

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-4, 2018

19

A SURVEY ON SECURITY ENHANCEMENT IN CLOUD BY
CIPHERTEXT-POLICY ATTRIBUTE BASED ENCRYPTION

Dr. P. Boobalan1, A. Shahin Nisha2
1Associate Professor

Department of Information Technology, Pondicherry Engineering College, Pondicherry
2Master of Technology, Department of Information Technology

Pondicherry Engineering College, Pondicherry

ABSTRACT
In cloud computing, security remains a
primary concern for businesses
contemplating cloud adoption especially
public cloud adoption. Public cloud service
providers share their underlying hardware
infrastructure between numerous customers,
as public cloud is a multi-tenant environment.
This environment demands copious isolation
between logical compute resources. At the
same time, access to public cloud storage and
computing resources is guarded by account
login credentials. These details of the cloud
users are considered as attributes in Attribute
Based Encryption (ABE). Attribute-based
encryption is a relatively recent approach that
reconsiders the concept of public-key
cryptography in cloud. In traditional public-
key cryptography, a message is encrypted for
a specific receiver using the receiver’s public-
key. Identity-based cryptography and in
particular identity-based encryption (IBE)
changed the traditional understanding of
public-key cryptography by allowing the
public-key to be an arbitrary string, e.g., the
email address of the receiver. ABE goes one
step further and defines the identity not
atomic but as a set of attributes, e.g., roles,
and messages can be encrypted with respect
to subsets of attributes (key-policy ABE (KP-
ABE) or policies defined over a set of
attributes (ciphertext-policy ABE - CP-ABE).
The key issue is, that someone should only be
able to decrypt a ciphertext if the person holds
a key for "matching attributes" (more below)
where user keys are always issued by some
trusted party. In this paper, we focus on the

various types of attribute based encryption to
address different security issues in cloud.
Keywords: Attribute Based
Encryption(ABE), Access Control, Key Policy
Attribute Based Encryption(KP-ABE),
Ciphertext-Policy Attribute Based
Encryption(CP-ABE), User Access Structure.

I. INTRODUCTION TO CLOUD
COMPUTING
Cloud computing is a computing paradigm,
where a large pool of systems are connected in
private or public networks, to provide
dynamically scalable infrastructure for
application, data and file storage. With the
advent of this technology, the cost of
computation, application hosting, content
storage and delivery is reduced significantly.
Cloud computing is a practical approach to
experience direct cost benefits and it has the
potential to transform a data center from a
capital-intensive set up to a variable priced
environment. The idea of cloud computing is
based on a very fundamental principal of
reusability of IT capabilities'.
Several computing paradigms such as Grid
computing have promised to deliver this utility
computing vision. Cloud computing is the most
recent emerging paradigm promising to turn the
vision of “computing utilities” into a reality. It is
based on the concept of dynamic provisioning,
which is applied not only to services, but also to
compute capability, storage, networking, and
Information Technology (IT) infrastructure in
general.

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-4, 2018

20

a. Benefits
The following are some of the possible benefits
for those who offer cloud computing-based
services and applications:
• Cost Savings
Companies can reduce their capital expenditures
and use operational expenditures for increasing
their computing capabilities. This is a lower
barrier to entry and also requires fewer in-house
IT resources to provide system support.
• Scalability/Flexibility
Companies can start with a small deployment
and grow to a large deployment fairly rapidly,
and then scale back if necessary. Also, the
flexibility of cloud computing allows companies
to use extra resources at peak times, enabling
them to satisfy consumer demands.
• Reliability
Services using multiple redundant sites can
support business continuity and disaster
recovery.
• Maintenance
Cloud service providers do the system
maintenance, and access is through APIs that do
not require application installations onto PCs,
thus further reducing maintenance requirements.
• Mobile Accessibility
Mobile workers have increased productivity due
to systems accessible in an infrastructure
available from anywhere.
b. Challenges
The following are some of the notable challenges
associated with cloud computing, and although
some of these may cause a slowdown when
delivering more services in the cloud, most also
can provide opportunities, if resolved with due
care and attention in the planning stages.
• Security and Privacy
Perhaps two of the more “hot button” issues
surrounding cloud computing relate to storing
and securing data, and monitoring the use of the
cloud by the service providers. These issues are
generally attributed to slowing the deployment of
cloud services. These challenges can be
addressed, for example, by storing the
information internal to the organization, but
allowing it to be used in the cloud. For this to
occur, though, the security mechanisms between
organization and the cloud need to be robust and
a Hybrid cloud could support such a deployment.
• Lack of Standards
Clouds have documented interfaces; however, no
standards are associated with these, and thus it is
unlikely that most clouds will be interoperable.

