

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-3, 2018

55

GRAPH THEORY: NETWORK FLOW

 Vrushali Manohar
Asst Prof, IFIM College, Bangalore

1. Introduction

An important study in the field of computer
science is the analysis of networks. Internet
service providers (ISPs), cell-phone companies,
search engines, e-commerce sites, and a variety
of other businesses receive, process, store, and
transmit gigabytes, terabytes, or even petabytes
of data each day. When a user initiates a
connection to one of these services, he sends data
across a wired or wireless network to a router,
modem, server, cell tower, or perhaps some other
device that in turn forwards the information to
another router, modem, etc. and so forth until it
reaches its destination. For any given source,
there are often many possible paths along which
the data could travel before reaching its intended
recipient. When I will initiate a connection to
Google from my laptop here at the Sinhgad
College, for example, packets of data first travel
from my wireless card to my router, then from
my router to a hub in the under workings of
Sinhgad Server (192.168.60.1), then to the
central servers of the Sinhgad College, which
transmit them along some path unknown to me
until they finally reach one of Google’s many
servers 40 milliseconds later.
From any one source to an intended destination,
however, there are often many different routes
that data can take. Under light traffic, the
Sinhgad College might distribute the task of
sending its Internet users’ packets through just
two or three servers, whereas under heavy traffic
it might use twice or three times as many. By
spreading out the traffic across multiple servers,
the Sinhgad College ensures that no one server
will bog down with overuse and slow down the
connection speeds of everyone using it. The idea
that there are many possible paths between a
source and a destination in a network gives rise
to some interesting questions. Specifically, if the
connection speed between every two interlinked
components is known, is it possible to determine

the fastest possible route between the source and
destination? Supposing that all of the traffic
between two components was to follow a single
path, however, how would this affect the
performance of the individual components and
connections along the route? The optimum
solution for the fastest possible transmission of
data often involves spreading out traffic to other
components, even though one component or
connection might be much faster than all the
others.
 In graph theory, a flow network is a
directed graph where each edge has a capacity
and each edge receives flow. The amount of flow
on an edge cannot exceed the capacity of the
edge. Often in Operations Research, a directed
graph is called a network, the vertices are called
the nodes and edges are called the arcs.

A flow must satisfy the restriction that the
amount of flow into a node equals the amount of
flow out it, except when it is a source, which has
more outgoing flow or sink which has more
incoming flow.

 In Information technology a network
is a series of points or nodes interconnected by
communication paths. Networks include the bus,
star, token ring and mesh topologies. A network
is characterized by the type of data transmission
technology in use of TCP/IP. Network can be
used to model traffic in a road system fluids in
pipes, circuits in an electrical circuit. A network
flow is a directed graph where each edge has a
capacity and each edge receives a flow.

This paper focuses on the maximum rate of flow
which is possible from one station to another in
the network of telephone lines, highways,
railroads, pipelines of (oil or gas or water). This
type of network is represented by a weighted
connected graph in which the vertices are the
stations and edges are lines through which the

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-3, 2018

56

given commodity (oil. Gas, water, no of
messages) flows. Here the weight represents a
positive real number which is associated with
each edge which represents the capacity of the
line that is the maximum amount of flow possible
per unit of time.

2. Definition
 The study of networks is often abstracted to the
study of graph theory, which provides many
useful ways of describing and analyzing
interconnected components.

To start our discussion of graph theory—and
through it, networks—we will first begin with
some terminology.
 First of all, we define a graph G = (V,E)
to be a set of vertices V = {v1, v2, . . . , vm} and
a set of edges E = {e1, e2, . . . , en}. An edge is a
connection between one or two vertices in a
graph; we express an edge ei as an unordered pair
(vj , vk), where
vj , vk ∈ V . If j = k, then ei is called a loop.

