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1. Introduction  

An important study in the field of computer 
science is the analysis of networks. Internet 
service providers (ISPs), cell-phone companies, 
search engines, e-commerce sites, and a variety 
of other businesses receive, process, store, and 
transmit gigabytes, terabytes, or even petabytes 
of data each day. When a user initiates a 
connection to one of these services, he sends data 
across a wired or wireless network to a router, 
modem, server, cell tower, or perhaps some other 
device that in turn forwards the information to 
another router, modem, etc. and so forth until it 
reaches its destination. For any given source, 
there are often many possible paths along which 
the data could travel before reaching its intended 
recipient. When I will   initiate a connection to 
Google from my laptop here at the Sinhgad 
College, for example, packets of data first travel 
from my wireless card to my router, then from 
my router to a hub in the under workings of 
Sinhgad Server (192.168.60.1), then to the 
central servers of the Sinhgad College, which 
transmit them along some path unknown to me 
until they finally reach one of Google’s many 
servers 40 milliseconds later. 
From any one source to an intended destination, 
however, there are often many different routes 
that data can take. Under light traffic, the 
Sinhgad College might distribute the task of 
sending its Internet users’ packets through just 
two or three servers, whereas under heavy traffic 
it might use twice or three times as many. By 
spreading out the traffic across multiple servers, 
the Sinhgad College ensures that no one server 
will bog down with overuse and slow down the 
connection speeds of everyone using it. The idea 
that there are many possible paths between a 
source and a destination in a network gives rise 
to some interesting questions. Specifically, if the 
connection speed between every two interlinked 
components is known, is it possible to determine 

the fastest possible route between the source and 
destination? Supposing that all of the traffic 
between two components was to follow a single 
path, however, how would this affect the 
performance of the individual components and 
connections along the route? The optimum 
solution for the fastest possible transmission of 
data often involves spreading out traffic to other 
components, even though one component or 
connection might be much faster than all the 
others. 
               In graph theory, a flow network is a 
directed graph where each edge has a capacity 
and each edge receives flow. The amount of flow 
on an edge cannot exceed the capacity of the 
edge. Often in Operations Research, a directed 
graph is called a network, the vertices are called 
the nodes and edges are called the arcs. 

A flow must satisfy the restriction that the 
amount of flow into a node equals the amount of 
flow out it, except when it is a source, which has 
more outgoing flow or sink which has more 
incoming flow.  

                 In Information technology a network 
is a series of points or nodes interconnected by 
communication paths. Networks include the bus, 
star, token ring and mesh topologies. A network 
is characterized by the type of data transmission 
technology in use of TCP/IP. Network can be 
used to model traffic in a road system fluids in 
pipes, circuits in an electrical circuit. A network 
flow is a directed graph where each edge has a 
capacity and each edge receives a flow. 

This paper focuses on the maximum rate of flow 
which is possible from one station to another in 
the network of telephone lines, highways, 
railroads, pipelines of (oil or gas or water). This 
type of network is represented by a weighted 
connected graph in which the vertices are the 
stations and edges are lines through which the 
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given commodity (oil. Gas, water, no of 
messages) flows. Here the weight represents a 
positive real number which is associated with 
each edge which represents the capacity of the 
line that is the maximum amount of flow possible 
per unit of time. 

2. Definition 
 The study of networks is often abstracted to the 
study of graph theory, which provides many 
useful ways of describing and analyzing 
interconnected components.  

To start our discussion of graph theory—and 
through it, networks—we will first begin with 
some terminology. 
              First of all, we define a graph G = (V,E) 
to be a set of vertices V = {v1, v2, . . . , vm} and 
a set of edges E = {e1, e2, . . . , en}. An edge is a 
connection between one or two vertices in a 
graph; we express an edge ei as an unordered pair 
(vj , vk), where  
vj , vk ∈ V . If j = k, then ei is called a loop. 

