.
No need to share secrets: To ensure
availability and unobservability, several
circumvention tools need to share some secret
information with their users, in order to initiate
the circumvented a connection [9, 16, 18, 24].
This is a significant limitation, as keeping
such infor- mation secret from the censorship
authorities is a hard problem, and the disclosure
of such secret information breaks their
unobservability and availability promises. A
SWEET user does not require to obtain any
secret information from the SWEET server.

6. PROTOTYPE IMPLEMENTATION
We have prototyped the SWEET circumvention
sys- tem and measured its performance.

6.1 Server implementation
We implement the SWEET server on a Linux
ma- chine. The machine runs Ubuntu 10.04 LTS
and has a 2 GHz quad-core CPU and 4 GB of
memory. We run Postfix3, a simple email server
that supports basic func- tions. Postfix listens for
new emails targeted to the reg- ister@sweet.org
and tunnel@sweet.org email addresses. Postfix
stores the received emails into designated file di-
rectories that are continuously watched by the
converter and registration agent components of
SWEET server. Each stored email has a
unique name, concatenating the email id of its
corresponding client and an increasing counter.
The converter agent is a simple Python-based
program that runs in the background and
continuously checks the folder for new emails.
The converter also con- verts proxied packets,
passed by SWEET’s proxy, into email messages
and sends them to their intended clients. For the
proxy agent, we use Squid4 as our HTTP proxy
and Suttree5 as our SOCKS proxy. Squid runs
on a lo-cal port and listens for connections from
the converter component.

6.2 Client implementation
We implement both protocol-based and
webmail-based versions of the SWEET client.
Protocol-based design The client prototype is
built on a desktop machine, running Linux
Ubuntu 10.04
TLS. We set up a web browser to use the
local port
”localhost:9034”as the SOCKS/HTTP proxy.
The con- verter component of SWEET client is a
simple python script that listens on port 9034
for connections, e.g., from our web browser.
Finally, we implement the email agent of
SWEET client using Fetchmail6, a popular
client software for sending and retrieval of
emails through email protocols. We generate a
free Gmail account and configure Fetchmail to
receive emails through IMAP7 and POP38
servers of Gmail, and to send emails through the
SMTP server of Gmail9. Note that our design
does not rely on Gmail, and the client software
can be set up with any email account.
Webmail-based design Our webmail-based
imple- mentation also runs on Linux Ubuntu
10.04 TLS. Our webmail-based implementation
uses a Google Chrome browser for making
connections through SWEET, con- figured to
use the local port of ”localhost:9034” as a

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-3, 2018
47

fr
a

ct
io

n
 o

f
tr

ia
ls

proxy. Also, the webmail-based design uses
the same converter component as the one used
in the protocol- based prototype.
We prototype the web-based email agent by
running a UserScript10 inside the Mozilla
Firefox11 web browser. More specifically, we
install a Firefox extension, called
Greasemonkey12, that allows a user to run
her own JavaScript, i.e., Userscript, while
browsing certain des- tinations. We write a
UserScript that runs in Gmail’s webmail
interface and listens for the receipt of new
email messages. Our UserScript saves new
emails in a local directory, which is watched
by the converter component. Note that the
Firefox browser is directly connected to the
Internet and does not use any proxies (user needs
to use the configured Chrome browser to surf
the web through SWEET).

7. EVALUATION
We evaluate SWEET using our prototype
implemen- tation, described in Section 6.

Figure 6: The CDF of the time that a SWEET
email takes to travel from the SWEET client
to the SWEET server (100 runs).

7.1 Performance
We use Gmail as the oblivious mail provider
in our experiments. Our SWEET server is
located in Urbana, IL, resulting in approximately
2000 miles of geographic distance between the
SWEET server and Gmail’s email server (we
locate Gmail’s location from its IP address).
Figure 6 shows the CDF of the time that a
SWEET email (carrying the tunnelled traffic)
sent by a SWEET client takes to reach our
SWEET server (the reverse path takes a similar
time). As the figure shows, around 90% of
SWEET emails take less than 3 seconds to reach
the SWEET server, which is very promising
considering the high data capacity of these

email messages. Note that based on our
measurements, most of this delay comes from
email handling (e.g, spam checks, making
SMTP connections, etc.) performed by the
oblivious mail provider (Gmail in our
experiments), but not from the network latency
(the network latency and client la- tency
constitute only tens of milliseconds of the
total latency). As a result, the latency would
be very simi- lar for users with an even longer
geographical distance from the oblivious mail
server.
Client registration Before being able to request
data from Internet destinations, a user needs to
be registered by the SWEET server. Figure 7
shows the time taken to exchange registration
messages between a client and the SWEET
server. Note that the client registration needs to
be performed only once for a long period of
time. The figure shows that more than 90%
of registrations establish in less than 8 seconds
(with an average of 6.4 seconds).
We use two metrics to evaluate the latency
perfor- mance of SWEET in browsing
websites: the time to the first appearance
(TFA) and the total browsing time.

