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Abstract 
The chances of morbidity and mortality of 
premature babies increases every year 
around the world. For labor prediction it is 
necessary to analyze the uterine physiological 
signals and extract the features that will 
change at the onset of labor. The uterine 
magnetomyography (MMG) presently used 
to measure the activity of uterine muscles. 
Twenty-four MMG signals from physionet 
database were employed for this study. 
Signals were divided into two groups, labor 
and nonlabor, depends on their days prior to 
delivery. The root mean square value, 
kurtosis and skewness coefficients, power 
spectrum peak frequency and median 
frequency, autocorrelation zero crossing, 
maximal Lyapunov exponent, correlation 
dimension, sample entropy and fractal 
dimension were extracted by applying 
different linear and nonlinear signal 
processing techniques. The classification of 
MMG signals done by evaluating the features 
with Naïve-Bayes, k-Nearest Neighbor (KNN) 
and Support Vector Machine (SVM) 
classifiers. KNN classifier shows better 
performance among the other classifiers. 
Index Terms: Classification, Feature 
extraction, Labor, Uterine MMG 

I. INTRODUCTION 

The important thing in predicting labor is to 
analyze uterine contractions [1, 2]. At present, 
there are two methods that are used to record the 
physiological activity of the uterine: (i) the 
electromyography (EMG), recorded by 
electrodes attached to the abdomen, and (ii) the 
magnetomyography (MMG), based on the 

recording of the magnetic fields that correspond 
to electrical fields. The transition of the 
myometrium from nonlabor state to labor state 
can be identified by EMG/MMG. Uterine 
EMG/MMG parameters can indicate the 
myometrial properties. These properties are 
helpful to differentiate physiological 
contractions of term labor and preterm labor. 
Uterine MMG is a non-invasive technique and it 
measures the action potentials magnetic fields. 
The first uterine MMG activity recordings were 
reported in 2002 by Eswaran et al. [3]. The 
MMG signals have three important properties: 
(i) They do not depend on tissue conductivity (ii) 
Without making electrical contact the signals are 
detected outside of the body. (iii) Each sensor 
records only localized sources what makes them 
reference free. 

The contraction and non-contraction segments 
were separated by zero crossing technique to 
detect the uterine contractions [4]. Uterine 
contractions were detected by generalized 
synchronization indices, assuming the electrical 
activity increases during the onset of delivery 
[5]. In [6] multiple change point estimator was 
used for segmentation of the MMG signal. 
K-means clustering algorithm (RMS and 
zero-crossing as candidate features) applied to 
these segments to detect uterine contractions. 
When the uterus approaches labor, the electrical 
activity, and its corresponding frequency 
increases [7]. The MMG signals were 
decomposed using db2 wavelet and Hilbert 
transform applied to each frequency band. A 
binary signal created by applying the clustering 
technique on the Hilbert amplitude. The burst 
contractile activity was marked by this binary 
decision signal [8]. The sensor space was 
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partitioned into four quadrants and center of 
gravity for each was measured for each quadrant. 
The delay between the pairs of quadrants (CoGs) 
computed by using the cross-correlation method 
[9]. The percentage of active sensors used to 
measure the propagation of MMG activity 
between the quadrants [10]. 

When the uterus approaches labor, the 
electrical activity, and its corresponding 
frequency increases. The power spectrum peak 
frequency of the burst activity was calculated in 
[11]. The contractions were analyzed using 
median frequency, peak frequency, kurtosis and 
skewness in [12]. Principal component analysis 
(PCA) was used to optimize the features in that 
study. The above studies rely on the burst 
activity of the signals while the RMS (root mean 
square) value and power spectrum median 
frequency were extracted from the whole 30-min 
signal in [13]. Non-linear signal techniques must 
apply to analyze uterine electrical activity, as it 
is a complex non-linear dynamic system. A 
non-linear technique, i.e. the computation of 
fractal dimension of the bursts yielded best 
results [14]. Many other non-linear techniques 
were employed to predict the labor [15]. 