 

 
 
 
If we let G denote this graph, then G = (V,E), 
where V = {v1, v2, v3, v4} and E ={e1, e2, e3, 
e4, e5, e6, e7}. We can express the edges as e1 = 
(v1, v1), e2 = (v1, v2), e3 = (v1, v4), e4 = (v2, 
v4), e5 = (v2, v3), and e6 = (v1, v4). Note that e1 
is a loop, since it connects v1 to itself. This type 
of graph is also known as an undirected graph, 
since its edges do not have a direction. A directed 
graph, however, is one in which edges do have 
direction, and we express an edge e as an ordered 
pair (v1, v2). Remark that in an undirected graph, 
we have (v1, v2) = (v2, v1), since edges are 
unordered pairs. 
Sometimes it is convenient to think of the edges 
of a graph as having weights, or a certain cost 
associated with moving from one vertex to 
another along an edge. If the cost of an edge e = 
(v1, v2) is c, then we write w(e) = w(v1, v2) = c. 
Graphs whose edges have weights are also 
known as weighted graphs. We define a path 
between two vertices v1 and vn to be an ordered 
tuple of vertices (v1, v2, . . . , vn), where (vj , 

vj+1) is an edge of the graph for each 1 ≤ j ≤ n − 
1. Note that in a directed graph, if the path (v1, 
v2, . . . , vn) connects the two vertices v1 and vn, 
it is not necessarily the case that (vn, vn−1, . . . , 
v1) is a path connecting them as well, since (vi, 
vi+1) 6= (vi+1, vi). Two vertices v1, v2 are said 
to be path-connected if there is a path from v1 to 
v2. 
The total cost of a path is the sum of the costs of 
the edges, so C = Pn−1 j=1 w(vj , vj+1) is the 
cost of the path from v1 to vn. 
 

3. Algorithms           
 Our main aim is to find the shortest path and 
with minimum cost to reach from one source to 
destination by using the following algorithms.    

        
Dijkstra's Algorithm 

It solves the single-source shortest path 
algorithm for a graph with non negative edges 
path costs, producing a shortest path tree.This 
algorithm is often used in routing and as a 
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subroutine in other graph algorithms. For a given 
source vertex (node) in the graph, the algorithm 
finds the path with lowest cost (i.e. the shortest 
path) between that vertex and every other vertex. 
It can also be used for finding costs of shortest 
paths from a single vertex to a single destination 
vertex by stopping the algorithm once the 
shortest path to the destination vertex has been 
determined. For example, if the vertices of the 

graph represent cities and edge path costs 
represent driving distances between pairs of 
cities connected by a direct road, Dijkstra's 
algorithm can be used to find the shortest route 
between one city and all other cities. As a result, 
the shortest path first is widely used in network 
routing protocol, most notably IS-IS and OSPF 
(Open Shortest Path First). 
Here are some simple examples of networks:  

 
nodes arcs flow 
cities highways vehicles 

call switching centers telephone lines telephone calls 
pipe junctions pipes water 

Algorithm 
Let the node at which we are starting be called 
the initial node. Let the distance of node Y be 
the distance from the initial node to Y. Dijkstra's 
algorithm will assign some initial distance values 
and will try to improve them step by step. 

1. Assign to every node a tentative distance 
value: set it to zero for our initial node and 
to infinity for all other nodes. 

2. Mark all nodes except the initial node as 
unvisited. Set the initial node as current. 
Create a set of the unvisited nodes called 
the unvisited set consisting of all the nodes 
except the initial node. 

3. For the current node, consider all of its 
unvisited neighbors and calculate their 
tentative distances. For example, if the 
current node A is marked with a distance of 
6, and the edge connecting it with a 
neighbor B has length 2, then the distance 
to B (through A) will be 6+2=8. If this 
distance is less than the previously 
recorded distance, then overwrite that 
distance. Even though a neighbor has been 
examined, it is not marked as visited at this 
time, and it remains in the unvisited set. 

4. When we are done considering all of the 
neighbors of the current node, mark it as 
visited and remove it from the unvisited set. 
A visited node will never be checked again; 
its distance recorded now is final and 
minimal. 

5. The next current node will be the node 
marked with the lowest (tentative) distance 
in the unvisited set. 

6. If the unvisited set is empty, then stop. The 
algorithm has finished. Otherwise, set the 
unvisited node marked with the smallest 
tentative distance as the next "current 
node" and go back to step 3.          