If we let G denote this graph, then G = (V,E),
where V = {v1, v2, v3, v4} and E ={e1, e2, e3,
e4, e5, e6, e7}. We can express the edges as e1 =
(v1, v1), e2 = (v1, v2), e3 = (v1, v4), e4 = (v2,
v4), e5 = (v2, v3), and e6 = (v1, v4). Note that e1
is a loop, since it connects v1 to itself. This type
of graph is also known as an undirected graph,
since its edges do not have a direction. A directed
graph, however, is one in which edges do have
direction, and we express an edge e as an ordered
pair (v1, v2). Remark that in an undirected graph,
we have (v1, v2) = (v2, v1), since edges are
unordered pairs.
Sometimes it is convenient to think of the edges
of a graph as having weights, or a certain cost
associated with moving from one vertex to
another along an edge. If the cost of an edge e =
(v1, v2) is c, then we write w(e) = w(v1, v2) = c.
Graphs whose edges have weights are also
known as weighted graphs. We define a path
between two vertices v1 and vn to be an ordered
tuple of vertices (v1, v2, . . . , vn), where (vj ,

vj+1) is an edge of the graph for each 1 ≤ j ≤ n −
1. Note that in a directed graph, if the path (v1,
v2, . . . , vn) connects the two vertices v1 and vn,
it is not necessarily the case that (vn, vn−1, . . . ,
v1) is a path connecting them as well, since (vi,
vi+1) 6= (vi+1, vi). Two vertices v1, v2 are said
to be path-connected if there is a path from v1 to
v2.
The total cost of a path is the sum of the costs of
the edges, so C = Pn−1 j=1 w(vj , vj+1) is the
cost of the path from v1 to vn.

3. Algorithms
 Our main aim is to find the shortest path and
with minimum cost to reach from one source to
destination by using the following algorithms.

Dijkstra's Algorithm

It solves the single-source shortest path
algorithm for a graph with non negative edges
path costs, producing a shortest path tree.This
algorithm is often used in routing and as a

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-3, 2018

57

subroutine in other graph algorithms. For a given
source vertex (node) in the graph, the algorithm
finds the path with lowest cost (i.e. the shortest
path) between that vertex and every other vertex.
It can also be used for finding costs of shortest
paths from a single vertex to a single destination
vertex by stopping the algorithm once the
shortest path to the destination vertex has been
determined. For example, if the vertices of the

graph represent cities and edge path costs
represent driving distances between pairs of
cities connected by a direct road, Dijkstra's
algorithm can be used to find the shortest route
between one city and all other cities. As a result,
the shortest path first is widely used in network
routing protocol, most notably IS-IS and OSPF
(Open Shortest Path First).
Here are some simple examples of networks:

nodes arcs flow
cities highways vehicles

call switching centers telephone lines telephone calls
pipe junctions pipes water

Algorithm
Let the node at which we are starting be called
the initial node. Let the distance of node Y be
the distance from the initial node to Y. Dijkstra's
algorithm will assign some initial distance values
and will try to improve them step by step.

1. Assign to every node a tentative distance
value: set it to zero for our initial node and
to infinity for all other nodes.

2. Mark all nodes except the initial node as
unvisited. Set the initial node as current.
Create a set of the unvisited nodes called
the unvisited set consisting of all the nodes
except the initial node.

3. For the current node, consider all of its
unvisited neighbors and calculate their
tentative distances. For example, if the
current node A is marked with a distance of
6, and the edge connecting it with a
neighbor B has length 2, then the distance
to B (through A) will be 6+2=8. If this
distance is less than the previously
recorded distance, then overwrite that
distance. Even though a neighbor has been
examined, it is not marked as visited at this
time, and it remains in the unvisited set.

4. When we are done considering all of the
neighbors of the current node, mark it as
visited and remove it from the unvisited set.
A visited node will never be checked again;
its distance recorded now is final and
minimal.

5. The next current node will be the node
marked with the lowest (tentative) distance
in the unvisited set.

6. If the unvisited set is empty, then stop. The
algorithm has finished. Otherwise, set the
unvisited node marked with the smallest
tentative distance as the next "current
node" and go back to step 3.

4. Network Flows
Imagine that you are a courier service, and you
want to deliver some cargo from one city to
another .You can deliver them using various
flights from cities to cities, but each flight has a
limited amount of space that you can use. An
important question is, how much of our cargo
can be shipped to the destination using the
different flights available? To answer this
question, we explore what is called a network
flow graph, and show how we can model
different problems using such a graph. A
network flow graph G=(V,E) is a directed graph
with two special vertices: the source vertex s, and
the sink (destination) vertex t. Each vertex
represents a city where we can send or receive
cargo. An edge (u,v) in the graph means that
there is a flight that flies directly from u to v.
Each edge has an associated capacity, always
finite, representing the amount of space available
on this flight. For simplicity, we assume there
can only be one edge (u,v) for vertices u and v,
but we do allow reverse edges (v,u). Firgure 1 is
an example of a network flow graph modelling
the problem stated above.

