

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-3, 2018

DOI: 10.21276/ijcesr.2018.5.3.10
60

BOOSTING THE CLOUD META-OPERATING SYSTEM WITH
HETEROGENEOUS KERNELS. A NOVEL APPROACH BASED

ON CONTAINERS AND MICROSERVICES
B Jailsingh , LAVANYA KATAM ,P SRINIVAS RAJU

Assistant Professor,
Department of EEE, Elenki College of Engineering,

Hyderabad

Abstract:
A high SLA is a big challenge for the

Cloud providers as they have to ensure the
sustainability of their customers’ workloads
that depend closely on the undelying OS.
The kernels are the cores of the OS, and the
monolithic kernels are still the most
performant despite of their fragility and
unreliability. We think that the
superposition of the kernels in such way
that a healthy kernel replaces the
vulnerable services of another kernel is a
good track to operate. This replacement is
accomplished via the transfer of system calls
from the vulnerable kernel to a more
reliable and efficient remote discovered
kernel. We propose the architecture of a
Meta-OS based on heterogeneous
monolithic kernels in order to ensure
reliability and performance. The features of
this Meta-OS are encapsulated in
microservices hosted on containers. Two
technologies are used to implement our
solution: Virtualization (hardware and OS
based) and Web Services.

Keywords: Operating Systems, Monolithic
Kernels, System calls, Mission critical and
intensive applications, Virtualization,
Docker, Containers, Web Services,
Microservices.

1. Introduction
The Operating Systems provide services to run
the applications. These services are invoked via
system calls implemented into libraries and
APIs.

With the emergence of the Cloud, the service
providers undertake on SLA levels too high to
run the customers’ workloads. This SLA can be
closely linked to the quality of the OS that must
be both reliable and efficient.
The model without exceptions [1] for example
has shown how the design of the OS can
improve the performance of applications.
The operating systems are based on the kernels
which form their cores. Different approaches of
design of the kernels are proposed.
Nevertheless, the monolithic kernels
[7] like Linux kernels are the most powerful.
Their fragility is due to the fact that the kernels
include the majority of the critical features (to
avoid the switches of context and gain
performance). The slightest flaw in a module of
the kernel may entail its interruption and the
break of the entire operating system.
Today, hardware virtualization is required as a
compelling solution for the consolidation of
workloads and the sharing of physical
resources. This technology is even supported
natively in the hardware. Technologies like
Intel- VT/AMD-V and SR-IOV can be cited as
examples. The virtualization, in addition to the
benefits of consolidation, offers by conception
an ideal isolation of virtual machines. Each
kernel of a given virtual machine runs in a
secure and separate space independatly of other
kernels. Consequently, thanks to the
virtualization, multiple heterogeneous systems
can coexist on the same host.
Hardware virtualization can offer a solution to
improve the reliability of the OS. This
hypothesis is supported by VirtuOS [2] which

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-3, 2018

DOI: 10.21276/ijcesr.2018.5.3.10
61

defines an architecture of an operating system
subdivided functionally in service domains.
Each service domain manages a functionality,
like storage, network, etc. and is executed in a
virtual machine on the Xen hypervisor to offer a
perfect insolation and security. As well, the
system calls of the applications that run in the
primary domain are routed to the adequate
service domain. Thanks to this architecture a
flaw that is registered at a service domain like a
malfunction of a driver does not cause the break
of the entire system. The restart of the failed
domain does just affect partially the process
waiting for replies from it. Other solutions
implement the same priciple like the domain-0
disaggregation in the new generation of Xen
Server called Windsor. Qubes is also an OS
containing the same architecture as VirtuOS but
it is more mature and even workable in practice.
On the other hand, Docker [6] is considered as a
very
promising OS virtualization technique that acts
at the OS level by abstracting the process
execution. Although the containerisation is an
old technology in the Unix/Linux systems,
docker provides a very interesting layer of
features like the containers migration from a
version of the kernel to another version or the
application of resources constraints on the
containers, etc. via firendly tools.
The combination of the two virtualization
technologies (hardware and OS) by running
containers in virtual machines provides better
isolation and reliability.
The purpose of our work is to extend the
architecture of VirtuOS by making collaborate
several heterogeneous kernels considered as
domain services. We should apply the principle
of the scale cube [5] by splitting the APIs
according to the Y axis in small APIs executed
in containers as microservices [6] or simply as
processes hosting Web Services. These small
APIs will be executed on lightweight
Calling the Write method on the object fs
(FileStream type) can generate the routine of
the system call directly on the local host, an
invocation of the backend API as a Web
Service hosted in a container via the proxy
(P1.Write) or finally an invocation of the
backend API as a Web Service hosted in a
process via the proxy (P2.Write).