4. Network Flows 
Imagine that you are a courier service, and you 
want to deliver some cargo from one city to 
another .You can deliver them using various 
flights from cities to cities, but each flight has a 
limited amount of space that you can use. An 
important question is, how much of our cargo 
can be shipped to the destination using the 
different flights available? To answer this 
question, we explore what is called a network 
flow graph, and show how we can model 
different problems using such a graph. A 
network flow graph G=(V,E) is a directed graph 
with two special vertices: the source vertex s, and 
the sink (destination) vertex t. Each vertex 
represents a city where we can send or receive 
cargo. An edge (u,v) in the graph means that 
there is a flight that flies directly from u to v. 
Each edge has an associated capacity, always 
finite, representing the amount of space available 
on this flight. For simplicity, we assume there 
can only be one edge (u,v) for vertices u and v, 
but we do allow reverse edges (v,u). Firgure 1 is 
an example of a network flow graph modelling 
the problem stated above. 
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With this graph, we now want to know how 
much cargo we can ship from s to t. Since the 
cargo 
"flows" through the graph from s to t, we call this 
the maximum flow problem. A straightforward 
solution is to do the following: keep finding 

paths from s to t where we can send  as much 
flow as possible along each path, and update the 
flow graph afterwards to account for the used 
space. The following shows an arbitrary 
selection of a path on the above graph

.  

 
In figure 2 The first number on each edge is the 
flow, and the second is the capacity. 
 In Figure 2, we picked a path s → u → v → t. 
The capacities along this path are 3, 3, 4 
respectively, which means we have a bottleneck 
capacity of 3 – we can send at most 3 units of 
flow along this path. Now we send 3 units of flow 
along this path, and try to update the graph. How 
should we do this? An obvious choice would be 

to decrease the capacity of each edge used by 3 – 
we have used up 3 available spaces along each 
edge, so the capacity on each edge must decrease 
by 3. Updating this way, the only other path left 
from s to t is s → v → t. The edge (s,v) has 
capacity 2, and the edge (v,t) now has capacity 1, 
because of a flow of 3 from the last path. Hence, 
with the same update procedure, we obtain 
Figure 3 below. 

 
 
Our algorithm now ends, because we cannot find 
anymore paths from s to t (remember, an edge 
that has no free capacity cannot be used). 
However, can we do better? It turns out we can. 
If we only send 2 units of flow (u,v), and diverge 
the third unit to (u,t), then we open up a new 

space in both the edges (u,v) and (v,t). We can 
now send one more unit of flow on the path s → 
v → t, increasing our total flow to 5, which is 
obviously the maximum possible. The optimal 
solution is the following: 
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So, what is wrong with our algorithm? One 
problem was that we picked the paths in the 
wrong order. If we had picked the paths s → u → 
t first, then pick s → u → v → t, then finally s → 
v→ t, we will end up with the optimal solution. 
One solution is to always pick the right ordering 
or paths; but this can be difficult. Can we resolve 
this problem without worrying about which paths 
we pick first and which ones we pick last? 
One solution is the following. Comparing Figure 
3 and Figure 4, we see that the difference 
between the two are in the edges (s,v), (u,v) and 
(u,t). In the optimal solution in Figure 4, (s,v) has 
one more unit of flow, (u,v) has one less unit, and 
(u,t) has one more unit. If we just look at these 
three edges and form a path s → v → u →t 
then we can interpret the path like this: we first 
try to send some flow 
along (s,v), and there are no more edges going 
away from v that has free capacity. Now, we can 
push back flow along (u,v), telling others that 
some units of flow that originally came along 
(u,v) can now be taken over by flow coming into 
v along (s,v). After we push flow back to u, we 
can look for new paths, and the only edge we can 
use is (u,t). The three edges have a bottleneck 
capacity of 1, due to the edge (s,v), and so we 
push one unit along (s,v) and (u,t), but push back 

one unit on (u,v). Think of pushing flow 
backwards as using a backward edge that has 
capacity equal to the flow on that edge. It turns 
out that this small fix yields a correct solution 
to the maximum flow problem. 
 

5. Networks 
A network is characterized by a collection of 
nodes and directed edges, by called a directed 
graph. Each edge points from one node to 
another. Figure below offers a visual 
representation of a directed graph with nodes 
labeled 1 through 8. We will denote an edge 
pointing from a node i to a node j by (i, j). In this 
notation, the graph of Figure below can be 
characterized in terms of a set of nodes V = {1, 
2, 3, 4, 5, 6, 7, 8} and a set of edges E = {(1, 2), 
(1, 3), (1, 6), (2, 5), (3, 4), (4, 6), (5, 8), (6, 5), (6, 
7), (7, 8)}. Graphs can be used to model many 
real networked systems. For example, in 
modelling air travel, each node might represent 
an airport, and each edge a route taken by some 
flight. Note that, to solve a specific problem, one 
often requires more information than the 
topology captured by a graph. For example, to 
minimize cost of air travel, one would need to 
know costs of tickets for various routes. 