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-3, 2018

58

With this graph, we now want to know how
much cargo we can ship from s to t. Since the
cargo
"flows" through the graph from s to t, we call this
the maximum flow problem. A straightforward
solution is to do the following: keep finding

paths from s to t where we can send as much
flow as possible along each path, and update the
flow graph afterwards to account for the used
space. The following shows an arbitrary
selection of a path on the above graph

.

In figure 2 The first number on each edge is the
flow, and the second is the capacity.
 In Figure 2, we picked a path s → u → v → t.
The capacities along this path are 3, 3, 4
respectively, which means we have a bottleneck
capacity of 3 – we can send at most 3 units of
flow along this path. Now we send 3 units of flow
along this path, and try to update the graph. How
should we do this? An obvious choice would be

to decrease the capacity of each edge used by 3 –
we have used up 3 available spaces along each
edge, so the capacity on each edge must decrease
by 3. Updating this way, the only other path left
from s to t is s → v → t. The edge (s,v) has
capacity 2, and the edge (v,t) now has capacity 1,
because of a flow of 3 from the last path. Hence,
with the same update procedure, we obtain
Figure 3 below.

Our algorithm now ends, because we cannot find
anymore paths from s to t (remember, an edge
that has no free capacity cannot be used).
However, can we do better? It turns out we can.
If we only send 2 units of flow (u,v), and diverge
the third unit to (u,t), then we open up a new

space in both the edges (u,v) and (v,t). We can
now send one more unit of flow on the path s →
v → t, increasing our total flow to 5, which is
obviously the maximum possible. The optimal
solution is the following:

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-3, 2018

59

So, what is wrong with our algorithm? One
problem was that we picked the paths in the
wrong order. If we had picked the paths s → u →
t first, then pick s → u → v → t, then finally s →
v→ t, we will end up with the optimal solution.
One solution is to always pick the right ordering
or paths; but this can be difficult. Can we resolve
this problem without worrying about which paths
we pick first and which ones we pick last?
One solution is the following. Comparing Figure
3 and Figure 4, we see that the difference
between the two are in the edges (s,v), (u,v) and
(u,t). In the optimal solution in Figure 4, (s,v) has
one more unit of flow, (u,v) has one less unit, and
(u,t) has one more unit. If we just look at these
three edges and form a path s → v → u →t
then we can interpret the path like this: we first
try to send some flow
along (s,v), and there are no more edges going
away from v that has free capacity. Now, we can
push back flow along (u,v), telling others that
some units of flow that originally came along
(u,v) can now be taken over by flow coming into
v along (s,v). After we push flow back to u, we
can look for new paths, and the only edge we can
use is (u,t). The three edges have a bottleneck
capacity of 1, due to the edge (s,v), and so we
push one unit along (s,v) and (u,t), but push back

one unit on (u,v). Think of pushing flow
backwards as using a backward edge that has
capacity equal to the flow on that edge. It turns
out that this small fix yields a correct solution
to the maximum flow problem.

5. Networks
A network is characterized by a collection of
nodes and directed edges, by called a directed
graph. Each edge points from one node to
another. Figure below offers a visual
representation of a directed graph with nodes
labeled 1 through 8. We will denote an edge
pointing from a node i to a node j by (i, j). In this
notation, the graph of Figure below can be
characterized in terms of a set of nodes V = {1,
2, 3, 4, 5, 6, 7, 8} and a set of edges E = {(1, 2),
(1, 3), (1, 6), (2, 5), (3, 4), (4, 6), (5, 8), (6, 5), (6,
7), (7, 8)}. Graphs can be used to model many
real networked systems. For example, in
modelling air travel, each node might represent
an airport, and each edge a route taken by some
flight. Note that, to solve a specific problem, one
often requires more information than the
topology captured by a graph. For example, to
minimize cost of air travel, one would need to
know costs of tickets for various routes.