The previous studies on uterine EMG/MMG 
were limited to the analysis of the signals for 
predicting labor and for the prevention of 
premature births. The records of term and 
preterm labor were separated successfully by 
using linear and nonlinear signal processing 
techniques [11, 15]. The same methodology 
applied to separate labor and nonlabor 
(antepartum) records for both term and preterm 
labor. In our study, the entire uterine 
magnetomyography signal  considered to extract 
the following features: the signal root  
mean square value, kurtosis and skewness 
coefficients for the signal, the signal power 
spectrum median frequency and peak frequency 
calculation, the autocorrelation zero-crossing 
determination, estimation of the maximal 
Lyapunov exponent, the correlation and fractal 
dimension estimation and the sample entropy 
calculation of the signal. All features mentioned 
above extracted from the complex signal (148 
channels) and three individual channels that 
were chosen randomly. These signals were 
divided into two groups depends on their days to 
delivery after recording. Then Naïve-Bayes, 
k-Nearest Neighbor (KNN) and Support Vector 

Machine (SVM) classifiers were fed with the 
features for validation.  
 

II.  MATERIALS AND METHODS 
A. Data Acquisition and Preprocessing 

The MMG signals used in this study were 
downloaded from Physionet database included 
in the MMG database (mmgdb) [10, 21]. The 
database comprises uterine magnetomyography 
(MMG) signals recorded by using the 151 
channel SQUID Array for Reproductive 
Assessment system (SARA) [3] installed at 
UAMS, Little Rock, USA. SARA is a 
floor-mounted passive instrument at which the 
mother sits and leans her abdomen on the 
concave surface that contains the sensor array 
(Fig. 1 left). The array of sensors covers 1300 
cm2 surface area which is 45 cm height and 33 
cm width (Fig. 1 right). The encircled sensors are 
MRQ2, MLL3 & MLF2 used in the present 
study. The entire system is in a magnetically 
shielded room (MSR) and is furnished with 
high-order synthetic gradiometer noise 
cancellation that eliminates the noise transmitted 
by the subject. The MMG signals were recorded 
from 25 subjects who are in the trimester of 
pregnancy. The signals were recorded 
approximately around 20 min duration. The 
gestation age (GA) of the subjects is in the range 
of 37-40 weeks and 15 subjects delivering less 
than 3 days after the SARA recording. 

The raw signals were digitized with a sampling 
rate of 250 Hz. The original data was sampled at 
32 Hz (down sampling). The maternal & fetal 
cardiac signals were attenuated by using a 
bandpass filter (0.1-1 Hz). The notch filter 
(0.25-0.35 Hz) is used to remove the maternal 
breathing (0.33 Hz). Segments with the maternal 
movement were excluded from these signals to 
obtain the final MMG signals. Each recording 
lasts around 20 min and includes 147 to 148 
channels. 

The original signals that were downloaded 
from physionet are represented in (Fig. 2). The 
upper trace is the complex signal comprises of 
total 148 sensors and the remaining are the 
signals of individual sensors MRQ2, MLL3 and 
MLF2 respectively. The sensors were chosen 
randomly (Fig. 1) to observe the uterine activity 
at different positions on pregnant abdomen. 
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Fig.1. Front view of the arrangement of sensors 
(top). Sensor array with channel identification 
numbers (bottom). 

B. Features Extraction 

Feature extraction is an important part of 
pattern recognition. Extracted features must be 
effective and informative as it affects 
classification accuracy. The following are the 
features that were extracted from the 

multichannel signal (complex) and three 
individual channels (MRQ2, MLL3 and MLF2 
respectively) that were chosen randomly. The 
extracted features should also have a meaningful 
electrophysiological interpretation. 
Root mean square (RMS): 

The root of the mean of all sample square 
values defined as the root mean square value of a 
signal which is represented in time series x (t). 
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where N is the length of the signal and 
t=0,1,…, N-1. 
Kurtosis and Skewness Coefficients: 

The magnitude of deviation of a probability 
density function from its mean defined as the 
skewness coefficient. 
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The tailedness of the probability density 
function around its mean value measured by the 
kurtosis. 
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where x is the random process for which  μ is 
the mean and σ is the standard deviation. E[] is 
the expectation operator. The skewness and 
kurtosis are the third order and fourth order 
central moments respectively.