 
Directed Graph 
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5.1 Min-Cost-Flow Problems 
Consider a directed graph with a set V of nodes 
and a set E of edges. In a min-cost-flow problem, 
each edge (i, j) � E is associated with a cost cij 
and a capacity constraint uij . There is one 

decision variable fij per edge (i, j) � E. Each fij 
is represents a flow of objects from i to j. The 
cost of a flow fij is cijfij . Each node j � V \ {s, 
d} satisfies a flow constraint: 

 
where  bj denotes an amount of flow generated 
by node j. Note that if bj is negative, the node 
consumes flow. The min-cost-flow problem is to 

find flows that minimize total cost subject to 
capacity and flow conservation constraints. It 
can be written as a linear program: 

 
An important property of the min-cost-flow 
problem is that basic feasible solutions are 
integer-valued if capacity constraints and 
quantitied of flow produced at each node are 
integer valued.  
 
5.2 Shortest Path Problems 
Consider a graph with nodes V and a set of edges 
E. Think of each node as a city and each edge as 
a highway that can be used to send a truck from 
one city to another. Suppose we are given the 
travel time cij associated with each highway, and 
we want to get the truck from node o (the origin) 
to node d (the destination) in minimum time. 
Suppose that for each (i, j) � E, we 
Take   fij to be a binary variable to which we 
would assign a value of 1 if edge (i, j) is to be 
part of the route and 0 otherwise. Then, the route 
with shortest travel time can be found by  solving  
min-cost-flow problem with bo = 1,bd = −1, bi = 
0 for i /� {o, d}, uij = 1 for each (i, j) � E, and 
an additional constraint that fij � {0, 1} for each 
(i, j) � E. 
The additional set of constraints that require flow 
variables to be binary are introduced because it 
is not possible to send a fraction of the truck 
along a highway. With the additional constraints, 

the problem is not a linear program. Fortunately, 
we can drop these additional constraints and by 
doing so obtain a min-cost-flow problem – a 
linear program for which basic feasible solutions 
are integer-valued. Because basic feasible 
solutions are integervalued,if there exists an 
optimal solution, which is the case if there is a 
path from node o to node d, then there will be an 
integer-valued optimal solution. This means a 
binary-valued solution since each flow is 
constrained 
to be between 0 and 1. 
 
5.3 Max-Flow Problems 
Consider a graph with a set of vertices V , a set 
of edges E, and two distinguished nodes o and d. 
Each edge has an associated capacity uij but no 
associated cost. We will assume that there is no 
edge from d to o. In a max-flow problem, the 
goal is to maximize the total flow from o to d. In 
our formulation, nodes do not produce or 
consume flow, but rather, we introduce an 
auxiliary edge (d, o) with no capacity limit and 
aim to maximize flow along this edge. By doing 
so, we indirectly maximize flow from o to d via 
the edges in E. We define an augmented set of 
edges E'= E U {(d, o)}. 

The max-flow problem is given by 

Note that this can be thought of as a special case of the min-cost-flow problem, 
where all edges have zero cost, except for (d, o), which is assigned a cost 
of cdo = −1. 
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5.4 Min-Cut Problems 
An interesting related problem is the min-cut 
problem. A cut is a partition of the nodes V into 
two disjoint sets Vo and Vd such that o � Vs, d 
� Vd, and Vo [Vd = V . The objective in the min-
cut problem is to find a cut that such that the 
capacity for flows from Vs to Vd is minimized. 
One way to represent a choice of partition 

involves assigning a binary variable to each 
node. In 
particular, for each node i � V , let pi = 0 if i � 
Vo and pi = 1 if i � Vd.Note that for nodes o and 
d, we always have po = 0 and pd = 1. Further,for 
each (i, j) � E, let qij = 1 if there is an edge 
directed from i to j, and let qij = 0, otherwise. 
Note that qij = max(pj −pi, 0). The min-cut 
problem can be written as 

The decision variables being optimized here 
include each pi for i � V and each qij for (i, j) � 
E. Since the problem involves minimizing a 
weighted combination of qij ’s, with positive 
weights, and each qij is constrained to {0, 1}, the 

constraint that qij = max(pj−pi, 0) can be 
converted to qij _ pj−pi, without changing the 
optimal solution. Hence, an equivalent 
optimization problem is: 

 

 
It is easy to see that the optimal objective value 
for the min-cut problem is greater than or equal 
to the optimal objective value for the max-flow 
problem. This is because for any cut, flow that 
gets from o to d must pass from Vo to Vd. Hence, 
the maximal flow is limited by the capacity for 
flow from Vo to Vd. 