Directed Graph

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-3, 2018

60

5.1 Min-Cost-Flow Problems
Consider a directed graph with a set V of nodes
and a set E of edges. In a min-cost-flow problem,
each edge (i, j) � E is associated with a cost cij
and a capacity constraint uij . There is one

decision variable fij per edge (i, j) � E. Each fij
is represents a flow of objects from i to j. The
cost of a flow fij is cijfij . Each node j � V \ {s,
d} satisfies a flow constraint:

where bj denotes an amount of flow generated
by node j. Note that if bj is negative, the node
consumes flow. The min-cost-flow problem is to

find flows that minimize total cost subject to
capacity and flow conservation constraints. It
can be written as a linear program:

An important property of the min-cost-flow
problem is that basic feasible solutions are
integer-valued if capacity constraints and
quantitied of flow produced at each node are
integer valued.

5.2 Shortest Path Problems
Consider a graph with nodes V and a set of edges
E. Think of each node as a city and each edge as
a highway that can be used to send a truck from
one city to another. Suppose we are given the
travel time cij associated with each highway, and
we want to get the truck from node o (the origin)
to node d (the destination) in minimum time.
Suppose that for each (i, j) � E, we
Take fij to be a binary variable to which we
would assign a value of 1 if edge (i, j) is to be
part of the route and 0 otherwise. Then, the route
with shortest travel time can be found by solving
min-cost-flow problem with bo = 1,bd = −1, bi =
0 for i /� {o, d}, uij = 1 for each (i, j) � E, and
an additional constraint that fij � {0, 1} for each
(i, j) � E.
The additional set of constraints that require flow
variables to be binary are introduced because it
is not possible to send a fraction of the truck
along a highway. With the additional constraints,

the problem is not a linear program. Fortunately,
we can drop these additional constraints and by
doing so obtain a min-cost-flow problem – a
linear program for which basic feasible solutions
are integer-valued. Because basic feasible
solutions are integervalued,if there exists an
optimal solution, which is the case if there is a
path from node o to node d, then there will be an
integer-valued optimal solution. This means a
binary-valued solution since each flow is
constrained
to be between 0 and 1.

5.3 Max-Flow Problems
Consider a graph with a set of vertices V , a set
of edges E, and two distinguished nodes o and d.
Each edge has an associated capacity uij but no
associated cost. We will assume that there is no
edge from d to o. In a max-flow problem, the
goal is to maximize the total flow from o to d. In
our formulation, nodes do not produce or
consume flow, but rather, we introduce an
auxiliary edge (d, o) with no capacity limit and
aim to maximize flow along this edge. By doing
so, we indirectly maximize flow from o to d via
the edges in E. We define an augmented set of
edges E'= E U {(d, o)}.

The max-flow problem is given by

Note that this can be thought of as a special case of the min-cost-flow problem,
where all edges have zero cost, except for (d, o), which is assigned a cost
of cdo = −1.

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-3, 2018

61

5.4 Min-Cut Problems
An interesting related problem is the min-cut
problem. A cut is a partition of the nodes V into
two disjoint sets Vo and Vd such that o � Vs, d
� Vd, and Vo [Vd = V . The objective in the min-
cut problem is to find a cut that such that the
capacity for flows from Vs to Vd is minimized.
One way to represent a choice of partition

involves assigning a binary variable to each
node. In
particular, for each node i � V , let pi = 0 if i �
Vo and pi = 1 if i � Vd.Note that for nodes o and
d, we always have po = 0 and pd = 1. Further,for
each (i, j) � E, let qij = 1 if there is an edge
directed from i to j, and let qij = 0, otherwise.
Note that qij = max(pj −pi, 0). The min-cut
problem can be written as

The decision variables being optimized here
include each pi for i � V and each qij for (i, j) �
E. Since the problem involves minimizing a
weighted combination of qij ’s, with positive
weights, and each qij is constrained to {0, 1}, the

constraint that qij = max(pj−pi, 0) can be
converted to qij _ pj−pi, without changing the
optimal solution. Hence, an equivalent
optimization problem is:

It is easy to see that the optimal objective value
for the min-cut problem is greater than or equal
to the optimal objective value for the max-flow
problem. This is because for any cut, flow that
gets from o to d must pass from Vo to Vd. Hence,
the maximal flow is limited by the capacity for
flow from Vo to Vd.