 
Fig. 2. MMG signals of a subject (232_37w6d) with all channels and the individual channels MRQ2, 
MLL3 and MLF2 respectively (from top to bottom). Subject name is in the form of ***_#GA, where 

*** represents the subject ID (232), and #GA refers to the gestation period in weeks and days 
(37w6d) 
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Peak frequency: 
The maximum frequency of signal x(t), 

computed from the power spectrum (P) as: 
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here number of samples and sampling 
frequency are represented as N and fs  
respectively. 
Median frequency: 

The frequency at which the power spectrum 
was divided into two equal parts is the median 
frequency. It was calculated as: 
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The power spectrum computed by using fast 
Fourier transform algorithm used for the 
calculation of frequencies. 
Autocorrelation zero-crossing: 

The first zero crossing after the peak of auto 
correlation is the auto correlation zero-crossing 
of the signal x(t). 
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here τRxx is the autocorrelation zero-crossing 
for the autocorrelation function Rxx. 
Maximal Lyapunov exponent: 

The changes in the dynamical variables of a 
system is demonstrated by the phase space [16]. 
The process of phase space reconstruction by 
time delayed samples is called as time-delay 
embedding. For a time series x(t) of length N, a 
Q-dimensional phase space is constructed from 
vectors y(t): 
y(t)={yd; d=0,1,….,Q-1} 
yd=(x(t+d), x(t+d+Ds),….,x(t+d+(N/Q)Ds))  
       (7) 

where Ds is the sample delay and Q is the 
embedding dimension. The maximal Lyapunov 
exponent determines the predictability of a 
dynamic system (chaos). It measures the velocity 
of the trajectory that converges from a given 
point. 
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where ||Δy0|| and ||Δyt|| are the Euclidean 
distance between two states of the system at time 
t0 and time t respectively. 
Correlation dimension: 

The correlation dimension measures the 
complexity of a given time-series. It is 
proportional to the probability of the distance 

between two points on a trajectory being less 
than r, 
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To calculate λmax and Dcorr, we used a 
practical method described in [7]. 
Sample entropy: 

The sample entropy measures the regularity of 
finite length time series. From a time series x(t) 
of length N, patterns aj(0,…,n-1) of length n 
(n<N) were defined as aj(i) = x(i + j) where 
i=0,1,…,n-1 and j=0,1,…,N-n. If |x(ts + i)-aj(i)| 
≤ r for each 0 ≤ i < n then x(ts,…,ts+n-1) is 
considered as a match for a pattern aj. The 
number of pattern matches cn constructed for 
each n. Then the sample entropy defined in the 
equation (12). 
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The parameter r varied from 1.0 to 2.0 in steps 

of 0.125 and the parameter n taken as either 2 or 
3 or 4 for the evaluation purpose. 
Fractal Dimension: 

Fractal dimension measures the complexity of 
time domain signal [17]. A self-similar time 
series n

kX  calculated from original sequence x(t) 

as: n
kX = x(n), x(n+k), 

x(n+2k),……,x(n+int[(N-n)/k]k)       (13) 
here n and k are initial time and time interval 

respectively where int[] represents the integer 
part of. The length of the curve Ln(k) was 
computed for each of the k time series as: 
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Where N is the length of X and 

(N-1)/{int[(N-n)/k]k} is a normalization factor. 
Ln(k) was averaged for all n forming the mean 
value of the curve length L(k) for each k = 1,…, 
kmax as 
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From the equation (15) an array of mean values 
L(k) was obtained. Then the HFD was estimated 
as the slope of least squares linear best fit from 
the plot of ln(L(k)) versus ln(1/k): 
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             (16) 