Figure 7: The CDF distribution of the registra-
tion time.

google
facebook
youtube
 yahoo
 baidu

wiki
live

twitter
 amazon
 linkedin

Figure 8: The CDF of the time to the first
appearance (TFA) of SWEET

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-3, 2018
48

C
D

F

Figure 9: The CDF of the TBT time
using SWEET

 Tor
 TFA of SWEET
TBT ofSWEET

Figure 10: Comparing the average latency
of SWEET and Tor.
time the client receives the first HTTP
RESPONSE(s) from the destination, which
include the URL’s text parts (perhaps the news
article) along with the URLs of other objects on
that page, e.g., images, ads hosted by other
websites, etc. At this time the client can start
reading the received portion of the website (e.g.,
the news arti- cle), while her browser sends
requests for other objects on that webpage. On
the other hand, the total browsing time (TBT) is
the time after which the browser finishes
fetching all of the objects in the requested URL.
Using our prototype we measure the end-to-end
web browsing latency for the client to reach
different web destinations. Figure 8 shows the
time to the first ap- pearance (TFA) using
SWEET for the top 10 web URLs from Alexa’s
most-visited sites ranking [6]. As can be seen,
the median of the TFA is about 5 seconds across
all experiments, which is very promising to user
conve- nience.
On the other hand, Figure 9 shows the total
browsing time (TBT) using SWEET for the same
set of destina- tions (50 runs for each website).
As can be seen, the des- tinations that contain
more web objects (e.g., yahoo and linkedin) take
more time to get completely fetched (note that
after the TFA time the user can start reading the

webpage until all of the objects are received).
We also run similar experiments through the
popular Tor [35] anonymous network to
compare its latency performance with SWEET.
Figure 10 compares the cumulative time CDF
for SWEET and Tor systems. As expected,
our simple implementation of SWEET takes
more time than Tor to browse a web page,
however, it provides a suffi- cient performance
for normal web browsing. This is in particular
significant considering the strong availability of
SWEET compared to other circumvention
systems, as discussed in this paper. Additionally,
we believe that further optimizations on
SWEET server’s proxy (like those
implemented by Tor exit nodes) will further im-
prove the latency of SWEET. Our techniques
are also amenable to standard methods to
improve web latency, such as plugin-based
caching and compression, which can make web
browsing tolerable in high delay environ- ments
[12].

7.2 Traffic analysis
A powerful censor can perform traffic analysis to
de- tect the use of SWEET, e.g., by
comparing a user’s email communications with
that of a typical email user. As a result, a SWEET
user who is concerned about un- observability
needs to ensure that her SWEET email
communications mimic that of a normal user
(as dis- cussed in Section 5.1, a user who does
not fear reprisal from her government might opt
to ignore unobservabil- ity in order to gain a
higher communication bandwidth). It should be
mentioned that such traffic analysis is ex-
pensive for censors considering the large volume
of email communications; it is estimated13 that
294 billion email messages were sent per day in
2011.

Figure 11: The number of emails sent and
re- ceived by a SWEET client to get one of the
web- sites from Alexa’s top ten ranking.

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-3, 2018
49

Figure 11 shows the number of emails sent
and re- ceived by a SWEET client to browse
different websites. We observe that for any
particular website the num- ber of emails does
not change at different runs. As can be seen,
most of the web sites finish in less than three
SWEET emails in each direction. The exception
is the Yahoo web page as it contains many web
objects, each hosted by different URLs (note
that the number of email messages affects the
latency performance only sub-linearly, since
some emails are sent and received si-
multaneously.). Also, the average number in
each way of a connection is about 4 emails. A
recent study [31] on email statistics predicts that
an average user will send
35 emails and will receive 75 emails per day
in 2012
(the study predicts the numbers to increase
annually). In addition, membership in mailing
lists14 and Inter- net groups1516 is popular
among Internet users, pro- ducing even more
emails by normal email users. As an
indication of the popularity of such services,
Ya- hoo in 2010 announced17 that 115 million
unique users are collectively members of more
than 10 million Yahoo Groups. Based on the
mentioned statistics, we estimate that a
conservative SWEET user can perform 35-70
web downloads per day, or make 10-20
interactive web con- nections, while ensuring
unobservability of SWEET us- age. Once again,
as discussed in Section 5.1, we argue that
unobservability is a concern only to special
citi- zens; hence, we believe that normal citizens
would use SWEET ignoring the possibilities of
traffic analysis by a censor.