       The min-cut problem as stated above is not 
a linear program because the variables are 
constrained to be binary. As we will now explain, 
the following linear program also solves the min-
cut problem

: 

 
We will not go through the mechanics of 
converting the max-flow problem to its dual here 
–that is straightforward to do. However, we will 
argue that, as a consequence, at each optimal 

basic feasible solution, each qij is binary valued. 
At an optimal basic feasible solution, each qij 
can be viewed as the sensitivity of max-flow to 
the capacity constraint uij . At an optimal basic 
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feasible solution to the dual, qij is equal to either 
the rate at which flow increases as a consequence 
increasing uij or the rate at which flow decreases 
as a consequence of decreasing uij . Because all 
capacities are integer-valued, if increasing uij 
slightly can increase flow, the rate of increase in 
flow must equal the rate of increase in capacity. 
The situation with decreasing uij is analogous. 
Hence, if the sensitivity is nonzero, it is equal to 
one. 
            Note that the pis may not be binary-
valued; for example, adding a constant to every 
pi maintains feasibility and does not alter the 
objective value.So given binary-valued qijs, how 
do we recover the cut? Well, at an optimal basic 
feasible solution, qij = 1 if and only if the edge 

(i, j) goes from Vo to Vd. Based on this, one can 
easily recover the cut. 
5.5 Matching Problems 
Consider making matches among n potential 
grooms and n potential brides.We have data on 
which couples will or will not be happy together, 
and the goal is to create as many happy couples 
as possible. One might represent the 
compatibilities in terms of a graph as depicted in 
Figure below : 
          The problem of finding a matching that 
maximizes the number of happy couples is 
known as the matching problem. 
          Clearly, this problem can be treated as a 
max-flow problem by adding origin and 
destination nodes as shown in Figure- 

 
A matching  problem. 
The capacity of each edge is one. By solving the 
linear program associated with this max-flow 
problem, we arrive at a solution that maximizes 
the number of happy couples. If we are lucky this 
will turn out to be n. But sometimes, it may not. 
Interestingly, there is a simple rule for 
determining whether or not there will be n happy 
couples without solving the linear program. 
 
5.6 Theorem -  (Hall’s Marriage Lemma) 
      There exists a matching such that every bride 
and every groom is happy if and only if for any 
set of groom,the set of brides that would form a 
happy couple with at least one of these grooms is 
at least as large as the set of grooms. 

 
Proof - It is obvious that for any set A of grooms, 
there has to be a set of brides of at least equal size 
in order for there to be any hope of a perfect 
matching. What is less clear is that there must be 
a perfect matching if this condition holds for 
every set of grooms. This follows from the fact 
that there is a perfect matching if the maximal 
flow/minimal cut equals n (the number of 
grooms/brides). It is easy to see that if the 
conditions on grooms and brides holds, there 
cannot be any cut of value less than n, and the 
result follows. 
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Shortest Path and LP 
You are going to visit a national park, and have 
never been there before. You are using a map to 
try and make the distance travelled as short as 

possible.There are 5 intermediate towns, A, B, 
C, D, and E, you may go through on your way 
to the park, and the distances between the 
various locations are given below. 

 
In the table above, a dash means that there is no 
direct road between the two locations. 
Networks and Swimming 
The coach of a swim team needs to assign 
swimmers to a �00-yard medley relay team to 
compete in a tournament. The problem facing 

him is that his best swimmers are good in more 
than one stroke, so it is not clear which swimmer 
to assign to which stroke. The 5 fastest 
swimmers and the best times (in seconds) they 
have achieved with each of the strokes (for 50 
yards) are given below. 

 
The problem is to try to minimize the sum of the best times for the people competing in the race. 
 
Conclusion  
 In this paper, we have solved   problems in 
network theory. In network flow we have seen 
how to deliver some cargo from one city to 
another using the shortest path. 
We have given the definition of network and 
directed graph and we have listed some problems 
in Min-Cost Flow, Shortest Path, Min-Cut 
Problems and Matching Problems. 
In matching problem we have tried to match n 
potential grooms with n potential brides with the 
help of Hall’s Marriage Theorem.  
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