C. Classification 

The feature values were divided into two 
groups depends on the subject’s days to delivery 
after recording. One group has the records of 
subjects that delivered within 48 hours after 
recording (Labor) while the other group 
delivered after 48 hours (Antepartum). The 
Naïve-Bayes is a simple classification algorithm 
that can be applied to physiological signals [18]. 
It has many applications like spam mail filtering, 
medical diagnosis and weather forecasting. It 
estimates the class probability, by using Bayes 
theorem assuming that the features of one class 
is independent from the other. The classifier 
works well, even though the conditional 
independence assumption does not hold. 
Naïve-Bayes algorithm has received a great 
attention because of its simplicity and 
effectiveness in implementation as well as it is 
highly practical in day to day problems. An 
advantage of the naive Bayes classifier is that it 
only requires a small amount of training data to 
estimate the parameters (means and variances of 
the variables) necessary for classification. 

K nearest neighbor (KNN) classifier can be 
used in many applications like speech 
recognition, astronomical object classification, 
for predicting heart attacks and for classification 
of uterine contractions during labor [19]. The 
data samples will be classified depends on their 
nearest neighbor class. K nearest neighbor is one 
of the widely used data mining technique in 
classification. Data with labels is used to train 
the classifier. Then for a given test data, whose 
label is not known, and which is presented by a 
vector in the feature space, calculate the 
distances between it and every point in the 
training data set. After sorting distances, the 
decision of the class label of the test point is 
made according to the label of the k nearest 
points in the training data set. KNN classifier is 
also known as memory based classification. 
KNN classifier based on hamming distance 
metric used in our research. 

Support vector machine (SVM) is a powerful 
classification technique that can be applied to 

uterine physiological signals [20]. Primarily, it 
was implemented for two-class classification 
problems. Multiple classes can be classified by 
combining multiple binary SVMs. The 
optimization criterion is the width of the margin 
between the classes, i.e., the empty area around 
the decision boundary (the separating 
hyperplane) defined by the distance to the 
nearest training patterns. These patterns, called 
support vectors, finally define the classification 
function. Linear kernel, sigmoid kernel, 
polynomial kernel, and RBF kernel are most 
commonly used kernel functions. In our work, 
we used Gaussian Radial Basis Function (RBF) 
kernel. Supervised algorithms are sensitive to 
the division of feature dataset into training 
feature and testing feature sets. In this work we 
divided the dataset into three parts. The 
classifiers were trained with 2/3 of dataset while 
the remaining used as the test dataset. 

III. RESULTS AND DISCUSSION  

Confusion matrix is a two-dimensional table 
with a row and a column for each class. Each 
element of the matrix shows the number of test 
examples for which the actual class is the row 
and the predicted class is the column. The 
confusion matrices showing the classification 
results of the Naïve-Bayes, KNN and SVM 
classifiers for different signals are given in 
Table1. 
   The classifiers were evaluated using accuracy 
as the performance metric and computed as 
follows: 

 
 FNFPTNTP

TNTP
Accuracy




        (17) 

where TP, TN, FP and FN represents the true 
positives, true negatives, false positives and false 
negatives obtained after the classification. The 
overall accuracy values for different classifiers 
are shown in table 2. 

According to the confusion matrices for 
Naïve-Bayes classifier, 3 nonlabor (antepartum) 
subjects were classified incorrectly for the 
multichannel and MLF2 channel while these 
subjects were correctly classified for the other 
channels. In fact, for those channels the labor 
subjects (2) were misclassified by this classifier. 
The labor subjects were classified efficiently by 
the KNN classifier for all the signals but it 
misclassifies the nonlabor subjects (either 1 or 2) 
as shown in the table 1. The SVM classifier 
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classifies the labor subjects correctly for all the 
signals except MLL3 sensor where 3 subjects 
were misclassified as nonlabor subjects. This 

classifier was unable to classify the nonlabor 
subjects, for MRQ2 sensor no nonlabor subjects 
were present. 