8. CONCLUSIONS
In this paper, we presented SWEET, a
deployable system for unobservable
communication with Internet destinations.
SWEET works by tunneling network traf- fic
through widely-used public email services
such as Gmail, Yahoo Mail, and Hotmail.
Unlike recently-proposed schemes that require a
collection of ISPs to instrument router-level
modifications in support of covert commu-
nications, our approach can be deployed through
a small applet running at the user’s end host,
and a remote email-based proxy, simplifying
deployment.

 Through an implementation and evaluation in
a wide-area de- ployment, we find that while
SWEET incurs some ad- ditional latency in
communications, these overheads are low
enough to be used for interactive accesses to
web services. We feel our work may serve to
accelerate de- ployment of censorship-resistant
services in the wide area, guaranteeing high
availability.

9. REFERENCES
[1] Dyna Web.
http://www.dongtaiwang.com/home_en.php.
[2]The FOE project.
http://code.google.com/p/foe-project/.
[3] Ultrasurf. http://www.ultrareach.com.
[4] Defeat Internet Censorship: Overview of
Advanced Technologies and Products, Nov.
2007.
 [5] Tor partially blocked in China.
https://blog.torproject.org/blog/tor-partially-
blocked- china, Sept.
2007.
[6] Defeat Internet Censorship: Overview of
Advanced Technologies and Products, Feb.
2012.
[7] Iran reportedly blocking encrypted Internet
traffic, Feb. 2012. http://arstechnica.com/tech-
policy/news/2012/02/iran-report
[8] Boyan, J. The Anonymizer: Protecting User
Privacy on the Web. Computer-Mediated
Communication Magazine 4, 9 (Sept. 1997).
[9] Burnett, S., Feamster, N., and Vempala, S.
Chipping Away at Censorship Firewalls with
User-Generated Content. In USENIX Security
Symposium (2010), USENIX Association, pp.
463–468
[10] Callanan, C., Dries-Ziekenheiner, H.,
Escudero-Pascual, A., and Guerra, R.
LeapingCircumvention Tools, Mar. 2010.
http://www.freedomhouse.org/sites/default/files
/inline_image
[11] Chaum, D. Untraceable electronic mail,
return communication of the ACM 4, 2 (Feb.
1981).
[12] Chen, J., Hutchful, D., Thies, W., and
Subramanian, L. Analyzing and accelerating
web access in a school in peri-urban india. In
WWW (Companion Volume) (2011), S.
Srinivasan, K. Ramamritham, A. Kumar, M. P.
Ravindra, E. Bertino, and R. Kumar, Eds., ACM,
pp. 443–452.

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-3, 2018
50

[13] Clarke, I., Hong, T. W., Miller, S. G.,
Sandberg, O., and Wiley, B. Protecting Free
Expression Online with Freenet. IEEE Internet
Computing 6, 1 (2002), 40–49.
[14] Clayton, R., Murdoch, S. J., and Watson,
R.N. M. Ignoring the Great Firewall of China.
In 6th International Workshop on Privacy
Enhancing Technologies (June 2006), G.
Danezis and P. Golle, Eds., vol. 4258 of Lecture
Notes in Computer Science, Springer, pp. 20–
35.
[15] Cooper, I., and Dilley, J. Known HTTP
Proxy/Caching Problems. Internet RFC 3143,
June 2001.
[16] Dingledine, R., and Mathewson, N. Design
of a blocking-resistant anonymity system. Tech.
rep., The Tor Project, Nov. 2006.
[17] Dingledine, R., Mathewson, N., and
Syverson, P. Tor: The Second-Generation Onion
Router. In USENIX Security Symposium
(Berkeley, CA, USA,2004), M. Blaze, Ed.,
USENIX Association.
[18] Feamster, N., Balazinska, M., Harfst, G.,
Balakrishnan, H., and Karger, D. Infranet:
Circumventing Web Censorship and
Surveillance. In 11th USENIX Security
Symposium (Aug. 2002), D. Boneh, Ed.,
USENIX Association, pp. 247–262.
 [19] Feamster, N., Balazinska, M., Wang, W.,
Balakrishnan, H., and Karger, D. Thwarting
Web Censorship with Untrusted Messenger
Discovery. In 3rd International Workshop on
Privacy Enhancing Technologies (Mar. 2003),
R. Dingledine, Ed.,vol. 2760 of Lecture Notes
in Computer Science, pp. 125–140.
[20] Houmansadr, A., Nguyen, G. T. K.,
Caesar, M., and Borisov, N. Cirripede:
Circumvention Infrastructure using Router
Redirection with Plausible Deniability. In ACM
Conference on Computer and Communications
Security (Chicago, IL, 2011).
[21] Hsiao, H.-C., Kim, T. H.-J., Perrig, A.,
Yamada, A., Nelson, S., Gruteser, M., and
Ming, W. LAP: Lightweight anonymity and
privacy. In Proceedings of the 2012 IEEE
Symposium on Security and Privacy (May
2012).
[22] Jia, J., and Smith, P. Psiphon: Analysis
and Estimation, 2004, and Brainard, J. G. Client
Puzzles: A Cryptographic Countermeasure
Against Connection Depletion Attacks. In The
Network and Distributed System Security
Symposium (1999), The Internet Society.