Hardware virtualization can offer a solution to
improve the reliability of the OS. This
hypothesis is supported by VirtuOS [2] which
defines an architecture of an operating system
subdivided functionally in service domains.
Each service domain manages a functionality,
like storage, network, etc. and is executed in a
virtual machine on the Xen hypervisor to offer a
perfect insolation and security. As well, the
system calls of the applications that run in the
primary domain are routed to the adequate
service domain. Thanks to this architecture a
flaw that is registered at a service domain like a
malfunction of a driver does
virtual machines (domain services) based on
heterogeneous kernels.
This heterogeneity may engendrer a
Meta-Operating System more reliable and
efficient in bringing the benefits of
heterogeneous kernels. The Meta-Operating
System can be seen as an overlay of kernels
where the kernel X offers the services of the
network via its drivers as well as the
implementation of the TCP stack while the
kernel Y offers the service of storage for access
to files for example.
Our Meta-Opertaing System’s kernels could be
virtual machines on the same host but we intend
to extend this feature to discover other
machines and domain services in the network.
The Web Services as the implementation
technology of microservices are a good
candidate to respond to this need through
standards like WS-Discovery.
The defined objetcives in our work are the
following:
• Define the architecture of a Meta-Operating
System based on several domain services
hosting heterogeneous kernels in the form of
virtual machines co-existing on the same host
or discovered in the network.
• Define the architecture of an API subdivided
in small domain services APIs. These small
APIs will be developed as microservices and
executed within containers or as Web Services
hosted into process. The system calls routing

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-3, 2018

DOI: 10.21276/ijcesr.2018.5.3.10
62

will be abstracted by remote calls of methods of
Web Services.
• Define a proactive supervision mecanisme so
that the Meta-Operating System isolates the
faulted domain services prior to prevent any
performance degradation and increase
reliability. This same mechanism would be able
to migrate any microservice during the
execution from a suspected service domain to
another domain more reliable even on the basis
of kernels of different versions.
• Define an intelligent mecanism for
dispatching the remote system calls towards
local or remote service domains taking into
account two parameters: Reliability and
Performance.
The rest of the paper is organized as follows:
• Part 2 : Meta-Operating System architecture
design.
• Part 3 : Experimental tests results.
• Part 4 : Quick related work presentation.
• Part 5 : Conclusion.
2. The Meta Operating System Based on
Heterogenous Kernels VirtuOs [2] and WSNFS
[8] are two different solutions that have in
common the exetrnalization of the execution of
system calls with a possibility to reuse non
existing functionalities on the original
environnement that are offered by the remote
domains.
VirtuOS externalizes the system calls towards
the service domains to improve the whole
system reliability. Whereas, WSNFS aims to
abstract heterogenous file systems by
developping a single driver using Web
Services. This will also allow to the solution to
be more flexible and reliable when adding more
WSNFS gateways and drivers.
Both solutions are the basis of the
Meta-Operating System whose kernel consists
of several heterogeneous kernels co-existing on
a hypervisor or remote kernels discovered in
the network. The Meta-OS caracteristics are as
follows:
• The Meta-OS is composed of varied and
heterogenous service domains. Every domain
implements a feature or set of features based on
a given kernel.

• The offered features are exposed via entry
points that could be invoked using modified
APIs.
• Automatic discovery mechanism of new
service domains or new features in existing
domains.
• Intelligent system calls routing from the
domain where the users’ processes are running
towards remote service domains, taking into
account two parameters: reliability and
performance.
• A proactive monitoring mechanism so that
the Meta-OS isolates the faulty domain services
before recording a performance degradation
event.
• To reuse remote service domains’
functionalities, an intelligent API is designed to
dispatch system calls to the adequate domain
service. This API has to abstract the dispatching
system end ensure the existing applications
portability.
Consequently, the Meta-OS can be seen as an
overlay of multiple kernels.
The Meta-OS is based on two categories of
domains:
• Service domains: they aim to provide
services to applications and other domains.
These domains can be instanciated, started,
stopped, paused, cloned and migrated upon
request by the Meta-OS sybsystem.
• Applications domains: they aim to provide
the execution runtime for the users’
applications. They can be considered as
customer domains consuming services from
service domains but they can play the role of
service domains.
A. Principle of system calls’ externalization
Monolithic applications present some
drawbacks like debugging difficulties and the
Single Point of Failure design. Consequently,
some patterns are invented to divide monolithic
applications into small manageable modules.
The microservices [6] are one of the paradigms
that aim to achieve these objectives. The
microservices are the small modules that
collaborate and communicate using standard
protocols like HTTP/Rest.
Each microservice is developed and deployed
independently. Applying some principles like