The Open Grid Forum is developing an Open
Cloud Computing Interface to resolve this issue
and the Open Cloud Consortium is working on
cloud computing standards and practices. The
findings of these groups will need to mature, but
it is not known whether they will address the
needs of the people deploying the services and
the specific interfaces these services need.
However, keeping up to date on the latest
standards as they evolve will allow them to be
leveraged, if applicable.
• Continuously Evolving
User requirements are continuously evolving, as
are the requirements for interfaces, networking,
and storage. This means that a “cloud,”
especially a public one, does not remain static
and is also continuously evolving.
• Compliance Concerns
The Sarbanes-Oxley Act (SOX) in the US and
Data Protection directives in the EU are just two
among many compliance issues affecting cloud
computing, based on the type of data and
application for which the cloud is being used.
The EU has a legislative backing for data
protection across all member states, but in the US
data protection is different and can vary from
state to state. As with security and privacy
mentioned previously, these typically result in
Hybrid cloud deployment with one cloud storing
the data internal to the organization.
II. ATTRIBUTE BASED ENCRYPTION
Attribute-based encryption is a type of public-
key encryption in which the secret key of a user
and the ciphertext are dependent upon attributes
(e.g. the country he lives, or the kind of
subscription he has). In such a system, the
decryption of a ciphertext is possible only if the
set of attributes of the user key matches the
attributes of the ciphertext. A crucial security
feature of Attribute-Based Encryption is
collusion-resistance: An adversary that holds
multiple keys should only be able to access data
if at least one individual key grants access.
ABE uses a tree-based access structure which
must be satisfied with a given set of attributes in
order to decrypt the data. It uses operators such
as AND, OR and k-of-n. AND is usually known
as ’n of n’ and OR is known as ‘1 of n’. For
example, if A wants to encrypt a data P such that
only someone with the attributes friend AND
colleague or the attribute family can decrypt it,
the tree-based access structure would look like
Figure 1.

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-4, 2018

21

Figure 1: ABE Access Structure

III. TYPES OF ATTRIBUTE BASED
ENCRYPTION

a. Key-Policy ABE
b. Ciphertext-Policy ABE

a. Key Policy Attribute Based Encryption

KP-ABE is the dual to CP-ABE in the sense that
an access policy is encoded into the users secret
key, e.g., (A∧C)∨D(A∧C)∨D, and a ciphertext is
computed with respect to a set of attributes,
e.g., {A,B}{A,B}. In this example the user
would not be able to decrypt the ciphertext but
would for instance be able to decrypt a ciphertext
with respect to {A,C}{A,C}.An important
property which has to be achieved by both, CP-
ABE and KP-ABE is called collusion resistance.
This basically means that it should not be
possible for distinct users to "pool" their secret
keys such that they could together decrypt a
ciphertext that neither of them could decrypt on
their own (which is achieved by independently
randomizing users' secret keys).

Figure 2: Key-Policy ABE
It is the modified form of classical model of
ABE. Users are assigned with an access structure
(AS) over the data attributes[5]. To reflect the
access structure the secret key of the user is
defined. Cipher texts are labeled with sets of
attribute and private keys are associated with
monotonic access structure that control which
cipher texts a user is able to decrypt. Key policy
Attribute Based Encryption (KP-ABE) scheme is
designed for one-to-many communications.
Algorithm takes input K as a security parameter
and returns PK as public key and the system
master secret key MK. PK is used by message
senders for encryption.MK is used to generate
user secret keys and is known only to the
authority. For encryption algorithm takes a

message M, the public key (PK), and a set of
attribute as input. It outputs the cipher text (CT).
Key generation algorithm takes as input an
access structure (AS) and the master secret key
MK. It outputs as a secret key SK that enables
the user to decrypt the message encrypted under
a set of attributes if and only if matches Access
Tree [8]. Decryption is possible only if the
attribute set satisfies the user’s access structure.
The KP-ABE scheme can achieve secured access
control and more flexibility to control users than
ABE scheme[6].
Drawbacks
The problem with KP-ABE scheme is encryptor
cannot decide who can decrypt the encrypted
data. It can only choose descriptive attributes for