 The min-cut problem as stated above is not
a linear program because the variables are
constrained to be binary. As we will now explain,
the following linear program also solves the min-
cut problem

:

We will not go through the mechanics of
converting the max-flow problem to its dual here
–that is straightforward to do. However, we will
argue that, as a consequence, at each optimal

basic feasible solution, each qij is binary valued.
At an optimal basic feasible solution, each qij
can be viewed as the sensitivity of max-flow to
the capacity constraint uij . At an optimal basic

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-3, 2018

62

feasible solution to the dual, qij is equal to either
the rate at which flow increases as a consequence
increasing uij or the rate at which flow decreases
as a consequence of decreasing uij . Because all
capacities are integer-valued, if increasing uij
slightly can increase flow, the rate of increase in
flow must equal the rate of increase in capacity.
The situation with decreasing uij is analogous.
Hence, if the sensitivity is nonzero, it is equal to
one.
 Note that the pis may not be binary-
valued; for example, adding a constant to every
pi maintains feasibility and does not alter the
objective value.So given binary-valued qijs, how
do we recover the cut? Well, at an optimal basic
feasible solution, qij = 1 if and only if the edge

(i, j) goes from Vo to Vd. Based on this, one can
easily recover the cut.
5.5 Matching Problems
Consider making matches among n potential
grooms and n potential brides.We have data on
which couples will or will not be happy together,
and the goal is to create as many happy couples
as possible. One might represent the
compatibilities in terms of a graph as depicted in
Figure below :
 The problem of finding a matching that
maximizes the number of happy couples is
known as the matching problem.
 Clearly, this problem can be treated as a
max-flow problem by adding origin and
destination nodes as shown in Figure-

A matching problem.
The capacity of each edge is one. By solving the
linear program associated with this max-flow
problem, we arrive at a solution that maximizes
the number of happy couples. If we are lucky this
will turn out to be n. But sometimes, it may not.
Interestingly, there is a simple rule for
determining whether or not there will be n happy
couples without solving the linear program.

5.6 Theorem - (Hall’s Marriage Lemma)
 There exists a matching such that every bride
and every groom is happy if and only if for any
set of groom,the set of brides that would form a
happy couple with at least one of these grooms is
at least as large as the set of grooms.

Proof - It is obvious that for any set A of grooms,
there has to be a set of brides of at least equal size
in order for there to be any hope of a perfect
matching. What is less clear is that there must be
a perfect matching if this condition holds for
every set of grooms. This follows from the fact
that there is a perfect matching if the maximal
flow/minimal cut equals n (the number of
grooms/brides). It is easy to see that if the
conditions on grooms and brides holds, there
cannot be any cut of value less than n, and the
result follows.

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

 ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-3, 2018

63

Shortest Path and LP
You are going to visit a national park, and have
never been there before. You are using a map to
try and make the distance travelled as short as

possible.There are 5 intermediate towns, A, B,
C, D, and E, you may go through on your way
to the park, and the distances between the
various locations are given below.

In the table above, a dash means that there is no
direct road between the two locations.
Networks and Swimming
The coach of a swim team needs to assign
swimmers to a �00-yard medley relay team to
compete in a tournament. The problem facing

him is that his best swimmers are good in more
than one stroke, so it is not clear which swimmer
to assign to which stroke. The 5 fastest
swimmers and the best times (in seconds) they
have achieved with each of the strokes (for 50
yards) are given below.

The problem is to try to minimize the sum of the best times for the people competing in the race.

Conclusion
 In this paper, we have solved problems in
network theory. In network flow we have seen
how to deliver some cargo from one city to
another using the shortest path.
We have given the definition of network and
directed graph and we have listed some problems
in Min-Cost Flow, Shortest Path, Min-Cut
Problems and Matching Problems.
In matching problem we have tried to match n
potential grooms with n potential brides with the
help of Hall’s Marriage Theorem.

7. References
 [1] Cormen, Thomas H. Introduction to
Algorithms. 2nd ed. Cambridge, Massachusetts:
MIT, 2001.
[2] Dechter, Rina, and Judea Pearl. “Generalized
Best-first Search Strategies and the Opti-
mality of A*.” Journal of the ACM 32.3 (1985):
505-36. ACM Digital Library. Web. 18
May 2010.
[3] Deo, Narsingh. Graph Theory with
Applications to Engineering and Computer
Science.
Englewood Cliffs, NJ: Prentice-Hall, 1974.
[4] Even, Shimon. Graph Algorithms. Computer
Science Press, 1979.