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-3, 2018

DOI: 10.21276/ijcesr.2018.5.3.10
63

the Single Responsibility Principle, changes
made to a microservice don’t affect the
integrity of other microservices.
In our case, the APIs can apply the
microservices architecture, where each API is
composed of two parts (Fig. 1):

• Forontend API: this part encapsulates the
system calls invocation routines to local and
remote service domains and a load balancer
engine (LB) that aims to dispatch syscalls to
backend APIs. As these latteres are executed
into Web Services, the Frontend API
implements proxies to invoke them. The
Frontend API aims also by abstracting the
backend routines to ensure the portability of
existing applications.
• Backend APIs: each backend API
implements a subset of functionalities inside a
service domain. They will be executed into
Web Services hosted on processes or inside
containers. Different protocols can be used to
invoke the frontend APIs like TCP, HTTP,
REST, etc.
In the following figure, we show an example of
a system call externalization principle.

 Fig. 1. Write method invocation styles in the
Meta-OS
Calling the Write method on the object fs
(FileStream type) can generate the routine of
the system call directly on the local host, an
invocation of the backend API as a Web
Service hosted in a container via the proxy
(P1.Write) or finally an invocation of the
backend API as a Web Service hosted in a
process via the proxy (P2.Write).
B. The Meta-OS architecture
The following figure presents the architecture
of the Meta- OS grouping two scenarios:

Fig. 2. The Meta-OS architecture

1) Scenario1: co-existed domains on the same
host This sceanrio is based on the architecture
of VirtuOS. Thanks to advanced hardware
 based virtualization technologies, the domain
services can own a part of hardware resources
like in SR-IOV. The hypervisor ensures critical
tasks like memory management, tasks
scheduling, etc. Each domain integrates a
performance and reliability module to
instrument the syscalls without causing any
overhead. Some tools could be used to achieve
this goal like Sysdig. The performance module
ensures also the discovery of other domains
performance modules, consolidating all the
data and mataining references to the discovered
service domains.
Unlike VirtuOS, the syscalls dispatching
system is not accomplished in kernel mode but
is abstracted by the remote Backend APIs
invocation in user mode. We are aware of the
performance degradation but this can be
improved using the Hypervisor bus as
communication medium between the the
co-hosted domains.

Fig. 3 Syscalls processing via the hypervisor
bus channel.
2) Scenario2: discovered remote domains in
the network This scenario is based on the
architecture of WSNFS. The processing of the
syscalls is externalized via the remote Web
Services executed into containers or hosted
directely by processes.

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-3, 2018

DOI: 10.21276/ijcesr.2018.5.3.10
64

Fig. 4. Syscalls processing

C. The intelligent API
The frontend API is so crucial in the process of
syscalls invocation. It implements a business
rules engine that helps in selecting the best
available service domain for the current therad
and transforming if needed the generated
syscall routine to be supported by the selected
domain. To simplify the processing of future
syscalls for a given thread, an affinity is
maintained through a table that associates a
thread to its corresponding service domains.
Three domains detinations types are defined:
• Local handler
• Remote handler on a virtual machine via the
shared bus.
• Remote handler on a virtual machine via the
network.
Selecting the most suitable service domain is
based on the information collected by the
performance module. This latter maintains with
other modules a data structure containing
entries corresponding to service domains. Each
entry includes the domain, the corresponding
performance measure done on a subset of
syscalls, the corresponding SLA that measures
the availability importance of the domain and
the corresponding cost that measures the cost
of invoking the domain. All these data is
exchanged between all performance modules to
have an accurate and unique view of the state
of domains. The performance measure is
obtained by generating a subset of syscalls that
are not resource consuming like open(2) and
close(2) on a sample file for the storage
domains for example.
The following formula (to be defined) attributes
a score to each service domain :
Domaine X Score = Formula (Perf, SLA, Cost).

The following figure defines the syscalls
routines dispatching system based on the
performance data structure (Performance
Mapping Table) for the send() syscall routine in
order to select the best netword domain

Fig. 5. Syscalls routines dispatching system
based on business rules
D. Towards a more intelligent Operating
System
The meta-OS is able to perform the following
tasks in order to offer better quality of services
by exploiting the Performance Mapping Table:
• Collect and interpret vulnerabilities reports of
various services on the Internet. This will
assign lower marks and disposal decisions for
kernels that may be hazardous in the future.
This technique improves the proactive nature of
the actions.
• Stop the domain service that cause
vulnerabilities or technical problems. This will
effectively isolate these domains and release
the resources consumed.
• Update the configuration of the requested
domain services by increasing corresponding
resources (RAM, CPU, disk IOs, etc.).
• Clone the service domains with excellent
scores especially in the presence of resources.
Using advanced checkpoint/restore
technologies, it is possible to proactively
migrate microsevices from a suspect kernel to
another version of the kernel without any

interruption of running applications.