Table 1. Confusion Matrices for Naïve-Bayes, KNN and SVM Classifiers of Complex Signal, 
MRQ2, MLL3 and MLF2 Channels respectively. 
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The performance of the classifiers were 
compared by using the classification accuracy as 
the performance metric (Table 2). The 
misclassification of even a single subject leads to 
drastic changes in accuracy which is reflected in 
the table2. The Naïve-Bayes classifier accuracy 
for the multichannel and MLF2 channel (62.5%) 
are less than that of MRQ2 and MLL3 channel 
(75%). The KNN classifier had a better 
classification accuracy (87.5% for MRQ2 and 
MLF2 sensor and 75% for both multichannel 
and MLL3 channel) compared with the other 
classifiers. The SVM classifier shows very low 
accuracy (37.5% and 50%) though the accuracy 
of complex (87.5%) and MLF2 sensor (62.5 %) 
were comparable with the remaining classifiers. 

Table 2. The Classification Accuracy Values of 
Naïve-Bayes, KNN and SVM Classifiers for 

Different Signals. 

 Naïve-Bayes 
(%) 

KNN 
(%) 

SVM 
(%)

Complex 62.5 75 87.5
MRQ2 75 87.5 50
MLL3 75 75 37.5 
MLF2 62.5 87.5 62.5 

 

The MMG signals used in the study were 
divided into two groups based on the fact that the 
electrical activity of the myometrium increased 
at the onset of labor. The maternal factors that 
could affect the onset of labor were not 
considered for our study. The maternal factors 
like Gestation Age (GA), Body Mass Index 
(BMI) and cervical dilation/effacement may be 
similar to the subjects that delivered within one 
day and two days.  These subjects were in two 
different groups which imposes a limitation to 
our study. This adversely affects the classifier’s 
accuracy which is clear in case of Naïve-Bayes 
classifier. Naïve-Bayes works on the assumption 
that all features are conditionally independent 
given the class label. Though the assumption 
violated in our study, still it gives reasonable 
accuracy. 

The ultimate goal of feature extraction is to 
provide the parameters that would distinguish 
the records between labor and nonlabor subjects 
effectively. But the sample entropy gave 
non-numeric values for some subjects. SVM 
classifier accuracy is greatly influenced since the 
rows with those non-numeric values were 
ignored during classification. The attempt to 
make use of other kernels (linear and 
polynomial) did not yield good results. Our aim 
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is not the position of sensor which has high 
contractile burst activity so the sensors were 
chosen randomly.  Since each sensor provides 
only localized information, our research limited 
to compare the performance of classifiers for a 
particular sensor. The methods employed are not 
useful for hospital work as the cost of the SARA 
system is very high. But from a research point of 
view, it gives a great opportunity to get the 
knowledge about the physiology of parturition. 

IV. CONCLUSION 

A lot of research is going on for the prediction 
of labor by analyzing the uterine MMG signals. 
The entire signal considered for this study 
without separating contraction and 
non-contraction periods. The RMS value, 
kurtosis, skewness coefficient, power spectrum 
median and peak frequencies, autocorrelation 
zero-crossing, maximal Lyapunov exponent, 
correlation and fractal dimensions and sample 
entropy were extracted by applying linear and 
nonlinear signal processing techniques. The 
subjects were divided into two groups depends 
on their time prior to delivery. The KNN 
classifier efficiently classified the signals with 
better classification accuracy than Naïve-Bayes 
and SVM classifiers. 

Though the present work carried out on term 
records, it can be applied to preterm records for 
the prediction of preterm birth. The present study 
limited to only 24 subjects, so in the future these 
methods will be applied to the larger population 
of data. If the physicians are able to differentiate 
the true and false labor, then the unwanted 
hospital visits and treatments will be reduced. 
Prediction of premature labor will curb the 
morbidity and mortality of new born babies. 
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