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-4, 2018

22

the data, it is unsuitable in some application
because a data owner has to trust the key issuer.
b. Ciphertext-Policy Attribute Based
Encryption
In ciphertext-policy attribute-based encryption
(CP-ABE) a user’s private-key is associated with
a set of attributes and a ciphertext specifies an
access policy over a defined universe of
attributes within the system. A user will be ale to
decrypt a ciphertext, if and only if his attributes
satisfy the policy of the respective ciphertext.
Policies may be defined over attributes using
conjunctions, disjunctions and (k,n)(k,n-
1)threshold gates, i.e., k out of nattributes have
to be present (there may also be non-monotone
access policies with additional negations and
meanwhile there are also constructions for
policies defined as arbitrary circuits). For
instance, let us assume that the universe of
attributes is defined to
be {A,B,C,D}{A,B,C,D} and user 1 receives a
key to attributes {A,B}{A,B} and user 2 to

attribute {D}{D}. If a ciphertext is encrypted
with respect to the policy (A∧C)∨D(A∧C)∨D,
then user 2 will be able to decrypt, while user 1
will not be able to decrypt.

Ciphertext-policy attribute based encryption
(CPABE) is becoming very important in
distributed computing environment, because it
makes easier to protect, broadcast and control the
access of information, especially over the cloud
server [5]. In CP-ABE every plaintext is
encrypted under an access structure, defined on
the user's attribute and users have given private
keys in advance from the trusted and reliable
authority. If the user's attributes satisfy the access
structure then only user can decrypt the
ciphertext using his/her private keys. But, there
is one privacy issue in available CP-ABE
schemes, owner sends the access structure along
with the ciphertext and everyone can learn the
access policy.

Figure 3: Ciphertext-Policy ABE

CP-ABE thus allows to realize implicit
authorization, i.e., authorization is included into
the encrypted data and only people who satisfy
the associated policy can decrypt data. Another
nice features is, that users can obtain their private
keys after data has been encrypted with respect
to policies. So data can be encrypted without
knowledge of the actual set of users that will be
able to decrypt, but only specifying the policy
which allows to decrypt. Any future users that
will be given a key with respect to attributes such

that the policy can be satisfied will then be able
to decrypt the data.
CP-ABE is the modified form of KP-ABE. In a
CP-ABE scheme, every cipher text is associated
with an access policy on attributes, and every
user’s private key is associated with a set of
attributes[3]. A user is able to decrypt a cipher
text only if the set of attributes associated with
the user’s private key satisfies the access policy
associated with the cipher text. CP-ABE works
in the reverse way of KP-ABE.

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-4, 2018

23

As in Figure 3, the algorithm takes as input a
security parameter K and returns the public key
PK as well as a system master secret key MK.
PK is used by message senders for
encryption.MK is used to generate user secret
keys and is known only to the authority. For
encryption of data algorithm takes as input the
public parameter PK, a message M, and an
access structure AS. it outputs the cipher text C.
Key-Generation this algorithm takes as input a
set of attribute associated with the user and the
master key MK. It outputs a secret key SK that
enables the user to decrypt a message encrypted
under an access tree structure T if and only if
matches T. Decryption of the data only if
satisfies the access structure associated with the
cipher text CT. It improves the disadvantage of
KP-ABE that the encrypted data cannot choose
who can decrypt. It can support the access
control in the real environment. In addition, the
user’s private key is in this scheme, a
combination of a set of attributes, so an user only
use this set of attribute to satisfy in the encrypted
data.
Drawbacks
Drawbacks of the most existing CP-ABE
schemes are still not fulfilling the enterprise
requirements of access control which require
considerable flexibility and efficiency. CP-ABE
has limitation in terms of specifying policies and
managing user attributes. In a CP-ABE scheme,
decryption keys only support user attributes that
are organized logically as a single set, so the user
can only use all possible combinations of
attributes in a single set issued in their keys to
satisfy policies.
IV. ALGORITHMS
Aciphertext-policy attribute based encryption
scheme consists of four fundamental algorithms:
Setup, Encrypt, KeyGen, and Decrypt. In
addition, we allow for the option of a fifth
algorithm Delegate.
i. Setup
The setup algorithm takes no input other than the
implicit security parameter. It outputs the public
parameters PK and a master key MK.
The setup algorithm will choose a bilinear group
G0 of prime order p with generator g. Next it will
choose two random exponents α, β ∈Zp.
The public key is published as:
PK = {G0,g,h} = g β ,
f = g 1/β,e(g,g)α and the master key MK.