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-3, 2018

DOI: 10.21276/ijcesr.2018.5.3.10
65

Fig. 6. Microsoervices migration principle

3. Results
In what follows, we present some results related
to tests on the architecture of microservices
APIs on heterogeneous domains. We developed
a POC based on a frontend API and related
backend APIs dealing with the storage domain.
The backend APIs are developed as WCF
(Windows Communication Foundation) Web
Services that run either in processes or in
Docker containers on Windows and Linux.
Our tests were performed on virtual machines
hosted on the Azure Cloud platform of
Microsoft.
Here are the configurations of test machines:
a) Azure Virtual Machines (Cloud) :
• Windows Server 2016 CTP 4 Core with
Docker, Type: Standard_D1 : RAM: 3.5 GB,
2vCPU (Physical CPU: Intel Xeon® E5-2673
v3 (Haswell) processor, 2.4 GHz)
• Linux Ubuntu Desktop 15.04 with Docker,
Type : Standard_D1 : RAM: 3.5 GB, 2vCPU
(Physical CPU: Intel Xeon® E5-2673 v3
(Haswell) processor, 2.4 GHz)
Tools and Frameworks:
a) .NET 4.5 to develop frontend and backend
storage APIs on Windows
b) Mono 3.2.8 et Mono 4.2.1 5 to develop
frontend and backend storage APIs on Linux
(NET Core is a Microsoft initiative for a
cross-platform .NET framework. As this
framework presents some limitations likein
WCF, it was replaced by Mono).
c) Docker version 1.10.0-dev, build 18c9fe0 on
Windows
d) Docker version 1.10.0-dev, build e39c811,
experimental on Linux
(https://github.com/boucher/docker)
Our POC was limited to the sequential read and
write operations by blocks or characters on
different sizes of files and using vried cache
sizes. The different service domains (virtual
machines) access to shared files stored on a

CIFS share. The sizes of files vary generally as
follows: 1MB, 10MB, 50 MB and 100MB. The
cache sizes are: 512B, 1KB, 4KB. We measure
in each case the Throughput (MB / s), the
channel communication time (ms) and the
service side (backend API) in (ms). The total
running application time is the sum of the
channel communication time and the service
side time. The measures are averages of 10 tests
on the same case. In order to validate these
averages, we calculate the standard deviation.
The results are homogeneous in general with a
standard deviation not exceeding 3 units.
In this paper we present results realted to two
scenarios:
1) Scenario1: Backend APIs on service
domains (virtual machines) on Azure
In this scenario we compare performance data
between backend APIs running in different
environments:
• Web Services on Windows Server 2016
CTP4 based on .NET 4.5
• Web Services on Windows Server 2016
CTP4 containers based on .NET 4.5
• Web Services on Linux Ubuntu 15.04 based
on Mono 3.2.8
• Web Services on Linux Ubuntu 15.10 based
on Mono 4.2.1

Table 1. Backen APIs on cohosted domain
services(Azure)-Char

4. Related Work

The design of reliable operating systems has
been the subject of long debates. Systems
based on microkernels as L4 have proven a high
reliability level by isolating many OS services
effectively in user processes but require a large
IPC communications optimization work to
improve performance. Some improvements
using advanced techniques like Aspect oriented
programming [9] were applied. Tesselation
[10] and fos [11] are solutions that use
microkernels techniques where OS serveices
are factored and implemented in User space.

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-3, 2018

DOI: 10.21276/ijcesr.2018.5.3.10
66

Operating System decomposition has also knew
different solutions [12] in addition to
microkernels.
System calls can cause serious performance
problems. FlexSC [1] is an excellent solution to
invoke system calls asynchronously providing
more performance.
On the other hand, code reuse has been the
subject of several research projects. Levasseur
et al. [13] proposed a drivers virtualization
solution where drivers run inside