[23] Karlin, J., Ellard, D., Jackson, A. W.,
Jones, C. E., Lauer, G., Mankins, D. P., and
Strayer, W. T. Decoy Routing : Toward
Unblockable Internet Communication. In Usenix
FOCI (2011).
[24] Leberknight, C. S., Chiang, M., Poor, H.
V., and Wong, F. A taxonomy of Internet
censorship and anti-censorship, 2010.
[25] Leech, M., Ganis, M., Lee, Y., Kuris, R.,
Koblas, D., and Jones, L. RFC 1928:
SOCKSProtocol Version 5, Apr. 1996.
[26] Mahdian, M. Fighting Censorship with
Algorithms.In Fun with Algorithms (2010), P.
Boldi and L. Gargano, Eds., vol. 6099 of Lecture
Notes in Computer Science, Springer, pp. 296–
306.
[27]MailMyWeb. http://www.mailmyweb.com/.
[28] McCoy, D., Morales, J. A., and
Levchenko, K. Proximax: A Measurement
Based System for Proxies Dissemination. In
Financial Cryptography and Data Security
(2011), G. Danezis, Ed
[29] McLachlan, J., and Hopper, N. On the
risks of serving whenever you surf:
vulnerabilities in Tor’s blocking resistance
design. In 8th ACM Workshop on Privacy in the
Electronic Society (Nov. 2009),S. Paraboschi,
Ed., ACM, pp. 31–40.
[30] Radicati, S., and Hoang, Q. Email
Statistics Report, 2011-2015, 2011
http://www.radicati.com/wp/wpcontent/uploads/
2011/05/Email
[31] Robert Fielding and Jim Gettys and Jeff
Mogul and Henrik Frystyk and L. Masinter and
Paul Leach and Tim Berners-Lee. Hypertext
Transfer Protocol – HTTP/1.1. RFC 2616, June
1999. http://www.ietf.org/rfc/rfc2616.txt.
[32] Sovran, Y., Libonati, A., and Li, J. Pass it
on: Social networks stymie censors. In 7th
International Conference on Peer-to-peer
Systems (Feb. 2008),A. Iamnitchi and S. Saroiu,
Eds.
[33] Steiner, M., Tsudik, G., and Waidner, M.
Diffie-Hellman key distribution extended to
groups. In 3rd ACM Conference on Computer
and Communications Security (Mar. 1996), L.
Gong and J. Stern, Eds., ACM, pp. 31–37.
[34] Syverson, P., Tsudik, G., Reed, M., and
Landwehr, C. Towards an Analysis of Onion
Routing Security. In Proceedings of Designing
Privacy Enhancing Technologies: Workshop on
Design Issues in Anonymity and
Unobservability (July 2000),

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-3, 2018
51

H. Federrath, Ed., Springer-Verlag, LNCS 2009,
pp. 96–114.
[35] Winter, P., and Lindskog, S. How China
Is Blocking Tor. Tech. Rep. Arxiv preprint
arXiv:1204.0447, 2012.
http://arxiv.org/abs/1204.0447.
[36] Wustrow, E., Wolchok, S., Goldberg, I.,
and Halderman, J. A. Telex: Anticensorship in

the Network Infrastructure. In 20th Usenix
Security Symposium (Aug. 2011), D. Wagner,
Ed., USENIX Association.
[37] Zittrain, J., and Edelman, B. Internet
Filtering in China. IEEE Internet Computing 7,2
, 2003