ii. Encrypt(PK,M, A)
The encryption algorithm takes as input the
public parameters PK, a message M, and an
access structure A over the universe of attributes.
The algorithm will encrypt M and produce a
ciphertext CT such that only a user that possesses
a set of attributes that satisfies the access
structure will be able to decrypt the message. We
will assume that the ciphertext implicitly
contains A.
The encryption algorithm encrypts a message M
under the tree access structure T. The algorithm
first chooses a polynomial qx for each node x
(including the leaves) in the tree T. These
polynomials are chosen in the following way in
a topdown manner, starting from the root node
R. For each node x in the tree, set the degree dx
of the polynomial qx to be one less than the
threshold value kx of that node, that is, dx = kx −
1. Starting with the root node R the algorithm
chooses a random s∈Zp and sets qR(0) = s. Then,
it chooses dR other points of the polynomial qR
randomly to define it completely. For any other
node x, it sets qx(0) = qparent(x)(index(x)) and
chooses dx other points randomly to completely
define qx. Let, Y be the set of leaf nodes in T .
The ciphertext is then constructed by giving the
tree access structure T and computing
CT = T , C˜ = Me(g,g)αs, C = hs ,
∀y ∈Y : Cy = gqy(0) ,C′ y = H(att(y))qy(0)).
iii. Key Generation(MK,S)
The key generation algorithm takes as input the
master key MK and a set of attributes S that
describe the key. It outputs a private key SK.
The algorithm first chooses a random r ∈Zp, and
then random rj∈Zp for each attribute j ∈ S. Then
it computes the key as
SK = (D = g(α+r)/β ,
∀j ∈S :Dj= gr · H(j)rj ,D′ j = grj) .
iv. Decrypt(PK, CT, SK)
The decryption algorithm takes as input the
public parameters PK, a ciphertext CT, which
contains an access policy A, and a private key
SK, which is a private key for a set S of
attributes. If the set S of attributes satisfies the
access structure A then the algorithm will
decrypt the ciphertext and return a message M.
We specify our decryption procedure as a
recursive algorithm. For ease of exposition we
present the simplest form of the decryption
algorithm and discuss potential performance
improvements in the next subsection.
We first define a recursive algorithm
DecryptNode(CT, SK,x) that takes as input a

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-4, 2018

24

ciphertext CT = (T , C, C˜ ∀y∈ Y : Cy,C′y), a
private key SK, which is associated with a set S
of attributes, and a node x from T . If the node x
is a leaf node then we let i = att(x) and define as
follows: If i∈ S, then
DecryptNode(CT, SK,x) = e(Di ,Cx) / e(D′i ,C′x)
 = e(gr · H(i)ri ,hqx(0) / e(g ri
,H(i) qx(0))
 = e(g,g)rqx(0)
If i Ф S, then we define DecryptNode(CT, SK,x)
= ٣.
We now consider the recursive case when x is a
non-leaf node. The algorithm DecryptNode(CT,
SK,x) then proceeds as follows: For all nodes z
that are children of x, it calls DecryptNode(CT,
SK,z) and stores the output as Fz. Let Sx be an
arbitrary kx-sized set of child nodes z such that
Fz ≠٣. If no such set exists then the node was not
satisfied and the function returns ٣.
v.Delegate(SK, S˜)
The delegate algorithm takes as input a secret
key SK for some set of attributes S and a set S˜
⊆ S. It output a secret key SK for the set of
attributes S˜. The secret key is of the form

SK = (D, ∀j∈S :Dj ,D′j).
This algorithm chooses random r˜ and r˜k∀k∈ S˜.
Then it creates a new secret key as
SK = (D˜ = Dfr˜ ,
∀k ∈ S˜ : D˜ k = Dkgr˜H(k)r˜k, D′ k = D′ k g r˜k).
The resulting secret key SK is a secret key for the
set S. Since the algorithm re-randomizes the key,
a delegated key is equivalent to one received
directly from the authority.
V. BUILDING AN ACCESS TREE
Access Tree
Let T be a tree representing an access structure.
Each non-leaf node of the tree represents a
threshold gate, described by its children and a
threshold value. If numx is the number of
children of a node x and kx is its threshold value,
then 0 <kx ≤ numx. When kx = 1, the threshold
gate is an OR gate and when kx = numx, it is an
AND gate. Each leaf node x of the tree is
described by an attribute and a threshold value kx
= 1. To facilitate working with the access trees,
we define a few functions

.

Figure 4: Access Tree with OR and AND gates

We denote the parent of the node x in the tree by
parent(x). The function att(x) is defined only if x
is a leaf node and denotes the attribute associated
with the leaf node x in the tree. The leaf nodes
should satisfy the access policies of the parent
node i.e, OR gate in Figure 4. The access tree T
also defines an ordering between the children of
every node, that is, the children of a node are
numbered from 1 to num. The function index(x)
returns such a number associated with the node
x. Where the index values are uniquely assigned
to nodes in the access structure for a given key in
an arbitrary manner.

Satisfying an access tree
Let T be an access tree with root r. Denote by Tx
the subtree of T rooted at the node x. Hence T is
the same as Tr. If a set of attributes γ satisfies the
access tree Tx, we denote it as Tx(γ) = 1. We
compute Tx(γ) recursively as follows. If x is a
non-leaf node, evaluate Tx′ (γ) for all children x′
of node x. Tx(γ) returns 1 if and only if at least kx
children return 1. If x is a leaf node, then Tx(γ)
returns 1 if and only if att(x) ∈ γ.
Example
As an example, to give out a private key with the
4-bit attribute “a = 9”, we would instead include
“a : 1***”, “a : *0***”, “a : **0*”, and “a : ***1”

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-4, 2018

25

in the key. We can then use policies of AND and
OR gates to implement integer comparisons over
such attributes, as shown for “a < 11” in Figure
5.

Figure 5: Access tree implementing the
integer comparison “a < 11”

There is a direct correspondence between the bits
of the constant 11 and the choice of gates.
Policies for ≤, >, ≥, and = can be implemented
similarly with at most n gates, or possibly fewer
depending on the constant. It is also possible to
construct comparisons between two numerical
attributes (rather than an attribute and a constant)
using roughly 3n gates, although it is less clear
when this would be useful in practice.
VI. EFFICIENCY
The efficiencies of the key generation and
encryption algorithms are both fairly
straightforward. The encryption algorithm will
require two exponentiations for each leaf in the
ciphertext’s access tree[11]. The ciphertext size
will include two group elements for each tree
leaf. The key generation algorithm requires two
exponentiations for every attribute given to the
user, and the private key consists of two group
elements for every attribute. In its simplest form,
the decryption algorithm could require two
pairings for every leaf of the access tree that is
matched by a private key attribute and (at most2)
one exponentiation for each node along a path
from such a leaf to the root. However, there
might be several ways to satisfy a policy, so a
more intelligent algorithm might try to optimize
along these lines.
Optimizing the decryption strategy
The recursive algorithm results in two pairings
for each leaf node that is matched by a private
key attribute, and up to one exponentiation for
every node occurring along the path from such a
node to the root (not including the root). The
final step after the recursive portion adds an
additional pairing. Of course, at each internal
node with threshold k, the results from all but k

of its children are thrown away. By considering
ahead of time which leaf nodes are satisfied and
picking a subset of them which results in the
satisfaction of the entire access tree, we may
avoid evaluating DecryptNode where the result
will not ultimately be used. More precisely, let
M be a subset of the nodes in an access tree T .
We define restrict(T ,M) to be the access tree
formed by removing the following nodes from T
(while leaving the thresholds unmodified). First,
we remove all nodes not in M. Next we remove
any node not connected to the original root of T
along with any internal node x that now has
fewer children than its threshold kx. This is
repeated until no further nodes are removed, and
the result is restrict(T ,M). So given an access
tree T and a set of attributes γ that satisfies it, the
natural problem is to pick a set M such that γ
satisfies restrict(T ,M) and the number of leaves
in M is minimized (considering pairing to be the
most expensive operation). This is easily
accomplished with a straightforward recursive
algorithm that makes a single traversal of the
tree.
Direct computation of DecryptNode
Further improvements may be gained by
abandoning the DecryptNode function and
making more direct computations. Intuitively,
we imagine flattening out the tree of recursive
calls to DecryptNode, then combining the
exponentiations into one per (used) leaf node.
VII. CONCLUSION AND FUTURE WORK
Although Cloud storage has many advantages,
there are still many problems concerning security
that need to be resolved. If we can completely
eliminate or master this weakness of security, the
future is going to be Cloud storage solutions for
large as well as small companies. In this paper,
we have suggested a solution that allows storage
of data in public cloud. Data security is provided
by implementing our algorithm. Only the
authorized user can access the data. Even if an
intruder (unauthorized user) gets the data
accidentally or intentionally, he can’t decrypt it
and needs two keys from two different parties
[12]. We have done our survey upon extensive
derivatives of ABE scheme. In future, we use
user behaviour pattern as attributes for
encryption and decryption to promote ideal
security techniques.
VIII. REFERENCES
[1] HumeraAqeel, Syed Taqi Ali, "Directly

revocable Attribute Based Encryption
scheme under Ciphertext-policy", IEEE

INTERNATIONAL JOURNAL OF CURRENT ENGINEERING AND SCIENTIFIC RESEARCH (IJCESR)

ISSN (PRINT): 2393-8374, (ONLINE): 2394-0697, VOLUME-5, ISSUE-4, 2018

26

International Conference on Computer,
Communication and Electronics
(Comptelix), August 2017, ISBN: 978-1-
5090-4708-6.

[2] Ilya A.Sukhodolskiy, Sergey V.
Zapechnikov, "An access control model
for cloud storage using attribute
encryption", IEEE Conference of
Russian Youth Researchers in
EIConRus, February 2017, ISBN: 978-1-
5090-4865-6

[3] Qiang Wang; Li Peng; Hu Xiong; Jianfei
Sun; Zhiguang Qin. "Ciphertext-Policy
Attribute-based Encryption with
Delegated Equality Cloud Computing",
IEEE Access, Volume:PP ,Year: 2017,
ISBN: 978-3-319-40252-9.

[4] Nikhil Chaudhari, Mohit Saini, Ashwin
Kumar, G.Priya, "A Review on Attribute
Based Encryption", IEEE 8th
International Conference
on Computational Intelligence and
Communication Networks (CICN),
2016, ISBN: 978-1-5090-1144-5

[5] H. Abdul Gaffar,G. S. Tamizharasi; B.
Balamurugan. "Privacy preserving
ciphertext policy attribute based
encryption scheme with efficient and
constant ciphertextsize", International
Conference on Inventive Computation
Technologies (ICICT), Year: 2016,
Volume:3, Pages: 1-5, ISBN: 978-1-
5090-1285-5.

[6] R. Xu and B. Lang. "A CP-ABE scheme
with hidden policy and its application in
cloud computing", International Journal

of Cloud Computing, Page:279–298,
Year: 2015, ISBN: 978-1-4799-3261-0.

[7] U. C. Yadav. "Ciphertext-policy
attribute-based encryption with hiding
access structure", IEEE International
Advance Computing Conference
(IACC), pages 6–10, Year: 2015, ISBN:
978-1-4799-8046-8.

[8] Jinguang Han; Willy Susilo; Yi
Mu; Jianying Zhou; Man Ho Allen Au.
"Improving Privacy and Security in
Decentralized Ciphertext-
Policy Attribute-Based Encryption",
IEEE Transactions on Information
Forensics and Security, Year: 2015,
Volume: 10, Issue:3, Pages 665-678,
ISBN: 978-1-4799-2456-2.

[9] Bobba R., Khurana H., Prabhakaran M.
(2009) "Attribute-Sets: A Practically
Motivated Enhancement to Attribute-
Based Encryption", In: Backes M., Ning
P. (eds) Computer Security - ESORICS
2009. Lecture Notes in Computer
Science, Volume: 5789. Springer,
Berlin, Heidelberg.

[10] J. Bethencournt, A. Sahai, and B. Waters.
"Ciphertext-policy attribute-based
encryption", In Proceedings of the 2007,
IEEE Symposium on Security and
Privacy, SP '07, pages 321–334, Year:
2007, ISBN: 0-7695-2848-1.

[11] V. Goyal, O. Pandey, A. Sahai, and B.
Waters. “Attribute-Based Encryption for
Fine-grained Access Control of
Encrypted Data”, In Proc. of CCS’06,
Alexandria, Virginia, USA, 2006, ISBN:
978-1-4799-1846-1.