processes (virtual machines) in the user space.
The virtual machines run on a L4 micro kernel.
Operating systems based on several kernel
instances have also emerged to exploit the
physical resources. Barrelfish [14] for example
is an OS that aims to run multiple instances of
the same kernel on multiple types of processors
(CPU, GPU, DSP, etc.).
5. Conclusion
In this paper we tried to present the architecture
of a Meta- Operating System based on
heteregenous domain services discovered in the
network or running on the same host.
The aim of this Meta-Operating System is to
reap the benefits of all the discovered service
domains by developing a technique of
dispatching syscalls routines towards the most
adequate service domain. This technique is
leveraged by decomposing the APIs into
frontend APIs running in the original
applications domain and backend APIs that
expose syscall routines services.
To underpin our approach, we developed a
prototype by extending the classic API file
processing. Backend APIs as microservices run
directly in storage domain services or in
containers.
We measured performance data in different
situations and obtained very promising results
that could be optimized using advanced
techniques like GPGPU [15] to accelerate
messages processing, Exceptioneless syscalls
to eliminate the switching mode overhead, etc.
This is an Open Access article distributed under
the terms of the Creative Commons Attribution
Licence

References
1. Soares, L., & Stumm, M. (2011, June).
Exception-Less System Calls for Event-Driven
Servers. In USENIX Annual Technical
Conference (Vol. 10).
2. Nikolaev, R., & Back, G. (2013, November).
VirtuOS: an operating system with kernel
virtualization. In Proceedings of the Twenty-
Fourth ACM Symposium on Operating
Systems Principles (pp. 116-132). ACM.
3. Rutkowska, J., & Wojtczuk, R. (2010).
Qubes OS architecture. Invisible Things Lab
Tech Rep, 54.
4. Merkel, D. (2014). Docker: lightweight linux
containers for consistent development and
 deployment. Linux Journal, 2014(239), 2.
5. Martin L. A. & Michael T. F. (2015). Art of
Scalability, The: Scalable Web Architecture,
Processes, and Organizations for the Modern
Enterprise, 2nd Edition. “Addison-Wesley
Professional, Inc.”.
6. Newman, S. (2015). Building Microservices.
" O'Reilly Media, Inc.".
7. Abraham S., Peter B.G. & Greg G.(2013).
Operating System Concepts, Ninth Edition.
“John Wiley & Sons, Inc.”.
8. Hwang, G. H., Yu, C. H., Sy, C. C., & Chang,
C. Y. (2008). WSNFS: A Web-Services-Based
Network File System. J. Inf. Sci. Eng., 24(3),
933-947.
9. Borchert, C., & Spinczyk, O. (2016).
Hardening an L4 microkernel against soft
errors by aspect-oriented programming and
whole-

program analysis. ACM SIGOPS
Operating Systems Review, 49(2), 37-43.
10. Colmenares, J. A., Eads, G., Hofmeyr, S.,
Bird, S., Moretó, M., Chou, D., ... & Asanović,
K. (2013, May). Tessellation: refactoring the
OS around explicit resource containers with
continuous adaptation. In Proceedings of the
50th Annual Design Automation Conference
(p. 76). ACM..
11. Wentzlaff, D., & Agarwal, A. (2009).
Factored operating systems (fos): the case for a
scalable operating system for multicores. ACM

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-3, 2018

DOI: 10.21276/ijcesr.2018.5.3.10
67

SIGOPS Operating Systems Review, 43(2),
76-85.
12. Jacobsen, C., Khole, M., Spall, S., Bauer,
S., & Burtsev, A. (2016). Lightweight
capability domains: towards decomposing the
Linux kernel. ACM SIGOPS Operating
Systems Review, 49(2), 44-50.
13. LeVasseur, J., Uhlig, V., Stoess, J., & Götz,
S. (2004, December). Unmodified Device
Driver Reuse and Improved System
Dependability via Virtual Machines. In OSDI
(Vol. 4, No. 19, pp. 17-30).
14. Schüpbach, A., Peter, S., Baumann, A.,
Roscoe, T., Barham, P., Harris, T., & Isaacs, R.
(2008, June). Embracing diversity in the
Barrelfish manycore operating system. In
Proceedings of the Workshop on Managed
Many-Core Systems (p. 27).
15. Jordan, V. (2010). XML query processing
using GPGPU (Doctoral dissertation, Master’s
thesis, University of Tsukuba & Université de
technologie de Belfort-Montbéliard).

	BOOSTING THE CLOUD META-OPERATING SYSTEM WITH HETEROGENEOUS KERNELS. A NOVEL APPROACH BASED ON CONTAINERS AND MICROSERVICES
	B Jailsingh , LAVANYA KATAM ,P SRINIVAS RAJU
	Assistant Professor,
	Department of EEE, Elenki College of Engineering,
	Hyderabad
	Abstract:

